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Abstract: Reimaging telescopes have an accessible exit pupil that facilitates stray light mitigation and
matching to auxiliary optical systems. Freeform surfaces present the opportunity for unobscured
reflective systems to be folded into geometries that are otherwise impracticable with conventional
surface types. It is critical, however, to understand the limitations of the enabled folding geometries
and choose the one that best balances the optical performance and mechanical requirements. Here,
we used the aberration theory of freeform surfaces to determine the aberration correction potential
for using freeform surfaces in reimaging three-mirror telescopes and established a hierarchy for the
different folding geometries without using optimization. We found that when using freeform optics,
the ideal folding geometry had 9× better wavefront performance compared to the next best geometry.
Within that ideal geometry, the system using freeform optics had 39% better wavefront performance
compared to a system using off-axis asphere surfaces, thus quantifying one of the advantages of
freeform optics in this design space.
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1. Introduction

During the first stages of an optical design, it is critical to understand the physical
boundaries into which the optical system must be packaged. In the case of an unobscured
reflective system, the physical boundaries not only dictate the overall dimensions of the
system but also the geometries into which it can be folded. Within the various folding
geometries (FGs), rotationally variant aberrations are present that require correction for
a clear image to be resolved. The most basic surface shapes, spheres, offer little benefit
for rotationally variant aberration correction, except for in specific configurations [1,2].
Similarly, centered aspheres cannot impact the rotationally variant aberrations prevalent in
asymmetric packages. Thus, for decades, designers have utilized off-axis sections of other-
wise rotationally symmetric conics and aspheres to manage the aberrations of unobscured
reflective systems [3–5]. However, limiting the surfaces to off-axis sections of rotationally
symmetric parent surfaces was primarily conducted to facilitate the manufacture of such
surfaces at the time, but they were not the ideal surface shapes for aberration correction. As
manufacturing techniques such as diamond machining [6–8], ion beam figuring [9–11], and
CNC grinding and polishing [12–17] matured, it became feasible to make surfaces without
an axis of symmetry within or beyond the aperture, termed freeform surfaces [18]. By uti-
lizing every surface shape degree of freedom during design, it was seen that improvements
to critical optical parameters such as system volume [19,20], optical performance [19–24],
zoom ratio [25,26], and throughput could be achieved.

While the ability of freeform surfaces to take any shape seems like the ultimate optical
design tool, they still operate under the same physical rules as conventional surfaces—they
must simultaneously correct all the aberrations across a continuous object field-of-view
(FOV). Fuerschbach et al. developed a mathematical framework that predicts the aberra-
tions that can be corrected by a specific shape of a freeform surface described by Zernike
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polynomials [27]. We leveraged that framework to develop a design method for using
freeform surfaces that starts with choosing an FG that inherently has aberrations that are
correctable using freeform surfaces [28]. It was shown that for a given set of specifications,
there exist many FG options, but the majority are limited by combinations of aberrations
that simply cannot be corrected with freeform surfaces (or any other surface shape). Thus,
when given the option of various FGs, it is critical to identify the optimal solution.

To date, there has been some investigation of the optical behavior of the FGs of a
non-reimaging freeform three-mirror imager (also known as the reflective triplet) [28,29],
but to our knowledge, the FGs of reimaging freeform three-mirror imagers have yet to be
explored. Here, the aberrations of the various FGs for a reimaging freeform three-mirror
imager, where the presence of an intermediate image and accessible exit pupil impact the
aberrations inherent to an FG, will be studied, along with how freeform optics can be
used to correct these aberrations. This type of system is often referred to as a three-mirror
anastigmat (TMA) [5]. The reimaging property of a TMA is useful when stringent stray
light control is required or when pupil-matching to an auxiliary optical system. In the
process, we will identify the hierarchy of FGs for freeform TMAs by optimizing a 250 mm
aperture system operating at F/3 with a 2◦ × 2◦ full FOV in the visible spectrum. For
the top-tier FG, we will perform an additional study of the tradeoffs with system volume.
Lastly, a direct comparison between a freeform design and an equivalently specified off-axis
asphere design will be provided to quantify the freeform advantage in this space.

2. Folding Geometry Investigation

The choice of which specific FG to use varies on a case-by-case basis. In systems
where the optical system drives the packaging, the FG with the best performance can be
used. However, in cases where the optical system plays a supporting role, there is often a
prescribed area carved out for the optics, with little freedom for choosing the FG. In that
case, it is important to understand when a particular FG can be used and when it should be
avoided. In this section, we will show how to predict the freeform correction potential of
an FG without performing a full-system optimization.

2.1. Introduction to Folding Geometries

In the context of an unobscured three-mirror imager, an FG refers to one of the various
permutations of mirror tilt directions combined with the image plane location. With
Y-Z planar symmetry assumed (see coordinate axes in Figure 1), to clear the outgoing
rays after reflection from any given mirror, that mirror can either be tilted clockwise or
counterclockwise about its local X-axis. For a system with three mirrors that can each rotate
in two directions, there are (2) × (2) × (2) = 8 possible mirror tilt permutations. However,
due to the Y-Z planar symmetry of these systems, a clockwise or counterclockwise tilt
of the primary mirror yields optically equivalent systems, so the number of mirror tilt
permutations is reduced to four. Within each tilt permutation, the image plane location
adds sub-options (e.g., crossing or not crossing various ray bundles with the image plane,
like in Figure 1d or Figure 1e) that define the possible FGs. For the specifications detailed
in Table 1, we arrive at a total of eight different FGs, as illustrated in Figure 1.

Tilting the mirrors to create an unobscured system generates significant aberrations
that must be dealt with, to obtain a quality image. The direction and magnitude of each
mirror’s tilt determine the orientation and magnitude of the resulting aberrations; thus,
each FG has a different combination of tilt-induced aberrations [30]. Fuerschbach et al. [27]
detail the combinations of aberrations that are correctable using freeform surfaces, so we
look for those in each FG. Specifically, there are four main low-order aberrations that
are orders of magnitude larger than the others at the geometry selection stage of the
design. They are as follows: field-constant astigmatism (FCA), field-asymmetric field-linear
astigmatism (FAFLA), field-constant coma (FCC), and field-linear medial field curvature,
also called focal plane tilt (FPT). If these four main low-order aberrations are not corrected
efficiently, a high-performance system is unlikely to be found.
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Figure 1. Folding geometries for a three-mirror imager with reimaging. Each different folding
geometry (A–H), is considered distinct because the secondary or tertiary mirror is tilted in a new
direction or the image plane crosses over the incoming ray bundles. These systems have only spherical
surfaces and are not yet optimized for image quality. These systems operate at F/3 with a 250 mm
entrance pupil and a 2◦ × 2◦ full FOV. Each ray bundle of a certain color corresponds to a specific
point in the FOV.

Table 1. Design specifications for the freeform TMA study.

Parameter Specification

Entrance pupil diameter [mm] 250
F/# 3

Full field-of-view [deg] 2 × 2
Root-mean-squared wavefront error [waves] <0.07 (diffraction limited)

Analysis wavelength [nm] 550
Distortion [%] <5

Volume [L] Various

2.2. Design Study Parameters

As noted, a TMA is a three-mirror imager that has an intermediate image and an
accessible exit pupil. To satisfy both requirements, the aperture stop location is preferably
placed at the primary mirror (or in object space), as we want to keep the pupil plane
separated from the intermediate image plane. The airspaces between mirrors are unsuitable
for the aperture stop due to the lack of space to place a physical aperture without obscuring
another part of the system. From Fuerschbach et al. [27], we can understand the effect of
putting a freeform surface on each of the three mirrors. With the primary mirror serving as
the aperture stop, freeform shapes at this surface can only correct field-constant aberrations.
The secondary mirror’s close proximity to the intermediate image means that it will provide
a highly field-dependent freeform correction, with only a small field-constant contribution.
The footprints of each field on the secondary mirror are small, requiring a large freeform
shape contribution to yield any significant aberration response. Finally, the tertiary mirror
will be located roughly at the mid-point between the relayed pupil and the intermediate
image, so it will have field-dependent and field-constant aberration responses that are
similar in magnitude. The full specifications for the design are shown in Table 1.

2.3. Using Geometry Filters

In Figure 1, we show the eight unique FGs into which this system could be packaged.
One could optimize each FG with freeform surfaces to find which FGs are optimal, but
that is a time-consuming task and becomes exponentially more tedious as more surfaces
are added to the system. Instead, as we conducted for the reflective triplet design [28], we
construct filters to apply to each FG to ascertain its potential for freeform correction without
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needing a full optimization. The filters are based on the aberration theory of freeform
surfaces documented in [27] and focus on the four main low-order aberrations described in
Section 2.1.

FCA is of minor concern, as it can be corrected by putting an astigmatism-shaped
surface on any surface in the system, irrespective of the FG. Ideally, it would be placed
at the stop surface (primary mirror) to minimize the distortion that it also induces when
placed away from the stop. Thus, the first filter addresses the correction of the FAFLA
and FCC inherent in each FG. As illustrated in Figure 2 and from [27], we know that a
coma-shaped freeform surface simultaneously adds contributions of FAFLA and FCC when
located away from the aperture stop. The relative orientation between the FAFLA and
FCC contributions depends on if the surface is placed before or after the aperture stop
(planar symmetry allows for only two relative orientations between FCC and FAFLA). In
our case, there are two surfaces that follow the aperture stop; thus, only a single relative
orientation between the FAFLA and FCC can be contributed from a coma surface, and
therefore, only that relative orientation is correctable using the freeform surfaces. Filter #1
checks the FAFLA and FCC inherent in each FG to identify if the correct relative orientation
is present and, thus, if it is correctable using freeform surfaces. If it is, a single coma surface
can correct both aberrations simultaneously and efficiently.

Sensors 2024, 24, 4816 4 of 10 
 

 

2.3. Using Geometry Filters 
In Figure 1, we show the eight unique FGs into which this system could be packaged. 

One could optimize each FG with freeform surfaces to find which FGs are optimal, but 
that is a time-consuming task and becomes exponentially more tedious as more surfaces 
are added to the system. Instead, as we conducted for the reflective triplet design [28], we 
construct filters to apply to each FG to ascertain its potential for freeform correction with-
out needing a full optimization. The filters are based on the aberration theory of freeform 
surfaces documented in [27] and focus on the four main low-order aberrations described 
in Section 2.1. 

FCA is of minor concern, as it can be corrected by putting an astigmatism-shaped 
surface on any surface in the system, irrespective of the FG. Ideally, it would be placed at 
the stop surface (primary mirror) to minimize the distortion that it also induces when 
placed away from the stop. Thus, the first filter addresses the correction of the FAFLA and 
FCC inherent in each FG. As illustrated in Figure 2 and from [27], we know that a coma-
shaped freeform surface simultaneously adds contributions of FAFLA and FCC when lo-
cated away from the aperture stop. The relative orientation between the FAFLA and FCC 
contributions depends on if the surface is placed before or after the aperture stop (planar 
symmetry allows for only two relative orientations between FCC and FAFLA). In our case, 
there are two surfaces that follow the aperture stop; thus, only a single relative orientation 
between the FAFLA and FCC can be contributed from a coma surface, and therefore, only 
that relative orientation is correctable using the freeform surfaces. Filter #1 checks the 
FAFLA and FCC inherent in each FG to identify if the correct relative orientation is present 
and, thus, if it is correctable using freeform surfaces. If it is, a single coma surface can 
correct both aberrations simultaneously and efficiently. 

 
Figure 2. The resulting aberrations from adding a freeform coma shape to a surface in the optical 
system are shown here in aberration full-field displays, as predicted by the aberration theory of 
freeform surfaces [27]. When the coma surface is located at the aperture stop, only (a) field-constant 
coma is produced. When the coma surface is moved away from the aperture stop, (a) field-constant 
coma, (b) field-asymmetric, field-linear astigmatism, and (c) focal plane tilt are produced. 

The second filter addresses the third aberration that a coma surface generates, the 
FPT. When correcting the FAFLA and FCC, as described in the previous filter, some 
amount of FPT is also added. Filter #2 checks to see if the added FPT serves to decrease 
the FPT that is inherent to the FG. If it does, the single coma surface has the potential to 
correct the FAFLA, FCC, and FPT contributions simultaneously. It is important to correct 
the FPT optically rather than by using a tilted detector to avoid image distortion and the 
reduced responsivity of the detector [31]. 

The final filter uses more conventional optical design wisdom and is applied more 
subjectively than the previous two. Extreme surface tilts used to clear the rays generate 
more low-order and higher-order aberrations than can be corrected using freeform sur-
faces. Additionally, with the constraint of an accessible exit pupil, if the distance between 

Figure 2. The resulting aberrations from adding a freeform coma shape to a surface in the optical
system are shown here in aberration full-field displays, as predicted by the aberration theory of
freeform surfaces [27]. When the coma surface is located at the aperture stop, only (a) field-constant
coma is produced. When the coma surface is moved away from the aperture stop, (a) field-constant
coma, (b) field-asymmetric, field-linear astigmatism, and (c) focal plane tilt are produced.

The second filter addresses the third aberration that a coma surface generates, the FPT.
When correcting the FAFLA and FCC, as described in the previous filter, some amount
of FPT is also added. Filter #2 checks to see if the added FPT serves to decrease the FPT
that is inherent to the FG. If it does, the single coma surface has the potential to correct
the FAFLA, FCC, and FPT contributions simultaneously. It is important to correct the FPT
optically rather than by using a tilted detector to avoid image distortion and the reduced
responsivity of the detector [31].

The final filter uses more conventional optical design wisdom and is applied more
subjectively than the previous two. Extreme surface tilts used to clear the rays generate
more low-order and higher-order aberrations than can be corrected using freeform surfaces.
Additionally, with the constraint of an accessible exit pupil, if the distance between the
tertiary mirror and the closest feasible spot for the exit pupil (i.e., the location nearest to
the tertiary mirror, where it is clear of all overlapped ray bundles) is too great, then the
first-order optics limit the possible aberration correction. Filter #3 checks the FGs for those
two aspects.
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2.4. Starting Geometry Construction

Before the filters can be applied to the FGs, a starting-point optical model for each
FG must be created. As emphasized in our earlier work [28], an all-spherical starting
point is sufficient, and accordingly, it is not critical for the starting designs to have good
optical performance. On the contrary, it is fully expected that the starting points will be
significantly aberrated. The first-order constraints that the starting points must satisfy are
the system focal length, the Petzval correction, and for the system to be unobscured. A
basic procedure for setting up these three-mirror starting points is as follows: the airspaces
between the primary/secondary mirrors and secondary/tertiary mirrors should be ap-
proximately equal and chosen to fill the allowable system length (which is assumed to
be a known parameter). The focal length of the primary mirror should be 1.25×–1.5×
larger than primary/secondary airspace so that the intermediate image forms between the
secondary and tertiary mirrors. Then, the powers of the secondary and tertiary mirrors can
be determined by enforcing the system focal length and zero Petzval curvature constraints.
Finally, the mirrors should be tilted the minimum amount that results in complete unob-
scuration. The fine-tuning of the mirror powers can be performed manually if there are
obscuration challenges for any given FG. Again, the actual mirror powers and airspaces
are not critical in these starting points.

2.5. Applying the Filters to the FGs

By evaluating the FGs using these three aberration-based filters, each FG can be put
into a tier based on how many and which filters are satisfied, where a greater number of
satisfied filters predicts better aberration correction. We made starting designs for and
applied the filters to the FGs shown in Figure 1, with the results summarized in Table 2.
Included in the table is whether the FG has the ability to have an accessible intermediate
image, at which a field stop can be placed to further limit stray light.

Table 2. The results of the filtering of the FGs. “Yes” means the FG passed the filter, and N/A
indicates that it was not necessary to test the filter due to failing Filter #3. Each FG was placed into
a tier, where a lower numbered tier indicated better performance was to be expected. Access to an
intermediate image plane is also noted.

Geometry Filter #1 Filter #2 Filter #3 Tier Int. Img. Access

A Yes Yes Yes 1 Yes
B No No Yes 2 No
C Yes No Yes 2 Yes
D Yes No Yes 2 No
E Yes No Yes 2 No
F N/A N/A No 3 Yes
G N/A N/A No 3 Yes
H N/A N/A No 3 No

As an example of applying Filter #3, which is the most subjective filter, let us consider
Geometry G. After reflection from the tertiary mirror, the light must cross two bundles
of rays—those going into the tertiary mirror and those entering the system towards the
primary mirror—before forming an image, which is a long optical path relative to some
of the other FGs. Thus, with a fixed system F-number, the tertiary mirror is going to be
quite fast. Further, the tertiary mirror must be tilted substantially to move the image plane
clear of the rays entering the system. The combination of a fast mirror being substantially
tilted results in prohibitive levels of aberration. Additionally, the exit pupil must also be
made accessible, thus tightly constraining the distance between it and the tertiary mirror
and dictating the first-order surface properties instead of those properties being driven by
aberration correction.

Based on the results of the filtering, there is one Tier 1 FG that unequivocally has
the best potential for correction using freeform surfaces. This FG is the preferred FG



Sensors 2024, 24, 4816 6 of 10

for conventional TMAs and has been shown to be optimal for freeform reflective triplet
designs as well [28]. The lower tier designs should not be deemed as unusable in a global
sense, but rather their suboptimal performance should be of consideration when balancing
mechanical and optical requirements. Further differentiation between the Tier 2 designs
is challenging as higher-order aberrations play a larger role, and the applied filters focus
solely on the low-order aberrations.

To complete this exercise and validate the filtering results, we optimized all eight
FGs with a target bounding box volume constraint of 70 L with clearance constraints
such that there is adequate spacing between the optics for mechanics/electronics. The
aberration-based method outlined in [28] was followed for each optimization. Given that
the design method we followed was based on using Zernike polynomial freeform surfaces,
we also employed Zernike polynomial freeform surfaces here (up to Z28 in Fringe ordering).
Geometries A and B were the only FGs whose performance at 70 L was <0.25 waves root-
mean-squared (RMS) averaged over the FOV. However, Geometry A performed 9x better in
RMS wavefront error (WFE) and had 3× lower distortion than Geometry B, demonstrating
the superiority of that form. Distortion in this case is measured as the distance between the
real chief ray and the paraxial chief ray for each field point at the image plane. Distortion
was constrained in the design process by controlling the (x,y) intersection points of the
real chief rays at the image plane to meet the distortion goals. The optimized designs for
Geometries A and B are shown in Figure 3.
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Figure 3. Optimized designs using freeform surfaces for Tier 1 Geometry (A) and Tier 2 Geometry
(B). These were the only two FGs to achieve <0.25 waves’ average RMS WFE at a volume of 70 L. The
RMS WFE of Geometry A is ~9× better than Geometry B. Distortion grids for both designs indicate
that Geometry A has approximately 3× lower distortion.

Geometry A was independently found to be the ideal geometry for reimaging freeform
systems based on a survey of the three-mirror imager landscape leveraging confocal conics,
though at a slower speed (F/5) and smaller entrance pupil (500 mm) [32]. Geometry A was
also leveraged in a diffraction-limited F/1.7, 4◦ × 0.1◦ FOV, 90 mm entrance pupil design
operating in the LWIR [33], showing that the geometry is flexible for different applications
and specifications.

The quality of the exit pupil in the designs optimized in this work was not constrained,
though the final designs do have reasonably well-formed pupils due to their limited FOVs.
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For the case where an aperture would be put at the exit pupil plane to mitigate stray light,
an ill-formed exit pupil would mostly result in some vignetting of the off-axis fields. If an
application calls for more strict control on the quality of the exit pupil and/or more FOV is
added, additional design constraints can be enforced [34].

3. Volume Study of Tier 1 FG

Given the overwhelming benefit of using the Tier 1 FG over the other FGs, it is
instructive to extend the design study to include how the Tier 1 FG performs over a range
of volumes. With the performance goal of diffraction limited at 550 nm over the full FOV,
the most compact package size achievable was 45 L. To make the system even more compact,
the mirror powers must increase. Additionally, the tilts necessary to unobscure the system
become greater as the system becomes more compact. These two factors contribute to
an increase in the aberrations of the system before adding freeform surfaces, especially
higher-order aberrations, which are more difficult to correct without also impacting the
low-order terms. The average RMS WFE values across the field vs. volume for the resulting
designs are shown in Figure 4. The plot illustrates that there is a quick end to volume
reduction while still maintaining diffraction-limited performance over the full field.

Sensors 2024, 24, 4816 7 of 10 
 

 

Geometry A was independently found to be the ideal geometry for reimaging 
freeform systems based on a survey of the three-mirror imager landscape leveraging con-
focal conics, though at a slower speed (F/5) and smaller entrance pupil (500 mm) [32]. 
Geometry A was also leveraged in a diffraction-limited F/1.7, 4° × 0.1° FOV, 90 mm en-
trance pupil design operating in the LWIR [33], showing that the geometry is flexible for 
different applications and specifications. 

The quality of the exit pupil in the designs optimized in this work was not con-
strained, though the final designs do have reasonably well-formed pupils due to their lim-
ited FOVs. For the case where an aperture would be put at the exit pupil plane to mitigate 
stray light, an ill-formed exit pupil would mostly result in some vignetting of the off-axis 
fields. If an application calls for more strict control on the quality of the exit pupil and/or 
more FOV is added, additional design constraints can be enforced [34]. 

3. Volume Study of Tier 1 FG 
Given the overwhelming benefit of using the Tier 1 FG over the other FGs, it is in-

structive to extend the design study to include how the Tier 1 FG performs over a range 
of volumes. With the performance goal of diffraction limited at 550 nm over the full FOV, 
the most compact package size achievable was 45 L. To make the system even more com-
pact, the mirror powers must increase. Additionally, the tilts necessary to unobscure the 
system become greater as the system becomes more compact. These two factors contribute 
to an increase in the aberrations of the system before adding freeform surfaces, especially 
higher-order aberrations, which are more difficult to correct without also impacting the 
low-order terms. The average RMS WFE values across the field vs. volume for the result-
ing designs are shown in Figure 4. The plot illustrates that there is a quick end to volume 
reduction while still maintaining diffraction-limited performance over the full field. 

 
Figure 4. The average RMS WFE is plotted vs. the system volume for the Tier 1 FG (Geometry A). 
Volumes below 45 L were unable to be optimized to have diffraction-limited performance over the 
full FOV. 

Reimaging three-mirror imagers have less design freedom than their non-reimaging 
counterparts given the additional constraints/benefits of having an accessible intermedi-
ate image and exit pupil. Using the roadmap in Bauer et al. [35], it can be seen that a non-
reimaging freeform three-mirror imager, designed with the same specifications as shown 
in Table 1, has a volume that is approximately 70% of the smallest diffraction-limited 
reimaging freeform three-mirror imager. For additional comparisons between non-
reimaging and reimaging systems at other specifications, a separate roadmap for reimag-
ing systems is needed. 

4. Comparison to Off-Axis Aspheres 
Often, when approaching an optical design, there is a tendency to stick to what is 

known or commonly conducted. However, when the benefit of a new technology is sub-
stantial, the risk of trying something new is outweighed. To speed up the adoption of 
freeform optics, it is necessary to perform direct comparisons to their conventional 

0

0.01

0.02

0.03

0.04

0.05

30 50 70 90 110

Av
g.

 R
M

S 
W

FE
 (λ

= 
55

0 
nm

)

Volume (L)

Figure 4. The average RMS WFE is plotted vs. the system volume for the Tier 1 FG (Geometry A).
Volumes below 45 L were unable to be optimized to have diffraction-limited performance over the
full FOV.

Reimaging three-mirror imagers have less design freedom than their non-reimaging
counterparts given the additional constraints/benefits of having an accessible intermediate
image and exit pupil. Using the roadmap in Bauer et al. [35], it can be seen that a non-
reimaging freeform three-mirror imager, designed with the same specifications as shown in
Table 1, has a volume that is approximately 70% of the smallest diffraction-limited reimag-
ing freeform three-mirror imager. For additional comparisons between non-reimaging
and reimaging systems at other specifications, a separate roadmap for reimaging systems
is needed.

4. Comparison to Off-Axis Aspheres

Often, when approaching an optical design, there is a tendency to stick to what
is known or commonly conducted. However, when the benefit of a new technology is
substantial, the risk of trying something new is outweighed. To speed up the adoption
of freeform optics, it is necessary to perform direct comparisons to their conventional
counterparts to quantify the improvements they offer. Here, we optimized a conventional
TMA using off-axis aspheres with equivalent specifications to the 70 L freeform TMA
described above in Table 1. Both the freeform and conventional designs together with
their respective RMS WFE analyses are shown in Figure 5. In this scenario, freeform
surfaces enable a performance improvement of 39% in the average RMS WFE and 35%
in the maximum RMS WFE. The conventional design shown in Figure 5 is right at the
diffraction limit of 0.07 waves max across the FOV. As indicated in Section 3, the most
compact freeform design that maintained diffraction-limited performance across the full
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FOV was 45 L, representing a 36% decrease in volume compared to the conventional design
with the same performance.
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Figure 5. A comparison of the (top) freeform solution to the (bottom) conventional solution using
off-axis aspheres. Each design fits within a 70 L volume. The freeform design has a 39% better
average RMS WFE and a 35% better maximum RMS WFE compared to the conventional design with
equivalent specifications.

5. Conclusions

By analyzing the aberrations of the various FGs for a freeform TMA, one can make an
informed choice about how to best integrate an optical system into an overall system design.
Here, we applied three filters to the FGs based on the aberration correction abilities of
freeform surfaces, following a procedure documented in the literature. This allowed us to
create a hierarchy of FGs and conserve time that would otherwise be spent optimizing each
individual FG (though we also included an example of the latter to validate the predictions).
The Tier 1 FG showed a 9× better RMS WFE compared to the next best FG, underscoring
the point that freeform surfaces are not an aberration silver bullet for all systems and
that, for TMA systems, designers should stick to the Tier 1 FG when image quality is a
top (or even medium) priority. The Tier 1 FG is the same geometry that has been used
for years in conventional off-axis TMA designs, and through this study, we now have an
aberration-based understanding of the why it works so well. Finally, we demonstrated the
freeform advantage in TMAs by comparing them to a conventional design using off-axis
aspheres, showing a significant performance gain.

It should be noted that the increased performance must often be weighed against
the increased manufacturability challenges. Freeform optics is an emerging technology,
where the departures from symmetries can make the processes of fabrication and metrology
more complex and, therefore, more costly. Additionally, the folded geometries of freeform
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systems may require intricate optomechanical designs so that the optics can be properly
located and mounted in three dimensions while meeting alignment tolerances. In the
designs presented here, the overall layout of the conventional design and the freeform
design are quite similar, including the speed of the base surfaces, so we do not expect
that the freeform system will be any more challenging to assemble. However, in general,
by using concurrent engineering best practices when designing freeform systems, the
manufacturing complexities, costs, and sensitivities can be minimized.
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