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Abstract: In this paper, we propose a novel system integrating reconfigurable intelligent surfaces (RISs)
with cognitive radio (CR) technology, presenting a forward-looking solution aligned with the evolving
standards of 6G and beyond networks. The proposed RIS-assisted CR networks operate with a base
station (BS) transmitting signals to two users, the primary user (PU) and secondary user (SU),
through direct and reflected signal paths, respectively. Our mathematical analysis focuses on deriving
expressions for SU in the RIS-assisted CR system, validated through Monte Carlo simulations. The
investigation covers diverse aspects, including the impact of the signal-to-noise ratio (SNR), power
allocations, the number of reflected surfaces, and blocklength variations. The results provide nuanced
insights into RIS-assisted CR system performance, highlighting its sensitivity to factors like the
number of reflectors, fading severity, and correlation coefficient. Careful parameter selection, such as
optimizing the configuration of reflectors, is shown to prevent a complete outage, showcasing the
system’s robustness. Additionally, the work suggests that the optimization of reflectors configuration
can significantly enhance overall system performance, and RIS-assisted CR systems outperform
reference schemes. This work contributes a thorough analysis of the proposed system, offering
valuable insights for efficient performance evaluation and parameter optimization in RIS-assisted
CR networks.

Keywords: cognitive radio (CR); ergodic rate (ER); gamma distribution; outage probability (OP);
reconfigurable intelligent surface (RIS)

1. Introduction

Cognitive radio (CR) technology has emerged as a solution to enhance spectral
efficiency [1]. CR stands as a software-defined radio, offering a notable solution to ad-
dress spectrum scarcity while simultaneously reducing power consumption for commu-
nication requirements [2]. In [3], the authors introduced dynamic spectrum access as a
new paradigm within CR, highlighting dynamic spectrum access and CR as promising
candidates to fully enable wireless technology implementation in industrial wireless com-
munications for industrial systems and applications, as well as to address the limitations of
spectrum scarcity.

Reconfigurable intelligent surface (RIS) technology is characterized as a method aimed
at achieving spectrum- and energy-efficient transmission [4–6]. It comprises numerous
passive reflective elements, each capable of altering the phase of the reflected wireless
signal. This phase manipulation enables the controlled and advantageous modification
of the wireless propagation medium without requiring external power or complex sig-
nal processing. Consequently, the utilization of RIS in advanced communication realms
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like 5G and 6G is extensively acknowledged [5,7]. Passive reflectors, such as RISs, op-
erate by collecting wireless signals emitted by a transmitter and then redirecting them
towards a receiver. This procedure bears the potential to augment both the strength and
quality of signals. A RIS comprises a flat surface adorned with multiple tiny reflecting
elements, referred to as metasurfaces or M elements (with N metasurface M elements).
These elements can be flexibly adjusted to manage the characteristics of electromagnetic
waves as they traverse through. Metasurfaces usually feature subwavelength resonant
structures capable of modifying the phase, amplitude, and polarization of incoming waves.
Through the precise manipulation of the reflection properties of each M element, an RIS
can direct waves towards a specific direction, amplify or weaken them, or even generate
entirely new beams [8]. The authors in [9] conducted an examination of the effectiveness
of a multihop full-duplex (FD) relaying system assisted by RIS. In this setup, an interme-
diate FD relay is utilized to overcome the inherent far-field path-loss effect present in RIS
communication links.

1.1. Related Works

To boost both spectral efficiency (SE) and energy efficiency (EE), the authors in [10]
introduced multiple intelligent reflecting surfaces (IRSs) into a downlink multiple-input
single-output (MISO) cognitive radio system (CRS). This setup involves a single secondary
user coexisting with a primary network (PN) that includes multiple primary user receivers.
In [11], the authors proposed using an intelligent reflecting surface (IRS) to aid data
transmission for secondary users within a multiple-input multiple-output (MIMO) CRS.
The authors in [12] delved into the augmentation of spectral efficiency by combining RISs
with CR technology. In [13], the authors devised an optimization framework to facilitate
the symbiotic operation of a multiuser CR network (CRN). The study in [14] explored
the utilization of RISs to enhance both the physical layer security and data transmission
in underlay CRNs. This CRN comprises a PN based on non-orthogonal multiple access
(NOMA) and a secondary network (SN) based on RIS, both sharing the same spectrum.

In [15], the authors presented an outage probability (OP) analysis for an IRS-assisted
NOMA downlink with linear energy scavenging, yet the derivations were solely applicable
to the best- and worst-case scenarios with closed-form OP expressions under Rayleigh
fading. The authors of [16] conducted an error performance analysis for an IRS-assisted
NOMA downlink but did not optimize system parameters or investigate energy scav-
enging. Additionally, [16] focused on Rayleigh fading, which is less comprehensive than
Nakagami-m fading. In [17], the authors explored NOMA in unmanned aerial vehicle sys-
tems with multiple IRSs and optimized the system throughput effectively for Rician fading
links, neglecting Nakagami-m fading and energy harvesting. The study in [18] aimed to
minimize the delay and energy for an IRS-assisted NOMA uplink with linear energy har-
vesting over Rayleigh and Rician fading links, without considering Nakagami-m fading or
nonlinear energy harvesting, and did not analyze system performance. In [19], the authors
designed an IRS-assisted NOMA and analyzed its bit error rate, incorporating Nakagami-m
fading but ignoring energy harvesting. The authors of [20] analyzed the effective ergodic
capacity and OP of IRS-assisted NOMA downlink/uplink, but the analysis was restricted
to Rayleigh fading and linear energy harvesting. In [21], the average age of information,
sum throughput, and OP of IRS-assisted NOMA with energy harvesting were studied for
Nakagami-m fading, yet linear energy harvesting was considered, not reflecting real-world
ES. For ultra-massive machine type communications, [22] investigated IRS-assisted NOMA
downlink with energy harvesting, optimizing the sum rate of all users with FD NOMA
communications, while [23] addressed the problem of clustering users and assigning an IRS
subject to linear energy scavenging and Rician fading, without conducting a performance
analysis. Additionally, works in [15–23] did not examine the cognitive radio context.
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1.2. Motivations and Contributions

In recent years, the advent of IRS has heralded a new era in wireless communication,
offering a promising solution to enhance the performance of wireless networks. IRS tech-
nology leverages a large array of passive reflecting elements, which can be dynamically
adjusted to manipulate electromagnetic waves in a desirable manner, thereby improving
signal propagation conditions. This innovative approach has garnered substantial interest
in both academia and industry, aiming to develop more efficient and flexible wireless com-
munication systems. A significant body of research has explored the integration of IRS with
various wireless communication paradigms. For instance, Wu et al. [24] demonstrated the
potential of IRS in enhancing wireless networks through joint active and passive beamform-
ing design. Similarly, Han et al. [25] exploited statistical channel state information (CSI) to
optimize the performance of large intelligent surfaces in wireless communications. These
studies underscore the capability of IRS to significantly improve signal quality and cov-
erage. Moreover, Huang et al. [26] investigated the energy efficiency benefits of IRS in
wireless communication, revealing that IRS can effectively reduce energy consumption
while maintaining high performance. Guan et al. [27] further explored the role of artificial
noise in IRS-assisted secrecy communications, providing insights into the security enhance-
ments achievable with IRS technology. Comprehensive surveys by Gong et al. [28] and
Liu et al. [29] together provide a detailed overview of the principles, challenges, and oppor-
tunities associated with IRS, highlighting the transformative potential of this technology.
Wu and Zhang [30] discussed the broader vision of smart and reconfigurable environments
enabled by IRS, positioning it as a key enabler for future wireless networks. Additionally,
Guo et al. [31] focused on the optimization of the weighted sum-rate in IRS-enhanced net-
works, emphasizing the importance of performance optimization in practical applications.
Despite the extensive research on IRS, its application in cognitive radio (CR) systems re-
mains relatively underexplored. CR technology, characterized by its ability to dynamically
adapt to the spectrum environment and mitigate interference, can benefit significantly
from the integration of IRS. This study aims to bridge this gap by investigating the outage
performance of IRS-assisted CR systems. By leveraging IRS, we can potentially achieve
better interference management and improved outage performance, thereby enhancing
the overall efficiency of CR networks. This study builds upon the foundational work of
the aforementioned studies and extends it to the context of CR systems. We compare our
results with those presented in previous works, such as [32], demonstrating the superiority
of our approach in terms of outage probability and performance optimization. In summary,
this manuscript contributes to the growing body of knowledge on IRS by exploring its
integration with CR systems, highlighting the benefits and performance improvements
achievable through this synergy. The subsequent sections will delve into the system model,
performance analysis, and comparative results, providing a comprehensive evaluation of
the proposed IRS-assisted CR model.

This study integrates RISs with CR technology, aiming to address the aforementioned
gap. The key contributions of this study can be summarized as follows:

• Our proposition involves RIS-assisted CR networks, wherein the base station (BS)
communicates signals to two users, referred to as the primary user (PU) and secondary
user (SU), via direct and reflected signal paths, respectively. This strategy aligns
with the standards of 6G and beyond networks, thereby enhancing practicality and
applicability in contemporary network paradigms.

• We develop mathematical formulations for SU within the RIS-assisted CR system. We
validate the accuracy and efficacy of these formulations through Monte Carlo simulations.

• We conduct a comprehensive analysis of the performance of RIS-assisted CR sys-
tems. Our examination covers various factors such as the influence of SNR, power
allocations, the quantity of reflected surfaces, and variations in blocklength. These
analyses provide valuable insights that can guide the thoughtful design of RIS-assisted
CR systems.
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1.3. Organization and Notation

Organization: This paper is structured as follows: In Section 2, we present the system
model and examine the channel characteristics. Proceeding to Section 3, we conduct an in-
depth analysis of the outage probability in RIS-assisted CR systems. Section 4 is dedicated
to analyzing the EE, while Section 5 presents the EE of the system. In Section 6, we present
and discuss the simulation results, followed by the conclusion of this paper in Section 7.

Notation: |.| denotes the absolute value. Pr(.) depicts the probability operator; E{.}
is the expectation operator; diag(.) represents a diagonal matrix; the superscript (.)T stands
for the transpose operator; Γ(.) is the so-called Gamma function; γ(., .) and Γ(., .) represent
the lower and upper incomplete Gamma functions, respectively. Additionally, the proba-
bility density function (PDF) and the cumulative distribution function (CDF) of a random
variable X are symbolized as FX(.) and fX(.), respectively.

2. System Model and Channel Characteristics

System Model

Let us examine a downlink system where a RIS supports multiple access in the
secondary network (SN). This network comprises a PU, a secondary source functioning as
the BS, a secondary RIS featuring N reflecting elements, and a SU, depicted in Figure 1. We
will make the assumption that each node is outfitted with a single antenna and that there is
no direct communication path between the BS and the SU. Let us represent h ∈ C1×1 as the
channel coefficient from the BS to the PU, g0,n ∈ C1×N as the channel vector from the BS to
the RIS, and g1,n ∈ CN×1 as the channel vector from the RIS to the SU. In our analysis, we
utilize a general fading distribution, specifically Nakagami-m, for all transmission links.
Furthermore, we presume that all channel coefficients associated with the RIS follow an
independent and identically distributed (i.i.d.) pattern.

Secondary

0,ng
1,ng

Secondary Network

RIS

BS

PU
SUPrimary Network

Secondary link

Interference link

Secondary link

Interference link

Secondary link

Interference link

h

Figure 1. An illustration of RIS-assisted cognitive networks.

We define PS as the average transmit power from the BS to facilitate transmissions
within the SN, aimed at constraining interference to the PU [33].

PS ≤ min

(
I

|h|2
, P̄S

)
, (1)

Here, I represents the peak interference temperature power at the PU, while P̄S represents
the maximum available power of the BS. Let xS denote the transmit signals at the BS, and
then it is computed as x̃ =

√
PSxS. Here, we make the assumption that the transmitted

signals are normalized, indicating that E
{
|xS|2

}
= 1, where E{.} denotes the expectation
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operator. The signal received at the SD from the BS to the RIS and from the RIS to the SU is
then given by:

ȳSD = gT
1 Φg0 x̃ + nSD, (2)

In this expression, Φ = diag
(

β1ejθ1 , . . . , βnejθn , . . . , βNejθN
)

represents a diagonal matrix
where 0 < βn ≤ 1 for n ∈ {1, . . . , N}, denoting the amplitude reflection coefficient of the n-
th reflecting element. Additionally, θn ∈ [0, 2π) denotes the phase shift of the n-th reflecting
element. Here, e(.) = exp(.) is the exponential function, g1 = [g1,1, . . . , g1,n, . . . , g1,N ]

T ,
g0 = [g0,1, . . . , g0,n, . . . , g0,N ]

T , and (.)T denotes the transpose operation. Let ḡ0,n = g0,nejφn

and ḡ1,n = g1,nejϕn denote the channel coefficients from the BS to the RIS and from the RIS
to the SU, respectively, where φn, ϕn ∈ [0, 2π) is the phase shift of g0,n and g1,n. nSD depicts
the additive white Gaussian noise (AWGN) with zero mean and variance σ2

SD. The received
signals in (1) can thus be reformulated as:

ȳSU =
√

PSxS

N

∑
n=1

ḡ0,n ḡ1,nejθn + nSD

=
√

PSxS

N

∑
n=1

g0,ng1,nejζn + nSD,

(3)

Here, ζn = θn + ϕn + φn. The equivalent end-to-end (E2E) signal-to-noise (SNR) at the SU
is then expressed as:

γ̄SU = ρS

∣∣∣∣∣ N

∑
n=1

g0,ng1,nejζn

∣∣∣∣∣
2

, (4)

Here, ρS = PS
/

σ2
SU denotes the average transmit SNR. In this scenario, we presume a high

phase-shift resolution and perfect Channel State Information (CSI) at the RIS. Channel
estimation can be achieved by employing the methodology outlined in [34]. Subsequently,
the optimal phase-shift design is utilized to maximize the SNR at the destination [35].
Specifically, let θ∗n denote the optimal phase-shift of the n-th element of the RIS. Its value is
then determined by:

θ∗n = −ϕn − φn, ∀n. (5)

The optimal instantaneous SNR at the SU can be rewritten as:

γ̄
otp
SU = ρS

∣∣∣∣∣ N

∑
n=1

g0,ng1,n

∣∣∣∣∣
2

= ρS|A|2, (6)

where A ∆
= ∑N

n=1 g0,ng1,n. Next, we introduce some distributions that will be utilized in the
performance analysis. Let X be a random variable (RV) following a Nakagami-m distribution,
characterized by its PDF and CDF, parameterized by m and Ω, as provided by [36]:

fX(x; m, Ω) =
2mm

Γ(m)Ωm x2m−1e−
m
Ω x2

, (7a)

FX(x; m, Ω) =
γ
(
m, m

Ω x2)
Γ(m)

, (7b)

Here, m > 0 serves as the shape parameter, indicating the severity of fading, while Ω > 0
stands as the spread parameter of the distribution. We employ an alternative notation
to represent a Nakagami-m random variable: X ∼ Nakagami (m, Ω). It is worth noting
that Ω represents the mean square value of X, denoted as E

{
X2} [37], which equates to

the average channel (power) gain. The distribution of the magnitude of each individual
channel is articulated as follows: h ∼ Nakagami(mh, Ωh), g0,n ∼ Nakagami (m0, Ω0),
and g1,n ∼ Nakagami (m1, Ω1), where n = 1, . . . , N. Let Y be a RV following a Gamma
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distribution, characterized by its PDF and CDF, parameterized by χ and δ, respectively, as
provided by [36]:

fY(y; χ, δ) =
δχ

Γ(χ)
yχ−1e−δy, (8a)

FY(y; χ, δ) =
γ(χ, δy)

Γ(χ)
, (8b)

Here, χ > 0 serves as the shape parameter, while δA > 0 stands as the rate parameter of
the distribution. Subsequently, we adopt the following representation to denote a Gamma
RV: Y ∼ Nakagami (χA, δ). Utilizing the proposed distribution estimation framework, we
demonstrate that the true distribution of A is accurately approximated by the Gamma
distribution. The true distribution of A can be approximated by the Gamma distribution,
characterized by two parameters χA and δA, denoted as A ∼ Gamma (χA, δA). The
estimators of χA and δA can be expressed as cited in [38].

χA =
(E{A})2

Var{A} =
[µA(1)]

2

µA(2)− [µA(1)]
2 , (9)

and

δA =
E{A}

Var{A} =
µA(1)

µA(2)− [µA(1)]
2 , (10)

respectively, where µA(1) and µA(2) are presented in [38]. Therefore, the approximate PDF
and CDF of A, denoted as fY(y; α, β) and FY(y; α, β), respectively, can be expressed using
Equations (8a) and (8b) as provided. With the PDF of A determined, we proceed to derive
the k-th moment of A as follows:

µA(k) =
Γ(m0 + 0.5k)Γ(m1 + 0.5k)

Γ(m0)Γ(m1)

(
Ω0Ω1

m0m1

) k
2
. (11)

Indeed, determining the statistical characteristics of the Gamma distribution, specif-
ically µA (1) and µA (2), can pose a challenge. Additionally, acknowledging that for
arbitrary X and Y, where Y = X2, we have FY(y) = FX

(√
y
)

and fY(y) = 1
2
√

y fX
(√

y
)
, the

PDF and CDF of A2 can be obtained as:

fA2(x) ≈
δ

χA
A

2
√

xΓ(χA)
x

χA−1
2 e−δA

√
x, (12a)

FA2(x) ≈
γ
(
χA, δA

√
y
)

Γ(χA)
, (12b)

Moreover, Nakagami-distributed RVs of |h|2 exhibit exponential distributions, as
indicated in [39]

f|h|2(x) =
µmh e−µxxmh−1

Γ(mh)
, (13a)

F|h|2(x) = 1− e−µx
mh−1

∑
s=0

µsxs

s!
, (13b)

Here, Γ(x) = (x− 1)! represents the Gamma function, and µ = mh
Ωh

, where Ωh and mh
denote the mean and integer fading factor, respectively.
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3. Outage Probability Analysis
3.1. Exact Calculation of OP

In a recent study [40], the performance of devices in both SU and PU has been consid-
ered. However, we prioritize the examination of device performance at SU. It is anticipated
that devices operating in the SU face limited performance due to the power constraint of
the secondary transmitter in Equation (2). As the primary performance evaluation metric,
we employ the OP, which represents the probability of the corresponding SNR falling below
a predefined threshold λ, denoted as Pout = Pr(Z < λ) = FZ(λ) [41].

The OP of the SU is calculated as follows:

OSU =Pr
(

γ̄
otp
SU < γth

)
=1− Pr

(
γ̄

otp
SU > γth

)
,

(14)

Here, γth = 2R − 1 represents the target SNR at the SU, where R denotes the pre-data
transmission rate of the device.

Substituting the expression for OSU from Equation (6) into Equation (14), we obtain:

OSU = 1− Pr
(
|A|2 >

γth
ρS

)
. (15)

We note that the expression for ρS, given by ρS = min
(

ρ̄S, ρI

|h|2

)
, (15), is calculated as

follows:
OSD = 1− (B1 + B2), (16)

where B1 = Pr
(

ρ̄S|A|2 > γth, |h|2 < ρI
ρ̄S

)
and B2 = Pr

(
ρI |A|2 > γth|h|2, |h|2 > ρI

ρ̄S

)
, where

ρ̄S = P̄A
/

N0 represents the average SNR at the BS and ρI = I/N0 depicts the average SNR
of interference at the PU.

Proposition 1. The closed-form expression of OP at the SU is expressed as Equation (17),

OSU = 1−
γ
(

mh , µρI
ρ̄S

)
Γ
(

χA ,δA
√

γth
ρ̄S

)
Γ(χA)Γ(mh)

−

1
Γ(mh)

Γ
(

mh, ρI
ρ̄S

µ
)
−

∞
∑

q=0

(−1)qδ
χA+q
A γ

χA+q
2

th

q!Γ(χA)(χA+q)(ρI µ)
χA+q

2
Γ
(

χA+q+2mh
2 , ρI µ

ρ̄S

).

(17)

Proof. The proof is provided in Appendix A.

3.2. Asymptotic Calculation of Key Performance Indicators

Since deriving closed-form expressions may not provide significant insight, we opt to
analyze asymptotic expressions to gain further intuition.

As the average SNR ρ̄S approaches infinity, we observe that B1 ≈ 0 and ρI
ρ̄S
≈ 0. In this

limit, the asymptotic expression for O∞
SU is calculated as:

O∞
SU = 1− Pr

(
|A|2 >

γth
ρI
|h|2

)
. (18)
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We can express Equation (18) at the SU as follows:

O∞
SU =1−

∞∫
0

f|h|2(x)
[

1− F|A|2
(

γth
ρI

x
)]

dx

=1−
∞∫

0

f|h|2(x)dx +

∞∫
0

f|h|2(x)F|A|2
(

γth
ρI

x
)

dx.

(19)

By substituting Equations (13a) and (12b) into Equation (19) and performing several steps,
we derive the asymptotic expression at the SU as follows:

O∞
SU =1− µmh

Γ(mh)

∞∫
0

e−µxxmh−1dx +
µmh

Γ(mh)Γ(χA)

×
∞

∑
q=0

(−1)qδ
χA+q
A γ

χA+q
2

th

q!(χA + q)ρ
χA+q

2
I

∞∫
0

e−µxx
χA+q+2mh−2

2 dx.

(20)

Utilizing this, we express Equation (20) as follows:

O∞
SU =

∞

∑
q=0

(−1)qδ
χA+q
A γ

χA+q
2

th Γ
(

χA+q+2mh
2

)
q!Γ(mh)Γ(χA)(χA + q)ρ

χA+q
2

I µ
χA+q

2

. (21)

Remark 1. Based on the definition of the diversity order, denoted as d̄ = − lim
ρ̄S→∞

log(O∞
SU)

log(ρ̄S)
, as ρ̄S

approaches infinity, the diversity order of 0 is attained. Therefore, we can anticipate the existence of
an error floor at a high transmit SNR at the BS, similar to the findings in [42].

3.3. Throughput Analysis

In this section, we perform an optimal analysis of the throughput at the SU, denoted by
τ∗SU , in the examined downlink scenario of RIS-assisted cognitive systems. More specifically,
we introduce a method for computing the optimal value of R∗, leading to the system’s
optimum throughput.

Building upon outage performance analysis, we extend our examination to include
the metric of throughput in delay-limited transmission mode. Throughput represents the
system’s capacity when a fixed data rate is mandated. The throughput at these key nodes
can be obtained as follows:

τSU = (1−OSU)R. (22)

The optimal points of throughput as the target rates of R vary are expressed as:

τ∗SU = arg max{τSU(R)}. (23)

Using Algorithm 1, the optimal throughput values may be found correctly. We intend
to validate such a method using Matlab (version 2019a) as follows:
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Algorithm 1: The algorithm of finding the optimal throughput coefficient τ∗SU .

Input : Initialize the parameters.
Output : Optimal value τ∗SU .

begin
Initialize Rarr ← [0 : 0.5 : 7] is used for the X-axis, Count = 0, Loop = 1e7,

ρI = 10 dB and ρ̄S = 5 dB.
Set ϕSU = zeros(1, length(Rarr)) and τSU = zeros(1, length(Rarr)), where

zeros(a, b) is an N-by-N matrix of zeros.
Calculate 1e7 SNR γ̄

otp
SU at devices given by (6).

for l = 1 to length(Rarr) do
for i = 1 to Loop do

// Count successful rate at SD

if γ̄
otp
D > γth then
Update: Count← Count + 1

end
OSU ← 1− Count

Loop

end
Set R = Rarr(l).
Compute ϕSU(:, l)← OSU(R).
Let τSU(:, l)← [1− ϕSU(:, l)]R.

end
[∼, q]← arg max[τSU(:, :)] where q is the index of the array maximum value.

return τ∗SU = τSU(:, q).
end

4. Ergodic Rate Analysis

When the device rate is dictated by channel conditions, the ergodic rate (ER) serves
as a useful indicator for performance assessment. In contrast to [43], our aim is to derive
an approximate expression for ER. Essentially, ER is defined as the long-term average
achievable data rate obtained without considering any delay constraints. We proceed to
investigate the ER of the system. The achievable rate of the considered system at the SU is
given by [44].

CSU = E
{

log2

(
1 + γ̄

otp
SD

)}
. (24)

The ER of the SU can be obtained using Proposition 2.

Proposition 2. The closed-form approximate expression for the ER at the SU is provided by:

CSU ≈
π2

8U ln 2

[
U

∑
u=1

∆1
√

1− ξ2
uΞ(ξu)

1 + g(ξu)

× Γ
(

χA, δA

√
ρ̄−1

S g(ξu)

)
+

U

∑
u=1

√
1− ξ2

u
1 + g(ξu)

×Ξ(ξu)

(
I1 −

∞

∑
q=0

∆2g(ξu)
χA+q

2

)]
,

(25)
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where V1 =
γ
(

mh , µρI
ρ̄S

)
Γ
(

χA ,δA
√

x
ρ̄S

)
Γ(χA)Γ(mh)

and V2 = I1 −
∞
∑

q=0

(−1)qδ
χA+q
A x

χA+q
2

q!(χA+q)ρ

χA+q
2

I

I2 in which I1 =

1
Γ(mh)

Γ
(

mh, ρI
ρ̄S

µ
)

, I2 =
Γ
(

χA+q+2mh
2 , ρI µ

ρ̄S

)
Γ(mh)Γ(χA)µ

χA+q−2
2

, ∆1 =
γ
(

mh , µρI
ρ̄S

)
Γ(χA)Γ(mh)

, ∆2 =
(−1)qδ

χA+q
A

q!(χA+q)ρ
χA+q

2
I

I2, g(t) =

tan
(

π(t+1)
4

)
, Ξ(t) = sec2(π

4 (t + 1)
)

and sec2(x) = 1
/

cos2(x).

Proof. See Appendix B.

5. Energy Efficiency

Following the determination of throughput in both delay-limited transmission and
delay-tolerant scenarios, it becomes imperative to delve deeper into studying the system’s
energy efficiency (EE) within RIS-assisted cognitive networks. The coefficient of energy
efficiency is formulated as per (Equation (29) in [33]).

ηEE =
Total data rate

Total energy consumption
. (26)

Hence, we can express the EE values for RIS-assisted cognitive network systems as follows:

ηEE
OSU

=
τSU
TPS

, (27a)

ηEE
CSU

=
CSU
TPS

, (27b)

Here, T represents the transmission time allocated for the entire communication process.

6. Numerical Results

This section shows the analytical results of the proposed system through simulations.
Here, we set m = mh = m0 = m1 and numerically simulate several theoretical results
to demonstrate the outage performance. The other main parameters are summarized
in Table 1. Additionally, the Gaussian–Chebyshev parameter is chosen as U = 100 to
achieve a close approximation.

Table 1. Main parameters for our simulations [44,45].

Parameters Notation Values

Monte Carlo simulations − 107 iterations

Target rate R 2 (bps/Hz)

Transmit power to noise ratio at BS ρ̄S −10 to 30 (dB)

The interference constraint at PU ρI 10 (dB)

The fading parameter m 2

Transmission time T 1

Mean channel gains
Ωh 1
Ω0 1
Ω1 1

Similar observations are applicable for different numbers of RIS elements as depicted
in Figure 2. Notably, the outage performance of the SU reaches its lowest value for N = 8.
Furthermore, it is evident that performance improvements can be achieved by adjusting
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the number of RIS elements, rendering the outage performance suitable for continuous
operation of this system.

-10 0 10 20 30 40
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

N = 8
N = 6, 4, 2

Figure 2. Outage probability versus ρ̄S [dB] with different N = {2, 4, 6, 8} and m = 2.

Figure 3 illustrates how the increase in transmit power at the BS affects the performance
of RIS-assisted cognitive network systems in terms of the outage probability while keeping
the number of RIS elements fixed. We aim to assess the influence of channel severity on
system performance, considering values of m = 1, 2, 3. Notably, the lowest OP of the SU is
attained with a fading parameter of m = 3. Furthermore, for large SNR values, an error
floor becomes evident, aligning with the asymptotic analysis presented in (21).

Figure 4 depicts the OP of the RIS-assisted cognitive network systems plotted against ρI .
The outage probability is inherently influenced by the interference power, which directly im-
pacts the transmit SINR of the secondary source, as illustrated in this graph. Consequently,
the patterns of outage probability observed are comparable to those seen in Figure 2. More-
over, the intuitive observation of saturated curves of the outage probability, as reported
in Figures 2–4, corroborates the diversity order “0” as mentioned in Remark 1. This phe-
nomenon can be attributed to the fact that such an OP cannot be further improved at high
SNR values as it becomes dependent on other system parameters.

-10 0 10 20 30 40
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m = 1, 2, 3

Figure 3. Comparison of outage probability with different m fading parameters, with N = 6.

In Figure 5, we examine the OP as a function of the targeted data rates R, considering
different numbers of elements in the RIS N = 4, 6, 8, and transmit SNR ρ̄ = 5 (dB).
Once more, we observe that increasing the number of RIS elements leads to enhanced
throughput. Notably, the best outage performance is achieved at lower values of R rates.
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It is noteworthy that for downlink RIS-assisted cognitive network systems, Figures 2–4
underscore the significant contribution of RIS elements to the OP.

0 5 10 15 20 25 30 35 40
10

-8

10
-6

10
-4

10
-2

10
0

N = 4, 6, 8

Figure 4. Outage probability versus the maximum available transmit power of the secondary source,
with ρ̄S = 10 dB and m = 2.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
10

-8

10
-6

10
-4

10
-2

10
0

Dashed line: m = 1

Solid line: m = 2

Figure 5. Outage probability versus R, with ρ̄S = 5 dB and ρI = 10 dB.

In Figure 6, we present the outage probability versus ρ̄S for different values of N. It has
also been observed that the RIS-assisted CR system achieves a better outage performance
than [32]. This is because a higher transmit power of BS can be achieved by eliminating
the interference at PU. As can be seen, our model outperforms [32] completely even when
increasing the number of elements N and transmit power.

From the analysis of the OP metrics, it is evident that the throughput depicted in
Figure 7 experiences a notable increase as ρ̄S rises from 5 to 30. Interestingly, beyond
a certain threshold of ρ̄S (>15), the throughput remains unchanged. This phenomenon
indicates a saturation point in throughput attainment. In the high ρS region, the throughput
exhibits a ceiling value, consistent with our theoretical analysis. These observations align
with the expression derived in (22).

Figure 8 illustrates the throughput performance of the RIS-assisted cognitive system.
It is evident from the plot that the optimal points of throughput vary with different target
rates, R. This observation is based on the OP, as cases of the OP depend on target rates. In
this figure, there exists a specific value of target rates that leads to the highest through-
put. For instance, the maximum throughput of the SU occurs at R = 4 when N = 8.
These serve as guidelines to determine the quality of the data rate and throughput for the
considered system.
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Figure 6. A comparison of the results presented in [32] regarding outage probability, with the
parameters N = 6, 8, m = 2, ρI = 10 dB, and R = 2.
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Figure 7. Throughput versus transmit SNR at BS ρ̄S with N = 6, m = 3 and ρI = 15 [dB].
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  = 3.7797

*
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Figure 8. Throughput versus R with m = 2, ρ̄S = 5 [dB] and ρI = 10 [dB].

Figure 9 illustrates that the ergodic rate of the SU can be enhanced in the high-SNR
regime, ρ̄S, resulting in more reliable transmission. Specifically, Figure 8 presents the ergodic
rate performance, where the SU with N = 16 exhibits the highest ergodic rate among the three
cases examined. The ER of the system experiences a significant increase as ρ̄S is augmented
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from −20 to 40 [dB]. However, beyond a certain threshold (ρ̄S > 20 [dB]), the ergodic rate
encounters an upper constraint, similarly to the situation observed for the OP.

-20 -10 0 10 20 30 40

0

2

4

6

8

10

12

N = 16, 8, 4

Figure 9. Ergodic rate versus ρ̄S, with m = 2.

In a similar vein to the preceding observation, Figure 10 demonstrates the effect of
interference ρI on the ER. As depicted, there is a subtle variation in the ergodic rate as
ρI ranges from −20 to 40 dB. This phenomenon can be attributed to the primary factor
influencing the ER, which is the transmitted SNR at the source. Consequently, for the
secondary network to operate effectively, it is crucial to achieve reasonable levels of transmit
SNR and power splitting factors.

-20 -10 0 10 20 30 40

0

2

4

6

8

10

12

Figure 10. Ergodic rate versus ρI , with m = 2 and N = 8.

Figure 11 shows that increasing the number of metasurfaces N on the RIS improves its
ergodic capacity. It is evident that the ergodic capacity increases extremely quickly when
N varies from 0 to 60. After this time, the ergodic capacity only increases marginally. The
RIS-assisted system’s ergodic capacity performance for the destination is compared with
a set of SNR levels at the BS (ρ̄S = 5, 15, 20). Increasing ρ̄S and N improves the system’s
ergodic capacity at low SNR levels. As a result, the creation of several metasurfaces N is
unnecessary.

Figure 12 compares the system EE to the SNR at the source in two modes, namely
delay-limited transmission and delay-tolerant transmission, for three relevant instances
with interference power levels: ρI = 20, 10, 5 dB. Notably, the system EE in delay-limited
transmission mode consistently falls below that in delay-tolerant transmission mode across
all three scenarios. Specifically, ρI = 20 exhibits the highest value of system EE among the
three instances. However, it is important to note that the system’s EE is constrained at high
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transmit SNR levels. This limitation arises because the system’s EE is determined by both
OP and ER, which correspond to delay-limited and delay-tolerant transmission modes,
respectively, while both OP and ER performances reach saturation at high SNR levels. This
phenomenon aligns with observations presented in Figures 2–4, 6, 8 and 9.

0 10 20 30 40 50 60
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8

10

12

14
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Figure 11. The number of meta-surface influences ergodic capacity, with m = 2 and ρI = 20 [dB].
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Figure 12. System energy efficiency transmit SNR at the BS, with T = 1, PS = 10 W, R = 3, N = 4
and m = 2.

7. Conclusions

In this paper, we present a thorough analysis of the proposed RIS-assisted CRS under
practical operational conditions, taking Nakagami-m fading into account. The analysis
provides detailed insights into RIS-assisted CRS, enabling efficient performance evaluation
across various key parameters. Additionally, it includes a quick comparison of RIS-assisted
CRS performance. The study illustrates that the performance of RIS-assisted CRS is signifi-
cantly affected by factors such as the number of reflectors, fading severity, and ρI . It also
demonstrates that careful selection of parameters such as R, N, m, and ρI can prevent a
complete outage, highlighting the system’s robustness. Furthermore, the analysis suggests
that optimizing the configuration of R can lead to improved system performance. More-
over, the study indicates that RIS-assisted CRS outperforms its reference scheme, further
validating its efficacy.
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Appendix A. Proof of Proposition 1

Based on Equation (16), aided by Equation (12a) and the PDF of |h|2, B1 can be further
computed as follows:

B1 =Pr
(

ρ̄S|A|2 > γth, |h|2 <
ρI
ρ̄S

)

=

∞∫
γth
ρ̄S

f|A|2(x)

ρI
ρ̄S∫

0

f|h|2(y)dxdy

=
δ

χA
A µmh

2Γ(χA)Γ(mh)

γth
ρ̄S∫

0

x
χA−2

2 e−δA
√

x

ρI
ρ̄S∫

0

e−µyymh−1dxdy.

(A1)

Next, B1 can be obtained by using (Equations (3.351.1) and (3.351.2) in [46]), and it is
tantamount to

B1 =
γ
(

mh, µρI
ρ̄S

)
Γ
(

χA, δA
√

γth
ρ̄S

)
Γ(χA)Γ(mh)

. (A2)

Combining Equations (12b) and (13a), B2 can be written as:

B2 =Pr
(

ρI |A|2 > γth|h|2, |h|2 >
ρI
ρ̄S

)

=

∞∫
ρI
ρ̄S

f|h|2(x)
[

1− F|A|2
(

γthx
ρI

)]
dx

=
µmh

Γ(mh)

∞∫
ρI
ρ̄S

e−µxxmh−1

1−
γ
(

χA, δA
√

γthx
ρI

)
Γ(χA)

dx.

(A3)
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With the aid of (Equations (8.354.1) and (3.351.2) in [46]), we have

B2 =
µmh

Γ(mh)

 1
µmh

Γ
(

mh,
ρI
ρ̄S

µ

)
−

∞∫
ρI
ρ̄S

e−µxxmh−1

×
γ
(

χA, δA
√

γthx
ρI

)
Γ(χA)

dx

=
µmh

Γ(mh)

[
1

µmh
Γ
(

mh,
ρI
ρ̄S

µ

)
−

∞

∑
q=0

(−1)qδ
χA+q
A

q!Γ(χA)

×
γ

χA+q
2

th

(χA + q)ρ
χA+q

2
I

∞∫
ρI
ρ̄S

e−µxx
χA+q+2mh−2

2

dx

=
1

Γ(mh)

[
Γ
(

mh,
ρI
ρ̄S

µ

)
−

∞

∑
q=0

(−1)qδ
χA+q
A

q!Γ(χA)(χA + q)

γ
χA+q

2
th

ρ
χA+q

2
I µ

χA+q−2
2

×Γ
(

χA + q + 2mh
2

,
ρIµ

ρ̄S

)]
.

(A4)

Substituting Equations (A2) and (A4) into Equation (16), the OP at SU regime can be
obtained as given in Equation (17).

With that, the proof of Proposition 1 is concluded.

Appendix B. Proof of Proposition 2

The expression for considered ER CSU is formulated as:

CSU =E

log2

1 + ρS|A|2︸ ︷︷ ︸
X




=
1

2 ln 2

∞∫
0

1− FX(x)
1 + x

dx.

(A5)

From Equation (17), FX(x) can be calculated as:

FX(x) = 1− V1 − V2, (A6)

where V1 =
γ
(

mh , µρI
ρ̄S

)
Γ
(

χA ,δA
√

x
ρ̄S

)
Γ(χA)Γ(mh)

and V2 = I1 −
∞
∑

q=0

(−1)qδ
χA+q
A x

χA+q
2

q!(χA+q)ρ
χA+q

2
I

I2 in which I1 =

1
Γ(mh)

Γ
(

mh, ρI
ρ̄S

µ
)

and I2 =
Γ
(

χA+q+2mh
2 , ρI µ

ρ̄S

)
Γ(mh)Γ(χA)µ

χA+q−2
2

.
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Substituting Equation (A6) into Equation (A5), CSU is rewritten as:

CSU =
1

2 ln 2

 ∞∫
0

∆1Γ
(

χA, δA
√

x
ρ̄S

)
1 + x

dx

+

∞∫
0

1
1 + x

(
I1 −

∞

∑
q=0

∆2x
χA+q

2

)
dx

,

(A7)

where ∆1 =
γ
(

mh , µρI
ρ̄S

)
Γ(χA)Γ(mh)

and ∆2 =
(−1)qδ

χA+q
A

q!(χA+q)ρ
χA+q

2
I

I2.

We set t = 4
π arctan(x)− 1 ⇒ tan

(
π(t+1)

4

)
= x ⇒ π

4 sec2(π
4 (t + 1)

)
dt = dx, and we

have CSU given by:

CSU =
π

8 ln 2

 1∫
−1

∆1Ξ(t)Γ
(

χA, δA

√
ρ̄−1

S g(t)
)

1 + g(t)
dt

+

1∫
−1

Ξ(t)
1 + g(t)

(
I1 −

∞

∑
q=0

∆2g(t)
χA+q

2

)
dt

,

(A8)

where g(t) = tan
(

π(t+1)
4

)
, Ξ(t) = sec2(π

4 (t + 1)
)

and sec2(x) = 1
/

cos2(x).

Regrettably, obtaining a closed-form expression for CSU is a challenging task, but an ac-
curate approximation can be attained. By employing the Gaussian–Chebyshev quadrature
(Equation (25.4.38) in [47]), it can be achieved as follows:

CSU ≈
π2

8U ln 2

[
U

∑
u=1

∆1
√

1− ξ2
uΞ(ξu)

1 + g(ξu)

× Γ
(

χA, δA

√
ρ̄−1

S g(ξu)

)
+

U

∑
u=1

√
1− ξ2

u
1 + g(ξu)

×Ξ(ξu)

(
I1 −

∞

∑
q=0

∆2g(ξu)
χA+q

2

)]
.

(A9)

Here, ξu = cos
(

2u−1
2U π

)
. The proof of Proposition 2 is concluded.
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