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Abstract: The accuracy of classifying motor imagery (MI) activities is a significant challenge when
using brain–computer interfaces (BCIs). BCIs allow people with motor impairments to control
external devices directly with their brains using electroencephalogram (EEG) patterns that translate
brain activity into control signals. Many researchers have been working to develop MI-based BCI
recognition systems using various time-frequency feature extraction and classification approaches.
However, the existing systems still face challenges in achieving satisfactory performance due to large
amount of non-discriminative and ineffective features. To get around these problems, we suggested a
multiband decomposition-based feature extraction and classification method that works well, along
with a strong feature selection method for MI tasks. Our method starts by splitting the preprocessed
EEG signal into four sub-bands. In each sub-band, we then used a common spatial pattern (CSP)
technique to pull out narrowband-oriented useful features, which gives us a high-dimensional feature
vector. Subsequently, we utilized an effective feature selection method, Relief-F, which reduces
the dimensionality of the final features. Finally, incorporating advanced classification techniques,
we classified the final reduced feature vector. To evaluate the proposed model, we used the three
different EEG-based MI benchmark datasets, and our proposed model achieved better performance
accuracy than existing systems. Our model’s strong points include its ability to effectively reduce
feature dimensionality and improve classification accuracy through advanced feature extraction and
selection methods.

Keywords: Feature Selection; Brain-computer Interface (BCI); Electroencephalography (EEG); Motor
Imagery (MI); Relief-F; Linear Discriminant Analysis (LDA); Machine Learning (ML)

1. Introduction

Despite its infancy, brain–computer interface (BCI) technology has the potential to
revolutionize the IT industry by enabling users to control computers directly with their
brains, resulting in user-friendly systems [1]. Brain–computer interfaces (BCIs) have
become very important in neuro-engineering and neuroscience because they help people
recover from strokes by using neuroplasticity to improve their communication and make it
easier for disabled people to communicate by analyzing emotions, detecting events, and
keeping an eye on their sleep [2]. This technology allows individuals with paralysis to
control devices, motorized wheelchairs, or prosthetic limbs using their thoughts. Electrodes
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for invasive BCIs require surgical brain implantation. These offer better signals, but
come with their own risks. Non-invasive BCIs, on the other hand, can pick up and
record brain impulses without surgery using methods such as an EEG, functional near-
infrared spectroscopy (fNIRS), and magnetoencephalogram (MEG), but the signals they
pick up are often less clear [3]. The BCI interprets sensory input from peripheral nerves,
triggering voluntary or automated actions. It measures central nervous system activity
and converts it into an output for computer use. The BCI aids both humans and animals
by facilitating functions such as reasoning, learning, and language comprehension. This
system can also control breathing successfully. BCI technology has emerged as a pivotal
element in human-computer interaction, enabling users to control devices and interact
with their environment using brain activity. This technology utilizes EEG to capture and
analyze neurophysiological data, allowing real-time system adaptation based on the user’s
mental state. It is particularly beneficial for individuals with motor disabilities, facilitating
communication and operation of prosthetic devices through motor imagery tasks [1,4–7].
Detecting real-world human activity during the MI job is the primary objective of the BCI-
based applications, which aim to convert human thought processes into equivalent digital
commands that various types of devices can operate. Researchers have been attempting
to extract useful characteristics while looking for a suitable machine learning or deep
learning-based algorithm for classification. To classify MI tasks, we applied the CSP
feature extraction technique, one of the most popular feature extraction algorithms, to
the EEG data [2,8–11]. In medical signal processing, especially in healthcare, CSP is
used to change EEG data from time to space. The goal is to find spatial weights that
separate data groups by using linear algebra and multivariate statistics [12]. The study
uses CSP feature extraction algorithms to extract EEG signal characteristics and build
high-dimensional feature fusion. The CSP takes characteristics to break down multivariate
signals and projects EEG multichannel data into a low-dimensional subspace of space.
This approach maximizes variance and minimizes variation within one class, improving
class discrimination. Originally, the CSP algorithm was used to identify aberrant EEGs
and efficiently classify movement-related EEGs in [13]. The problem with MI-based BCI
(MI-BCI) is that the brain signals that turn the mental image of movement into instructions
are very different from person to person. The CSP algorithm is a good way to tell the
difference between two types of EEG readings in the MI-BCI system [14,15]. To apply
the CSP algorithm effectively, we need to provide several factors: the band-pass filter
at the frequency of EEG measurements, the time interval during which we obtain EEG
measurements about the stimuli, and the subset of CSP filters we will employ. Usually, we
utilize two or three subsets of CSP filters, with the time segment starting one second after the
cue and the frequency spectrum of 7–30 Hz as generic settings. Subject-specific parameters,
however, might increase the effectiveness [16]. To overcome the challenges, we proposed
an efficient and comprehensive framework for motor imagery task classification that
integrates multiple advanced techniques for feature extraction, selection, and classification.
This comprehensive approach positions our methodology as a powerful tool for EEG
signal classification, particularly in distinguishing motor imagery activities. The major
advantages of the proposed framework are (a) enhanced feature extraction, (b) robust
feature selection, (c) classifier diversity, (d) computational efficiency, (e) generalizability,
(f) proven performance on benchmark datasets, and (g) real-world applicability. Below, we
outline our contributions to the proposed work.

• Enhanced feature extraction: We split the EEG signal into four bands and then used
CSP to obtain useful features from each narrow band. Multiband Decomposition
allows us a more detailed analysis of frequency-specific information. This multiband
approach captures both spatial and frequency domain features more comprehensively
than single-band methods. We utilized the CSP technique within each sub-band to
extract narrowband-oriented effective features. This results in a high-dimensional
feature vector that is more discriminative and capable of improving classification
performance.
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• Robust feature selection: High-dimensional feature space can reduce the effectiveness
of the machine learning algorithm and increase its computational complexity. To solve
the issues, we employed an efficient feature selection approach, namely Relief-F. This
effectively gives us a low-dimensional effective feature space leading to improved
performance classification algorithms and reduced computational complexity.

• Classifier diversity: Finally, we fed the reduced feature vector into the classification
algorithm to generate the probabilistic maps, aiming to leverage their respective
strengths, enhancing the robustness and accuracy of the classification results. We
implemented a diverse set of advanced classification algorithms (SVM, LDA and MLP)
to process the reduced feature vector and tested the performance of Relief-F algorithm.

• Efficiency and generalizability: The preprocessing and feature selection steps signifi-
cantly reduce the computational complexity, making the proposed method suitable
for real-time applications. The extensive experiments demonstrated that the proposed
model outperformed with three different benchmark EEG datasets in terms of perfor-
mance accuracy, AUROC, F1-score, and computational time, thereby demonstrating
its strength.

2. Literature Review

In the past few decades, numerous studies have examined on BCIs for classifying MI
tasks. Different research groups have used brain signals from the motor cortex area, using
different ways to look at EEG data for BCI applications across channels and looking into
how experimental paradigms work physiologically. Pfurtscheller et al. applied Linear Dis-
criminant Analysis (LDA) combined with Adaptive Autoregressive (AAR) for classifying
left- and right-hand motor imagery EEG signals. LDA serves as a statistical method for
dimensionality reduction and classification. AAR likely helps to capture temporal depen-
dencies in the EEG data [17]. Researchers commonly use CSP as an optimal spatial filter.
CSP extracts a weighted score for each electrode based on its significance in discriminating
between different classes (e.g., left vs. right-hand motor imagery). By identifying important
electrodes, CSP enhances classification accuracy [18].

There are some drawbacks to the broad frequency range. The methods mentioned
primarily focus on a wider range of frequencies in EEG signals. However, a narrower
frequency band may be more effective for specific tasks. Researchers often divide the
broader EEG signal into subbands (e.g., mu, beta, alpha, and gamma rhythms) to capture
task-specific information [19,20]. Ramos et al. demonstrated that the most effective ap-
proach for classifying motor imagery tasks involves combining the Genetic Algorithm with
the LDA classifier. Electroencephalography (EEG) is a prominent, non-invasive method for
capturing brain signals. Developing an EEG-based MI-BCI encompasses preprocessing,
feature extraction, selection, and classification stages. The study looks at and compares six
feature selection methods (CFS, Consistency, Relief-F, mRmR, C4.5, and Genetic Algorithm)
that were used on EEG data for the MI task classification. This shows how important
feature selection is for getting the best classification results. The evaluation incorporates
five widely used classifiers: PNN, RBF, SVM, LDA, and KNN [21].

The paper by Thomas et al. [6] talks about the Discriminative Filter Bank Common
Spatial Pattern (DFBCSP) algorithm as a way to make EEG-based BCIs better at classifying
motor imagery tasks. However, one potential drawback of the method is that it may
require further validation and testing on a larger and more diverse population of subjects
to ensure its generalizability and robustness across different individuals and conditions.
Also, even though the DFBCSP algorithm seems better at lowering error rates than other
methods, more research is needed to see how well it works in real-time or online BCI
applications, and how useful and efficient it is in changing environments. Wang et al.
made a way to use Relief-F and enhanced Lasso together to obtain wavelet packet entropy
features and topological details of the brain function network from raw MI EEG data in
their study. They performed signal denoising, channel filtering, wavelet soft thresholding,
and one-to-one multi-class score CSP methods. They then extracted relative wavelet
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packet entropy and topological features using the multi-core Lasso and Relief-F methods.
The method was applied to two public EEG datasets, the BCI Competition III dataset
IIIA and the BCI Competition IV dataset IIA, for classification purposes. The results
showed that the strategy preserved EEG data and reduced computing complexity. This
method could be useful in rehabilitation and MI-BCI applications. However, the paper
also discusses the potential drawbacks of motor imagery classification methods, such as
dimensionality issues, redundancy, scalability concerns, feature selection challenges, and
computational complexity. Large dimensions may impact screening results, while fusion of
features may introduce redundancy and increase computational demands. Scalability may
reduce classification accuracy, and feature selection may vary depending on the dataset
and task [19,22]. In [23], the Filter Bank Common Spatial Pattern (FBCSP) algorithm was
developed by Ang et al. It is a machine-learning method for processing motor imagery EEG
signals in BCIs. The FBCSP algorithm selects discriminative CSP features from a bank of
filters and spatial filters and then uses a feature selection algorithm to classify the selected
features. This method outperforms existing methods, such as Sub-band Common Spatial
Pattern (SBCSP) and CSP with manually selected operational frequency bands, in terms of
classification accuracy. However, FBCSP faces challenges such as computational complexity
for managing high-dimensional feature vectors and requiring high-quality input data.

According to Kabir et al., the Multi-Subspace Randomization and Collaboration-Based
Unsupervised Feature Selection (SRCFS) method, along with the classifier LDA worked
best for sorting MI tasks on the two public BCI Competition III datasets, IVA and IIIB.
This study looks into BCI by using different feature selection methods and both traditional
and machine learning-based classifiers on EEG signals. The main goal is to improve the
classification of MI tasks. The proposed method’s average classification accuracy was
90.05%. The paper suggests an effective way to select and classify features for MI-based
EEG signals in the BCI paradigm, but it still has a lot of problems, such as being hard to
compute, having a lot of noise and artifacts, and working with high-dimensional feature
vectors [2]. Molla et al. used a CSP feature extraction method and then a nearest-neighbor-
based discriminative feature selection method to pick the potential features and leave out
the garbled features to improve MI classification using a multichannel EEG signal. Some
problems with this method are that it only works for a certain amount of time for EEG trials,
it does not pick the best features, it is not specific enough for NCFS methods, it depends on
labeling training data, and it cannot be used in real-time situations [24].

In [25], Venkatachalam et al. proposed a Hybrid-Kernel Extreme Learning Machine
(KELM) method based on Principal Component Analysis (PCA) and Fisher’s Linear Dis-
criminant (FLD) for the MI BCI classification of EEG data. The major limitations of this
paper are limited generalizability and interpretability, and sensitivity to noise. Tiwari et al.
suggested using an automatic EEG channel selection for multiclass MI classification to
simplify the processing of numerous channels. The study combines the objective Firefly
Algorithm (FA) and Fisher information to create a hybrid channel ranking process. They
extract spatial-temporal features from preprocessed brain signals using the Regularized
Common Spatial Pattern with Aggregation (RCSPA) approach. Weighted scores for each
channel are calculated near a potential solution using objective FA and input variables
(Spectral Entropy and Lyapunov exponent). A novel Channel Set Relevance Index (CSRI)
ranks channels based on their weighted scores and Fisher information. The Regularized
Support Vector Machine (RSVM) classifier utilizes the RCSPA properties of highly ranked
channels to differentiate between various MI tasks. The method is validated using three
publicly available BCI competition datasets with different channel counts, showing im-
proved classification accuracy (83.97% on dataset 1, 80.85% on dataset 2, and 84.19% on
dataset 3) compared to baseline approaches while using fewer channels [26].

We proposed a method for subject-specific frequency range band-pass filtering for EEG
measurements to address the problems listed in this research, enabling better classification
using motor imagery. We incorporated the SVM, LDA, and MLP classifiers along with the
Relief-F, ILFS, Inf-FS, FSV, and SD feature selection methods. The LDA and Relief-F-based
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MI task classification systems work better than those for three different MI EEG datasets.
Relief-F is a binary classification algorithm that handles numerical or discrete features.
By determining feature scores, which can serve as feature weights, Relief-F ranks and
selects the best features. The algorithm’s feature scoring is based on finding feature value
discrepancies between closest neighbor instances. We have improved performance on
noisy issues, multi-class problems, and incomplete data. The main goals are to enhance
performance, scalability, adaptability to different data types, and efficiency.

3. Dataset Description

To evaluate our model, we used three benchmark datasets for EEG-based MI-BCI
classification. These are BCI Competition III Dataset IVA, Dataset IIIB, and Dataset IIIA,
which are described in Section 3.1, Section 3.2, and Section 3.3, respectively. We have
extensively analyzed the generalizability property using these two datasets.

3.1. BCI Competition III Dataset IVA

The BCI competition III dataset IVA is a valuable resource for researchers, practi-
tioners, and industrial personnel working on BCIs. Fraunhofer initially provided the
dataset, sourced from the Intelligent Data Analysis Group and the Neurophysics Group
at the Benjamin Franklin Campus of Charité-University Medicine Berlin [27]. The BCI
Competition III dataset IVA focuses on motor imagery tasks, specifically the imagination
of left-hand and right-hand movements. In this context, the classification problem is to
distinguish between these two types of motor imagery tasks. This is a binary classification
problem, where the two classes are class 1: imagining left-hand movement and class 2:
imagining right-hand movement. The experimental setup involved five healthy subjects
who completed four activities with binary classifications being considered, as depicted in
Table 1. This table summarizes the training and testing trials for the BCI Competition III
dataset IVA. During recording, the electrodes on the subject’s scalp were set up using the
global 10–20 system, and visual cues indicated which subject should perform. The dataset
consisted of continuous signals from 118 EEG channels with 0.05–200 Hz frequency range
and markers indicating the time points of 280 cues for each subject. The dataset includes
training and test trials for each subject, aiming to develop effective BCI algorithms using
limited training data. Participants recorded motor imagery tasks in a calm state, taking into
account their movements. Trials were timed between 1.25 and 2.25 s, digitized at 1000 Hz,
filtered, and downsampled at 100 Hz for 0.5–3 s in each cue.

Table 1. Summary of training and testing trials.

Subject Training Trial Testing Trial

aa 168 112

al 224 56

av 84 196

aw 56 224

ay 28 252

3.2. BCI Competition III Dataset IIIB

The BCI competition III dataset IIIB is another widely used and fascinating dataset
that contributes to the advancement of MI-EEG-BCI systems. Here, cued motor imagery
using three to four sessions from three individuals and online feedback (non-stationary
classifier) with two classes (two bipolar channels in the EEG). The dataset is composed of
recordings from three subjects, S4, X11, and O3, each with varying trials. The dataset is
divided into test and training datasets to maximize performance for unknown test labels.
The three electrodes used to collect this dataset were applied to the subject’s scalp by the
international 10–20 system. A 7 s the recorded signal is the basis of a trial signal. A variety



Sensors 2024, 24, 4989 6 of 27

of trials were gathered from the various subjects. For example, 320 trials were conducted
on the O3 subjects, while 1080 trials were obtained from S4 and X11, respectively. The
recorded signal was sampled at a frequency of 125 Hz and subsequently filtered using a
notch filter with a bandwidth of 0.5 to 30 Hz [28]. Due to the use of virtual reality (VR) in
the experiment for the O3 subject, we have excluded this subject from the performance
evaluation.

3.3. BCI Competition III Dataset IIIA

BCI Competition III Dataset IIIA is a motor imagery multi-class dataset with four classes
(left hand, right hand, foot, and tongue), three subjects (K3b, K6b, and L1b), 64 EEG channels
with a 1–50 Hz frequency range, 250 Hz sampling rate, and 60 trials per class. In this
experiment, we developed a binary classifier to distinguish two types of motor imagery tasks:
imagining left-hand movement (class 1) and imagining right-hand movement (class 2).

4. Proposed Approaches

To complete our work, we have employed the following procedures which are illus-
trated in Figure 1. By properly following them, we have implemented our research work.
The steps are as follows.

Step 1—preprocessing and division of signals: The raw EEG signals are preprocessed
to remove noise and artifacts, resulting in clean multichannel EEG signals. These prepro-
cessed signals are then divided into multiple narrowband signals to facilitate the extraction
of more effective features.

Step 2—filter bank analysis: Each EEG signal trial is broken down into smaller
frequency bands using filter bank analysis. This step allows us to capture detailed informa-
tion across different frequency ranges, enhancing the granularity of the feature extraction
process.

Step 3—feature extraction: The CSP method is employed to extract spatial informa-
tion from each sub-band. CSP is known for its effectiveness in identifying patterns that
maximize the variance between different classes, thereby improving the discriminative
power of the features.

Step 4—formation of feature vector: The spatial features extracted from each subband
are combined to form a comprehensive feature vector. This step integrates information
across all subbands, ensuring that the feature vector encapsulates the EEG signals’ spatial
and frequency domain characteristics.

Step 5—feature selection: Feature selection algorithms are applied to the combined
feature vector to enhance the performance and reduce computational complexity. We use
multiple algorithms, including Relief-F, Inf-FS, ILFS, SD, and FSV, to identify the most
potential and discriminative features. This selection process ensures that only the most
relevant features are retained, resulting in a reduced and more robust feature vector.

Step 6—classification: The final reduced feature vector is fed into classifiers to distin-
guish between different motor imagery (MI) activities. We utilize a combination of Support
Vector Machine (SVM), Linear Discriminant Analysis (LDA), and Multilayer Perceptron
(MLP) classifiers. Each classifier brings unique strengths: SVM for its strong generalization
capabilities, LDA for its efficiency in linear separable data, and MLP for its ability to model
complex non-linear relationships.



Sensors 2024, 24, 4989 7 of 27

Figure 1. Workflow of proposed method.

4.1. Preprocessing

In this study, we have applied several pre-processing schemes to the raw EEG input
data, including filtering to remove undesirable signals like noises and artifacts and selecting
the channel for further processing. EEG data processing requires the filtering of EEG waves,
as the interpretation of brain activity relies on MI EEG signals. Raw EEG consists of various
kinds of noises and artifacts, such as eye blinking, sudden sounds, muscle movements,
body movements, environmental noises, and so on. Common filtering techniques include
band-pass filtering, wavelet transform, and notch filters. The BCI Competition III Dataset
IVA, Dataset IIIB, and Dataset IIIA were recorded with the frequency ranges 0.05–200 Hz,
0.5 to 30 Hz, and 1–50 Hz, respectively. In the preprocessing step, we cleaned and filtered
the following three datasets and used a bandwidth of 8 to 30 Hz. Following this, the
EEG signal was segmented into four equivalent narrowband signals: Mu-band (8–13 Hz),
low-beta (13–22 Hz), high-beta (22–30 Hz), and full-band (8–30 Hz) for further analysis,
because the majority of brain activity associated with MI tasks occurs in the 8–30 Hz
frequency range. Mu-band (8–13 Hz), a category of the alpha band with the same frequency
range, is specifically associated with the sensory-motor cortex [2,29,30]. We created the
high-dimensionality feature vector by combining the retrieved CSP-based features from
each subband [31,32].

4.2. Feature Extraction

In this research, we apply the CSP to extract EEG signal characteristics and build
high-dimensional feature fusion. Medical signal processing typically uses CSP to transform
EEG data from time to space, with the goal of identifying spatial weights that differentiate
two or more EEG data groups. By putting EEG multi-channel data into a low-dimensional
space subspace and giving each line a channel weight, the CSP method makes the range of
two-class signal matrices bigger. This method enhances class discrimination by reducing
intra-class variance and enhancing inter-class variation, as noted by [13]. We employed the
CSP algorithm as a spatial filter to make high-variance features between the right-hand
and right-foot classes, leading to peak variances between those classes. Let Ei′

c1 and Ei′
c2 be

an EEG signal of the ith trial, and c1 and c2 represent the class 1 and class 2. The projection
matrix WCSP is determined by initially computing the normalized spatial covariance matrix
for each class, as shown in Equations (1) and (2).
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CL =
Ec1E

′
c1

trace(Ec1E′
c1)

(1)

CR =
Ec2E

′
c2

trace(Ec2E′
c2)

(2)

where E′ denotes the transpose of E, the averaged normalized covariances CL and CR
are calculated by averaging all segments within each class. The total composite spatial
covariance is then obtained from the sum of CL and CR, as Cc = CL + CR. This covariance
matrix is factorized into its eigenvalues and eigenvectors as Cc = UcλcU′

c. The eigenvector
matrix and diagonal eigenvalue matrix, in this case, are arranged in descending order and
are represented by the symbols Uc and λc, respectively. We can compute the whitening
transformation using the following Equation (3):

P =

√
λ−1

c Uc (3)

where P stands for the whitening transformation. The common spatial pattern can be
calculated from the covariance matrix of the two classes according to Equation (4):

WCSP = P′B = [w1, w2, ..., w(ch−1)wch] ∈ R(ch×ch) (4)

In this equation, the variable ch is the channel, and B is an orthonormal matrix. A
matrix WCSP = [w1, w2, ..., w2m] ∈ R(2×k) consists of spatial filters that represent the k
biggest and smallest eigenvalues obtained by solving Equation (5). The final feature can be
expressed as f = [ f1, f2, . . . , f2k]

f j = log(var(W ′
CSPEi), j = 1, 2, ..., 2k (5)

In this equation, the variance is represented by var(.), and log transformation is used
for normalizing the elements of f j.

4.3. Feature Selection

Due to its complexity and numerous electrodes, the EEG signal often contains irrele-
vant data. Eliminating unnecessary features is crucial for the implementation of EEG-based
MI-BCI systems. Recent research focuses on improving classification performance using
existing features. However, the large combined multiband feature dimension can increase
computational complexity and reduce performance. Certain features can degrade the
performance of traditional classifiers or machine learning algorithms. Feature selection
strategies are divided into filter and wrapper approaches [33], and can be performed online
or offline. For feature sets of moderate size, the execution time is not a major concern due
to the offline nature of the feature selection process. However, data mining and classifi-
cation applications have recently used over a thousand features. In this case, a feature
selection method must consider its computing time. This study used newly developed
and effective feature selection approaches for MI classification and examined five feature
selection methods: Relief-F, ILFS, Inf-FS, FSV, and SD. In our analysis, the Relief-F feature
selection algorithm demonstrated superior performance compared to other methods due
to its ability to handle noise, multi-class problems, and incomplete data efficiently. The
following subsections provide a concise overview of each feature selection technique.

4.3.1. Relief-F Feature Selection

Relief-F is a filter-based feature selection technique introduced in 1992 by Kira and
Rendell for binary classification tasks. It works with both numerical and discrete features.
The algorithm determines feature relevance by considering how much it differentiates
between classes and is independent of other features. We achieve this evaluation by
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analyzing the differences in feature values between pairs of closest neighbor instances.
Relief-F can improve classification performance when there are noise issues, multi-class
problems, or incomplete data. The main goals of new versions and extensions are to
enhance performance, make it more scalable, adapt to different data types, and improve
efficiency [34]. In the Relief-F feature selection method, if xr and xq features belong to the
same class, the predictor weight update formula can be represented as Equation (6):

Wji = Wji−1 −
∆j(xr, xq)

m · drq
(6)

If xr and xq are in different classes, it can be determined using Equation (7):

Wji = Wji−1 +
pyq(1 − pyr ) · ∆j(xr, xq)

m · drq
(7)

where Wji is the weight of predictor at the ith iteration step, ∆j(xr, xq) is the absolute
difference between the jth feature of xr and xq normalized by the range of the jth feature,
and drq is a scaled distance function between xr and xq. The xr refers to one instance
characterized by its features and xq refers to another instance, which is also characterized
by its features. The scaled distance function can be defined as Equation (8):

d̃rq = e−(rank(r,q)/σ)2
(8)

where rank(r, q) is the position of the qth observation among the nearest neighbors of the rth
observation sorted by distance and σ is a parameter that affects the scaling. Total distance
drq can be calculated by the following Equation (9):

drq =
k

∑
l=1

d̃rl (9)

4.3.2. Infinite Feature Selection (Inf-FS)

Infinite Feature Selection (Inf-FS) is a graph-based technique that evaluates a feature’s
importance using the convergence characteristics of a power series of matrices. Features are
represented as nodes, feature relationships as edges, feature subsets as paths, and infinite
path exploration. The frequency of each feature’s appearance in high-scoring paths, strongly
associated with good classification performance, determines its importance. We prioritize
features based on their scores, where higher scores signify greater significance. When
choosing features from an EEG, each extracted feature in the Inf-FS graph is treated as a
node, and the right metrics are used to judge them, such as correlation, coherence between
electrodes or channels, or mutual information. The feature importance scores provide
insight into the relative contributions of various features. Inf-FS effectively minimizes
redundant features by considering their overall impact, is versatile, and requires thorough
assessment and validation before use in machine learning works [35]. In the case of
pairwise feature analysis, assuming a set of feature distributions F = { f (1), . . . , f (n)} and
a sample x ∈ R representing a distribution f , then we can construct an undirected fully
connected graph G = (V, E), where the parameter V denotes the collection of vertices for
each feature distribution, and E represents weighted edges indicating pairwise relations
among feature distributions. The adjacency matrix A of G encodes pairwise energy terms
as in Equation (10):

aij = λ%ij + (1 − λ)ρij (10)

where λ is a loading coefficient in the range [0, 1], %ij = max(σ(i), σ(j)) measures maximal
feature dispersion, and ρij = 1 − Spearman( f (i), f (j)) measures Spearman’s rank correla-
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tion coefficient. For a path P = {v0 = i, v1, . . . , vl−1, vl = j} of length l between vertices i
and j, the energy of feature subsets EP is determined using the following Equation (11):

EP =
l−1

∏
k=0

avk ,vk+1 (11)

The energy of every path between i and j of length l can be calculated utilizing
Equation (12):

Rl(i, j) = ∑
P∈Pl

i,j

EP (12)

The energy associated with feature f (i) at path length l can be calculated using
Equation (13):

sl(i) = ∑
j∈V

Rl(i, j) (13)

For infinite feature sets, the definition of the geometric series is S = ∑∞
l=1 Al , and

the energy of feature f (i) considering infinite paths can be determined by the following
Equation (14):

s(i) =
∞

∑
l=1

sl(i) = [Se]i (14)

Regularization using the generating function can be expressed as Equation (15):

ŝ(i) =
∞

∑
l=1

rlsl(i) =
∞

∑
l=1

rl ∑
j∈V

Rl(i, j) (15)

Computation using the convergence property of geometric series can be formulated
as Equations (16) and (17):

Ŝ = (I − rA)−1 − I (16)

ŝ(i) = [Ŝe]i (17)

The Inf-FS method follows the several steps shown in Algorithm 1:

Algorithm 1 Inf-FS method

1: Build the graph and compute adjacency matrix A.
2: Let paths tend to infinity.
3: Choose a regularization factor r.
4: Compute Ŝ = (I − rA)−1 − I.
5: Compute ŝ = [Ŝe].
6: Return ŝ as the energy scores for each feature.

This approach allows for analyzing pairwise relations among features, computing
feature subset energies, and determining feature importance by considering infinite paths.
The algorithm provides a systematic way to compute energy scores for feature selection.

4.3.3. Infinite Latent Feature Selection (ILFS)

We rank features in EEG channels according to the importance of their neighbors using
a probabilistic technique known as Infinite Latent Feature Selection (ILFS). The algorithm
uses the geometric power series of a matrix and a simple generating function for the path.
It aims to check the validity and reliability of study findings, analyze and empirically
clarify the importance of important qualities ranked highly by the ILFS, and evaluate the
resilience of the suggested technique. ILFS works by modeling latent variables, building
the probabilistic model, and acquiring knowledge of model parameters using inference
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algorithms. The posterior probability distribution indicates the likelihood of each latent
variable influencing the observed data, with features with higher probabilities being more
relevant. ILFS enhances interpretability by offering insights into the latent variables that
underlie feature associations, and by assessing the relevance of each feature to the overall
task goal through the use of latent variables. To apply MI EEG, you have to find features,
make latent variables, find the model parameters, and rank features by how well they can
tell the difference between latent states [36]. The steps working behind the ILFS method is
properly mentioned in the Algorithm 2:

Algorithm 2 ILFS Method

1: The function LearningGraphWeights (X, Y, TT, verbose) computes the adjacency ma-
trix A, representing relationships among pairs of features, by learning weights from
input data X and labels Y.

2: The code establishes a regularization factor, r, derived from the maximum eigenvalue
of the adjacency matrix A, ensuring convergence of the infinite series. A, ensuring
convergence of the infinite series

3: Calculate the matrix S using Gelfand’s formula, representing the convergence of the
geometric series of matrices

4: Compute the sum of each row of matrix S to obtain the energy scores for each feature.
These scores represent the relevance or importance of each feature

5: Rank the features based on their energy scores in descending order

We can implement the algorithm using the following mathematical equations. Adja-
cency Matrix A representing relationships among features can be obtained by using the
following formula at Equation (18):

A = LearningGraphWeights(X, Y, TT, verbose) (18)

Regularization factor r for this can be gained by Equation (19):

r =
factor

ρ
(19)

where ρ is the maximum eigenvalue of A. Equation (20) determines the convergence of the
geometric series of matrices S:

S = (I − rA)−1 − I (20)

where I is an Identity matrix. To estimate the energy scores, WEIGHT, we used Equation (21):

WEIGHT = ∑
i

Si (21)

where Si represents the i-th row of matrix S. Finally, the ranking features RANKED is
calculated using Equation (22):

RANKED = sort(WEIGHT′, descend′) (22)

These equations summarize the key steps of the ILFS algorithm, from learning graph
weights to ranking features based on their energy scores.

4.3.4. Feature Selective Validation (FSV)

The Feature Selective Validation (FSV) method is a widely used validation tool in
electromagnetic measurements and models, particularly in electrical systems. It uses Monte
Carlo analysis to move uncertainty from experimental data to FSV quantities, which makes
sure that the results are reliable because they are not linear. FSV optimizes feature selection
for MI EEG by combining the learning automaton and firefly algorithm, increasing classifi-
cation accuracy by removing unnecessary elements. It also efficiently removes redundant
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features, improving classification accuracy. The technique’s viability in real-world BCI
systems is confirmed by real-time studies [37]. The FSV technique involves several steps, in-
cluding the preprocessing of data, calculation of the Amplitude Difference Measure (ADM),
the Feature Difference Measure (FDM), and ultimately, the Global Difference Measure
(GDM). In the preprocessing phase, we utilized the following steps:

• Decompose the original data vector x into three portions: DC, Lo, and Hi. The baseline
or low-frequency portion of the data may be referred to as DC. Following transfor-
mations and filtering procedures, the low-frequency data component is represented
by Lo. The high-frequency data component that results from filtering procedures is
called Hi.

• Apply Fourier transform (DFT) to obtain frequency domain components.
• Determine the index Ib, where the low-frequency portion amounts to 40% of the total.
• Implement linear tapering across Nb samples for vector separation across Ib.

Now, the calculation of FSV indexes can be performed using the following formulae.
First, we have to calculate ADM and FDM indexes. The ADM calculates the absolute
differences between intensity values at each point and compares them to determine the
amplitude or intensity difference between two datasets. FDM is a statistical method that
quantifies differences in data features or shapes, comparing first derivatives to assess their
variation. So, Equation (23) of FDM can be written as follows:

FDM =
∑xmax

xmin
|Iset1′(x)|

∑xmax
xmin

|Iset1′(x)− cIset2′(x)| (23)

In this equation, Iset1′(x) and Iset2′(x) represent the first derivatives of the datasets
concerning x, where xmin and xmax define the range of x values over which the comparison
is performed, and c is the ratio of the average intensities of the datasets. The GDM, a single
metric that evaluates the overall similarity or dissimilarity between datasets, combines
information from both ADM and FDM. To compute the GDM index, we combine the ADM
and FDM indexes using the following Equations (24) and (25):

GDMi =
√
(ADMi)2 + (FDMi)2 (24)

GDM =

√√√√N−1

∑
i=0

GDMi (25)

In these equations, GDMi represents the GDM index for the i-th dataset, ADMi
represents the ADM index, and FDMi represents the FDM index.

Based on this Algorithm 3, the overall FSV method can be presented by Equation (26):

FSV = sort(−|w|) (26)

where FSV represents the Feature Similarity Validation score, and w represents the weights
assigned to each feature by the FSV algorithm. This equation captures the essence of the
FSV algorithm, where features are ranked based on the absolute magnitude of their weights
assigned during the feature selection process.

Algorithm 3 FSV Method

1: Initialize parameters and variables.
2: Iterate through the main loop until convergence or a maximum number of iterations
3: Update weights w using linear optimization.
4: Sort features based on the absolute magnitude of weights to obtain the feature ranking.
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4.3.5. Statistical Dependency (SD)

The Statistical Dependency feature selection technique is also called the statistical
significance-based feature selection method. Statistical significance-based feature selec-
tion methods are a filter method in machine learning used to reduce dimensionality by
identifying features with a significant relationship with the target variable. The method
starts with a null hypothesis (H0) and applies statistical tests to each feature–target pair,
such as chi-square for categorical data or correlation for numerical data. A p-value, which
indicates the likelihood of witnessing the data under the null hypothesis, is produced by
the test. A significance level α is chosen, and features with p-values below α are considered
statistically significant and likely relevant to the target variable. However, features with
p-values greater α than may be excluded. Statistical significance indicates a stable relation-
ship, not necessarily a strong one, and may overlook weaker relationships or interactions
with other features [38]. Statistical Dependency (SD) between features and labels measure
whether feature values depend on associated class labels or co-occur by chance. Features
are quantized into quantization scale (QS) levels. An adaptive quantization scale ensures
that each bin contains roughly equal samples across the dataset. The statistical dependency
between the discrete feature values (y) and class labels (z) is evaluated using the following
Equation (27):

SD =
∑y∈Y ∑z∈Z p(y, z)

p(y)p(z)
(27)

In this equation, Y represents the quantized feature values, p(y, z) denotes the joint
occurrence frequency of a feature value and a class label, p(y) and p(z) represent the
probabilities of feature values and class labels, respectively.

A larger SD indicates a higher dependency between feature values and class labels.
The minimum value of 1 indicates complete independence. SD is preferred in certain cases
due to its sensitivity to highly informative quantization levels.

4.4. Classification Using LDA, SVM and MLP

At present, machine learning and neural network-based approaches are crucial and
common in biomedical research for identifying signals like EEGs, which are essential for
understanding cognitive functioning and detecting brain diseases. The initial stage involves
identifying prominent features in unprocessed EEG signals, which serve as identifiers for
classification. Biomedical research, where accurate classification of EEG signals is crucial
for cognitive comprehension and diagnosis, uses a methodology similar to this one. In this
study, we used three popular and widely adopted machine learning-based classification
algorithms, namely LDA, SVM, and MLP, to classify left-hand and right-hand human motor
imagery EEG signals. The goal is to determine which yields the best results.

Linear discriminant analysis (LDA), normal discriminant analysis (NDA), or dis-
criminant function analysis is a way for statistics and machine learning to find a linear
combination of features that tells two or more groups of objects or events apart. LDA finds
the best way to separate classes by projecting the data onto a lower-dimensional space
and finding a set of linear discriminants that make the difference between the differences
within and between classes as high as possible. It assumes equal covariance matrices and a
Gaussian distribution, as well as the assumption that the data are linearly separable. To cre-
ate a new axis, LDA uses two criteria: maximizing the distance between the means of two
classes and minimizing the variation within each class. The computation process involves
calculating the between-class variance and the within-class variance and projecting the
data into a lower-dimensional space to maximize the between-class variance and minimize
the within-class variance [39,40].

Support Vector Machines (SVMs) are powerful supervised learning algorithms for
classification and regression tasks. Introduced by Vapnik, SVMs are particularly effective
in solving problems with complex decision boundaries. Unlike traditional linear classifiers,
SVMs aim to find the optimal hyperplane that separates data points of different classes
while maximizing the margin, which is the distance between the hyperplane and the
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nearest data points of each class. One key concept in SVMs is the use of nonlinear maps
to transform the input data into a higher-dimensional space, where it becomes linearly
separable. This transformation enables SVMs to handle nonlinear relationships between
features. The hyperplane determined by SVMs is defined by a subset of training data
points called support vectors, which lie closest to the decision boundary. SVMs solve a dual
optimization problem involving Lagrange multipliers, where the objective is to maximize
the margin while minimizing classification errors. By solving this optimization problem,
SVMs effectively identify the support vectors and determine the optimal hyperplane. In
practice, SVMs offer flexibility in choosing different kernel functions, such as the radial basis
function (RBF) kernel, which allows SVMs to capture complex relationships in the data. The
RBF kernel measures the similarity between data points in the transformed feature space,
enabling SVMs to handle non-linearity and achieve high classification accuracy. Overall,
SVMs are versatile and widely used in various applications, including image classification,
text categorization, and bioinformatics, due to their ability to handle high-dimensional
data and nonlinear relationships effectively [41].

A multilayer perceptron (MLP) neural network is a supervised learning algorithm that
computes output and was initially defined by Frank Rosenblatt. MLP moves forward with
every node connected, using the backpropagation algorithm to improve training model
accuracy. MLP has three primary layers: the input layer, the hidden layer, and the output
layer. The input layer receives weighted inputs from earlier layers, applies an activation
function, and outputs a value. The hidden layer learns complex associations between
features and class labels, while the output layer contains one neuron for each class. MLPs
are flexible, adaptable, and interpretable, making them useful for EEG classification of
various architectures and hyperparameters. The hidden layers used in our experiment are
ten in size [42].

4.5. Experimental Setting

K-fold cross-validation is a method for evaluating prediction models where a dataset
of K folds is divided into training, testing, and validation sets. This approach helps to
evaluate, select, and tune the hyperparameters to improve the effectiveness of each model.
It protects from overfitting and creates a generalized model. The data set is divided by K
and trained and tested in K times using k-fold cross-validation each time. We employed a
5-fold cross-validation technique, randomly dividing the dataset into five equal subsets for
cross-validation. The final performance score was obtained by averaging the accuracy over
five runs. The formula used to compute the accuracy in percentage (%) is as follows:

Accuracy =
Tp+Tn

Tp+Tn+Fp+Fn
× 100

where Tp = True Positive, Tn = True Negative, Fp = False Positive, and Fn = False Negative.
The accuracy results from the several trials primarily demonstrate how successful the
suggested strategy is. Then, the performance of the Relief-F feature selection method was
compared with the outcomes of some distinct feature selection techniques, namely FSV,
Inf-FS, ILFS, and SD. We used SVM and MLP in addition to LDA to critically assess the
performance of the classifiers. To validate the reliability and efficiency of the proposed
method, we calculated various statistical performance measures on two datasets. These
measures include computational time, Area Under the Receiver Operating Characteristic
curve (AUROC), and F1 score for each subject. The F1 score is the harmonic mean of
precision and recall, providing a balanced assessment of a model’s performance. It sym-
metrically represents both precision and recall in one metric. The formula for calculating
the F1 score is

F1 = 2·TP
2·TP+FN+FP

The terms AUC and ROC stand for “area under the curve” and “receiver operat-
ing characteristics curve,” respectively. You can also refer to it as the Area Under the
Receiver Operating Characteristic Curve, a critical metric for assessing a classification
model’s performance.
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5. Experimental Result

We utilized three benchmark publicly accessible EEG-based MI task datasets to assess
the performance of our proposed model. We extracted the precise information from each
trial of the dataset by decomposing it into four narrowband signals. A high-dimensional
feature vector is generated by extracting features from each narrow band and combining
them using the CSP technique. The spatial information is extracted by running each
frequency band through the CSP, and as a result, the CSP characteristics are obtained
from each of the four bands in the dataset. The BCI competition III dataset IVA and BCI
competition III dataset IIIB are combined to form 32 (4 × 8) dimensional feature vectors and
8 (4 × 2) dimensional feature vectors for each trial. Next, the feature selection approaches
based on Relief-F, Inf-FS, ILFS, FSV, and SD are applied to the high-dimensional feature
space to choose the discriminative characteristics of EEG data. Then, two machine learning-
based classifiers, SVM and LDA, and another neural network-based classifier, MLP, are
trained independently using the acquired features. After that, the performance of the
classifiers is evaluated and validated using test data. The EEG data are extracted for each
individual after 2.5 s of trial. All feature selection methods ranked the features based on a
variety of parameters. For classification, we selected the number of features that scored
the highest.

5.1. Performance Result with BCI Competition III Dataset IVA

Figure 2 demonstrates the performance comparison of different feature selection
methods where SVM, LDA, and MLP classifiers are used, respectively.

Figure 2. Performance comparison of Relief-F, Inf-FS, ILFS, FSV, SD feature selection methods and
without feature selection for MI tasks classification on the BCI competition III dataset IVA with
(a) SVM, (b) LDA, and (c) MLP classifiers, respectively. ‘Without feature selection’ means that we did
not use any feature selection method; we used the classifiers only to classify the extracted features.

These figures demonstrate that the Relief-F feature selection method generally out-
performs others with various classifiers, though its performance with the MLP classifier is
not consistently superior. However, the performance of the MLP classifier is comparable
to other feature selection methods. Figure 3 demonstrates that Relief-F, using the LDA
classifier, outperforms the other methods for the BCI competition III dataset IVA. The
outcome further confirms the potential advantages of the feature selection method for
improving classification performance. Compared to other approaches that employ feature
selection techniques, the mean accuracy across all participants significantly decreases in
the absence of feature selection. The approach that does not use feature selection reduces
classifier performance by including unnecessary characteristics.
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Figure 3. Performance comparison among the LDA, SVM, and MLP classifiers for MI tasks classifica-
tion using the Relief-F and without feature selection approach demonstrating the accuracy of different
subjects on the BCI competition III dataset IVA. ‘Without feature selection’ means that we did not use
any feature selection method; we used the classifiers only to classify the extracted features.

Figure 4 compares the accuracy of the suggested methods with various feature selec-
tion and classifier combinations, where the number of selected features is the determining
factor. The three different subplots (a, b, and c) demonstrate that using thirty-two (32)
carefully selected features from the BCI competition III dataset IVA achieves the most
accurate object classification performance. Here, we obtained the best accuracy by selecting
fewer features, which is very helpful to make the system robust and faster. This is true for
five different feature selection schemes with three different classifiers. These figures show
that the Relief-F feature selection method performed best with three different classifiers
(SVM, LDA and MLP) with a really small number of features.

Figure 4. Performance comparison of the MI tasks classification using Relief-F, Inf-Fs, ILFS, FSV, and
SD feature selection methods with (a) LDA, (b) SVM, and (c) MLP classifiers for different numbers of
selected features. The three subplots represent the accuracies of the BCI competition III dataset IVA
for different numbers of features (50% to 100%) selected by the feature selection algorithms.

5.2. Performance Result with BCI Competition III Dataset IIIB

In the second dataset, Figure 5 shows the performance of various feature selection
methods. Meanwhile, the Relief-F feature selection method generally performs well. It is
important to note that the accuracy without using any feature selection method is near to
other feature selection methods in the case of BCI Competition III dataset IIIB, because there
are only two channels. Also, the number of features is very low. We used this second dataset
to confirm the performance with different datasets and the significant generalizability
property of the suggested technique. The proposed approach has demonstrated robustness
in both datasets for MI task recognition and MI-EEG BCI system implementation.
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Figure 5. Performance comparison among (a) SVM, (b) LDA, and (c) MLP classifiers for MI tasks
classification with the Relief-F, Inf-FS, ILFS, FSV, SD feature selection approaches and without feature
selection using the BCI competition III dataset IIIB. ‘Without feature selection’ means that we did not
use any feature selection method, we used the classifiers only to classify the extracted features.

In Figure 6, we can see that our proposed method, Relief-F, outperforms other feature
selection methods with the LDA classifier. It also performed better when we tried to classify
features without using any feature selection method.

Figure 6. Performance comparison of SVM, LDA, and MLP classifiers for MI tasks classification
utilizing the Relief-F feature selection approach and without feature selection. The accuracy of several
subjects for the BCI competition III dataset IIIB is shown in the figure. ‘Without feature selection’
means that we did not use any feature selection method, we used the classifiers only to classify the
extracted features.

Figure 7 illustrates a comparison of the accuracy of the suggested method with various
feature selection and classifier combinations, where the number of selected features is
the determining factor. Figure 7’s subplots (a, b, and c) demonstrate that using five (5)
carefully selected features from dataset BCI competition III dataset IIIB achieves the most
accurate object classification. The demonstration extends to all three classifiers and all five
feature selection techniques. Based on these figures, it is also clear that the Relief-F method
outperforms the others in most cases using very low number features.
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Figure 7. Performance comparison of motor imagery classification utilizing LDA, MLP, and SVM
classifiers for varying numbers of selected features, and feature selection techniques such as Relief-F,
Inf-FS, ILFS, FSV, and SD. The accuracy of the BCI competition III dataset IIIB is shown in sub-plots
(a–c) for varying feature counts (50% to 100%) chosen by the feature selection technique, which
additionally makes use of LDA, MLP, and SVM classifiers.

The non-stationarity of BCI Competition III Dataset IIIB and its restricted information
from only two channels are the reasons for its lesser accuracy (76.111%) as compared
to BCI Competition III Dataset IVA (91.432%). On the other hand, BCI Competition III
Dataset IVA’s 118 channels and consistent statistical characteristics allow for better feature
extraction and classification, leading to increased accuracy. We mainly used the second
dataset to ensure the generalizability and robustness of our proposed EEG-MI-BCI system.
We have also computed numerous statistical performance evaluation metrics to confirm
the effectiveness of our proposed MI-EEG-BCI system. We have computed performance
metrics such as the area under the ROC, F1 score, and computational time for various
subjects on the BCI competition III dataset IVA and dataset IIIB. In this context, we quantify
the computational time in seconds (s), which represents the time required for the classifier
to train and classify a single fold using a five-fold cross-validation methodology.

5.3. State-of-the-Art Comparison with Previous Methods

Table 2 illustrates a comprehensive performance comparison of our proposed approach
with ten recently developed algorithms published in previous years. Table 2 clearly shows
that our proposed method’s average classification accuracy is 91.432%, and after compar-
ison, we found that the proposed method Relief-F with LDA outperforms the accuracy
of the state-of-the-art works. We also looked at how well our suggested method worked
against two other methods: the optimal channel and frequency band-based CSP feature
selection method by Ming et al. [43] and the Logistic S-shaped Binary Jaya Optimization
Algorithm (LS-BJOA) by Tiwari et al. [26]. Once again, our suggested Relief-F feature
selection method with the LDA classifier has done a better job than these papers in terms
of accuracy.

Ang et al. [23] proposed a CSP-based FBCSP method, where they considered a fre-
quency range of 4–40 Hz, which was split into multiple sub-bands with 4 Hz increments
(e.g., 4–8 Hz, 8–12 Hz, 12–16 Hz, 16–20 Hz, and so on up to 36–40 Hz). They then indepen-
dently applied Common Spatial Patterns (CSP) to each sub-band to extract features. After
feature extraction, the Mutual Information-based Best Individual Feature (MIBIF) selection
method was used to identify the most effective features. Finally, these selected features
were utilized in machine learning algorithms, including Bayesian Theorem, Fisher’s Linear
Discriminant (FLD), and Support Vector Machine (SVM), for classification purposes. They
reported 90.03% accuracy with the BCI competition III dataset, where our proposed method
split the full band signal into four subbands: Mu-band (8–13 Hz), low-beta (13–22 Hz),
high-beta (22–30 Hz), and full-band (8–30 Hz). Then, we extracted CSP-based features from
the applied feature selection Relief-F method to select the potential features and, using the
machine learning method, our model achieved 91.43% accuracy with the same dataset.
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Table 2. Performance comparison in terms of MI tasks classification accuracy on BCI competition
III dataset IVA of the proposed method with state-of-the-art works. The highest accuracy is marked
in boldface.

Articles Techniques
Subjects

Mean ± SD
aa al av aw ay

Belwafi et al. [44] WOLA-CSP 66.07 96.07 52.14 71.43 50.00 67.29

Dai et al. [45] TKCSP 68.10 93.88 68.47 88.40 74.93 79.17

She et al. [46] H-ELM 63.39 98.39 64.08 85.67 85.16 79.33

Park et al. [47] SSS-CSP 74.11 100 67.78 90.07 89.29 84.46

Jian et al. [48] CSP-R-MF 81.43 92.41 70.00 83.57 85.00 82.48

Selim et al. [49] AM-BA-SVM 86.61 100 66.84 90.63 80.95 85.00

Singh et al. [50] SR-MDRM 79.46 100 73.46 89.28 88.49 86.13

Zhang et al. [51] MKELM 83.30 98.50 71.40 91.30 93.30 87.50

Singh et al. [52] R-MDRM 81.25 100 76.53 87.05 91.26 87.21

Ang et al. [23] FBCSP - - - - - 90.03 ± 0.70

Kabir et al. [2] SRCFS + LDA 88.03 97.98 74.17 94.76 95.31 90.05

Proposed Method Relief-F + LDA 89.29 98.57 75.36 97.51 96.43 91.432 ± 9.69

By analyzing the accuracy and the above figures, we can conclude that Relief-F with
LDA achieves the highest accuracy among all classifiers. This is achieved by keeping
the number of selected features low, reducing memory consumption and complexity for
both datasets. Even for the BCI competition III dataset IVA, we have carefully selected
32 features. Still, we can obtain the highest accuracy with fewer features using the Relief-F
feature selection method, and the accuracy is 91.432%. For the BCI competition III dataset
IIIB, by using five carefully selected features, we can obtain the highest accuracy with fewer
features using the Relief-F feature selection method, and the accuracy is 76.111%. Since
the Relief-F method produces the best result with the LDA classifier for the maximum
feature values for the BCI competition III dataset IVA and the BCI competition III dataset
IIIB, we can say Relief-F with the LDA is the best for these MI classification tasks. Other
performance parameters, including AUROC, F1 Score, and Computational Time for the BCI
competition III dataset IVA (Tables 3–5) and BCI competition III dataset IIIB (Tables 6–8),
clearly demonstrate the strength and efficiency of the Relief-F with LDA-based MI task
classification system.

In addition, we also tested our proposed Relief-F and LDA-based system using a large
dataset called BCI Competition III Dataset IIIA for further confirmation of the robustness,
effectiveness and generalizability. In the case of the third dataset, we have achieved an
accuracy of 91.89 for the first subject K3b, where Wang et al. reported an accuracy of
87.84 in a recently published article [53] for the subject K3b using the Relief-F technique.
Moreover, we assessed the accuracy performance of individual sub-bands and combined
bands using BCI competition III dataset IIIA for the subject K3b. In the case of the combined
band, we considered the different four-frequency bands. Figure 8 below demonstrates the
sub-band-wise performance accuracy. In our methodology, we chose specific subbands
(Mu-band, low-beta, high-beta, and full-band) based on their known significance in BCI
research. We conducted comparative experiments to evaluate the performance of each
subband and other combinations [23]. In the experiment results, we observed that our
performance accuracy of the four combined subband features is better than the performance
of individual subband features.
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Table 3. The effectiveness of different techniques was assessed using AUROC on the BCI competition
III dataset IVA, with bold text indicating the highest outcome.

Methods + Classifiers
AUROC

aa al av aw ay

Relief-F + LDA 0.9346 0.9992 0.8269 0.9966 0.9878

Inf-FS + LDA 0.9532 0.9914 0.8216 0.9937 0.9855

ILFS + LDA 0.9305 0.9930 0.7945 0.9925 0.9860

FSV + LDA 0.9112 0.9911 0.8049 0.9965 0.9846

SD + LDA 0.9280 0.9936 0.7610 0.9892 0.9883

Relief-F + SVM 0.9289 0.9946 0.8048 0.9917 0.9867

Inf-FS + SVM 0.9280 0.9889 0.7893 0.9812 0.9808

ILFS + SVM 0.9155 0.9914 0.7235 0.9856 0.9806

FSV + SVM 0.9144 0.9818 0.7872 0.9926 0.9876

SD + SVM 0.9135 0.9916 0.7596 0.9856 0.9868

Relief-F + MLP 0.8495 0.9886 0.7431 0.9910 0.9815

Inf-FS + MLP 0.8794 0.9920 0.7639 0.9884 0.9756

ILFS + MLP 0.8621 0.9906 0.7182 0.9914 0.9848

FSV + MLP 0.8618 0.9960 0.7514 0.9859 0.9760

SD + MLP 0.8568 0.9967 0.7224 0.9932 0.9635

Table 4. The effectiveness of different techniques was assessed using the F1 Score on the BCI
competition III dataset IVA, with bold text indicating the highest outcome.

Methods + Classifiers
F1 Score

aa al av aw ay

Relief-F + LDA 0.8602 0.9823 0.6978 0.9747 0.9632

Inf-FS + LDA 0.8929 0.9813 0.7671 0.9524 0.9527

ILFS + LDA 0.8459 0.9790 0.7214 0.9677 0.9481

FSV + LDA 0.8375 0.9754 0.7387 0.9673 0.9603

SD + LDA 0.8723 0.9790 0.7004 0.9496 0.9446

Relief-F + SVM 0.8736 0.9635 0.7224 0.9680 0.9537

Inf-FS + SVM 0.8664 0.9524 0.6855 0.9507 0.9357

ILFS + SVM 0.8244 0.9712 0.6667 0.9603 0.9416

FSV + SVM 0.8410 0.9712 0.7194 0.9500 0.9531

SD + SVM 0.8511 0.9600 0.6947 0.9531 0.9493

FSV + SVM 0.8410 0.9712 0.7194 0.9500 0.9531

SD + SVM 0.8511 0.9600 0.6947 0.9531 0.9493

Relief-F + MLP 0.2191 0.0288 0.2930 0.0699 0.0976

Inf-FS + MLP 0.1857 0.0145 0.3264 0.0435 0.0712

ILFS + MLP 0.2270 0.0144 0.3200 0.0641 0.0500

FSV + MLP 0.2071 0.0073 0.3169 0.0433 0.0969

SD + MLP 0.2308 0.0144 0.3261 0.0358 0.1103
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Table 5. The effectiveness of different techniques was assessed using computational time in seconds,
on the BCI competition III dataset IVA, with bold text indicating the best outcome.

Methods + Classifiers
Computational Time

aa al av aw ay

Relief-F + LDA 0.2796 0.0134 0.0118 0.0113 0.0105

Inf-FS + LDA 0.3307 0.0154 0.0189 0.0202 0.0108

ILFS + LDA 0.3316 0.0171 0.0139 0.0132 0.0129

FSV + LDA 0.3446 0.0187 0.0131 0.0148 0.0153

SD + LDA 0.2848 0.0152 0.0140 0.0106 0.0108

Relief-F + SVM 0.5114 0.0154 0.0125 0.0128 0.0131

Inf-FS + SVM 0.3214 0.0179 0.0149 0.0150 0.0162

ILFS + SVM 0.2548 0.0144 0.0128 0.0124 0.0139

FSV + SVM 0.3770 0.0181 0.0161 0.0136 0.0145

SD + SVM 0.2774 0.0146 0.0126 0.0119 0.0131

Relief-F + MLP 2.8526 0.2682 0.1771 0.4790 0.6512

Inf-FS + MLP 1.1610 0.9800 0.2301 0.2626 0.7226

ILFS + MLP 1.3252 0.3228 0.2240 0.2461 0.8300

FSV + MLP 1.0121 0.7912 0.1814 0.2244 0.3561

SD + MLP 1.1697 0.3335 0.2207 0.2423 0.3119

Table 6. The effectiveness of different techniques was assessed using AUROC on the BCI competition
III dataset IIIB, with bold text indicating the highest outcome.

Methods + Classifiers
AUROC

S4 X11

Relief-F + LDA 0.8576 0.7795

Inf-FS + LDA 0.8571 0.7721

ILFS + LDA 0.8527 0.7661

FSV + LDA 0.0.8509 0.7714

SD + LDA 0.8478 0.7672

Relief-F + SVM 0.8402 0.7575

Inf-FS + SVM 0.8436 0.7466

ILFS + SVM 0.8392 0.7642

FSV + SVM 0.8224 0.7579

SD + SVM 0.8369 0.7595

Relief-F + MLP 0.8295 0.7423

Inf-FS + MLP 0.8413 0.7209

ILFS + MLP 0.8305 0.7509

FSV + MLP 0.8438 0.7527

SD + MLP 0.8398 0.7484
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Table 7. The effectiveness of different techniques was assessed using F1 Score on the BCI competition
III dataset IIIB, with bold text indicating the highest outcome.

Methods + Classifiers
F1 Score

S4 X11

Relief-F + LDA 0.7917 0.7165

Inf-FS + LDA 0.7887 0.7020

ILFS + LDA 0.7684 0.6975

FSV + LDA 0.7836 0.7063

SD + LDA 0.7747 0.7054

Relief-F + SVM 0.7553 0.6693

Inf-FS+ SVM 0.7519 0.6719

ILFS + SVM 0.7500 0.6879

FSV + SVM 0.7376 0.6759

SD + SVM 0.7233 0.6693

Relief-F + MLP 0.7815 0.7423

Inf-FS + MLP 0.2621 0.3364

ILFS + MLP 0.2657 0.3315

FSV + MLP 0.2708 0.3363

SD + MLP 0.2791 0.3009

Table 8. The effectiveness of different techniques was assessed using computational time on the BCI
competition III dataset IIIB, with bold text indicating the best outcome.

Methods + Classifiers
Computational Time

S4 X11

Relief-F + LDA 0.2708 0.0130

Inf-FS + LDA 0.2998 0.0143

ILFS + LDA 0.2868 0.0152

FSV + LDA 0.2865 0.0134

SD + LDA 0.2997 0.0153

Relief-F + SVM 0.4218 0.0182

Inf-FS + SVM 0.2763 0.0185

ILFS + SVM 0.2839 0.0189

FSV + SVM 0.3382 0.0147

SD + SVM 0.2989 0.0183

Relief-F + MLP 1.1838 0.2281

Inf-FS + MLP 1.2111 0.3208

ILFS + MLP 0.8946 0.1976

FSV + MLP 1.1406 0.2466

SD + MLP 0.9072 0.1999
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Figure 8. Accuracy performance of individual sub-bands (Mu-band, low-beta, high-beta, and full-
band) and combined subbands using BCI competition III dataset IIIA for the subject K3b, respectively.

6. Discussion

The study focuses on identifying the optimal combination of feature selection and classi-
fication methods for classifying left and right-hand motor imagery (MI) based on EEG signals.
We used two publicly available benchmark datasets: BCI Competition III Dataset IVA and BCI
Competition III Dataset IIIB. The primary research question was to determine whether the pro-
posed method could improve the classification accuracy of MI tasks using EEG signals. Our
results indicate that the Relief-F feature selection method combined with the LDA classifier
achieves superior performance compared to other combinations. Specifically, Figures 2 and 3
show subject-wise accuracy, while Figure 4 displays feature-wise accuracy of various fea-
ture selection methods (Relief-F, Inf-FS, ILFS, FSV, and SD) with different classifiers (SVM,
LDA, and MLP) using BCI Competition III Dataset IVA. The Relief-F with LDA combination
achieved the highest accuracy, AUROC values, F1 scores, and the lowest computational time,
demonstrating its effectiveness in extracting relevant features and improving classification
performance. The superior performance of the Relief-F algorithm can be attributed to its
robustness and efficiency in handling noisy and irrelevant data. Relief-F evaluates the impor-
tance of features based on their ability to distinguish between neighboring instances, capturing
dependencies between features and identifying those most relevant to the target variable. This
method’s noise robustness, consideration of feature interactions, and computational efficiency
make it well-suited for EEG signal analysis, where data can be noisy and complex. Our
approach achieved an accuracy of 91.43% on the BCI Competition III Dataset IVA, compared
to the 90.03% accuracy reported by Ang et al. [23] using their FBCSP method with MIBIF.
This improvement underscores the effectiveness of our selected frequency bands and feature
selection method in capturing discriminative information for MI classification. The findings
from Tables 3–5 indicate that the Relief-F and LDA combination consistently achieved the
highest performance metrics for several subjects in Dataset IVA. Similarly, Figures 5 and 6
show that Relief-F with LDA provides higher accuracy for subjects S4 and X11 in Dataset
IIIB. Higher AUROC values, F1 scores, and lower computational times for these subjects,
as shown in Tables 6–8, respectively, further confirm the effectiveness of this combination.
These results suggest that the Relief-F method is highly effective for MI classification tasks,
significantly advancing the development of more efficient BCI systems. We assessed the
accuracy performance of individual sub-bands and combined bands using BCI competition
III dataset IIIA for the subject K3b. Figure 8 demonstrates the sub-band-wise performance
accuracy. We observed that our performance accuracy of the four combined subband features
is better than that of the individual band features. This study advances the understanding
of BCI by demonstrating the fact that robust feature selection and classification methods can
significantly improve the performance of MI classification tasks. Relief-F for feature selection
in conjunction with LDA for classification provides a framework that is both effective and
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computationally efficient. These findings support the potential for developing more reliable
and accurate BCI systems, which can have broad applications in neurorehabilitation, assistive
technology, and brain-machine interfaces. Future research should explore the scalability of
these methods to larger and more diverse datasets and investigate adaptive or data-driven
approaches for frequency band division to enhance performance further. To further address
the concern about generalizability, future work will involve validating our proposed method
on larger and more diverse datasets. This will help ensure the robustness and generalizability
of our results across a broader range of conditions and subjects. Additionally, we plan to
explore adaptive or data-driven methods for optimal frequency band division, potentially
enhancing the performance of our approach.

7. Conclusions

In this study, we proposed a multiband decomposed feature extraction and effective
feature selection-based MI tasks classification system for BCI applications. In the procedure,
we extracted CSP features from four subbands to capture frequency-specific narrowband-
oriented information relevant to motor imagery. We concatenated the four subband features
that produce the high-dimensional feature vector and an effective feature selection method,
which we then used to reduce the feature vector’s dimensionality to improve the system’s
accuracy and efficiency. The existing MI classification system still faces challenges in
selecting potential features to reduce the high dimensionality of the multiband-composed
features. To tackle the issue of high dimensionality and enhance classification performance,
we employed the Relief-F feature selection method, which effectively reduces the feature
space while retaining the most relevant features. We tested the reduced feature vector
with various advanced classification methods including SVM, LDA, and MLP to identify
the optimal combinations for recognizing motor imagery tasks in BCI applications. The
proposed model achieved higher performance accuracy than the existing systems available
in the literature. This integrated approach improves classification accuracy and reduces
computational complexity, making it suitable for real-time BCI applications. Our study
bridges the research gap by presenting a robust and efficient framework for MI task
classification using EEG signals. Future work will explore additional machine learning
and deep learning methods for precise feature selection and classification to extend these
approaches to multiclass MI classification challenges within the BCI paradigm. Future
research also should explore further optimization of feature selection and classification
techniques and their application to other large multi-class EEG datasets. This will further
enhance the applicability and performance of BCI systems in real-world scenarios.
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Abbreviations

BCI Brain–Computer Interface
EEG Electroencephalography
MEG Magnetoencephalogram
fNIRS Functional near-infrared spectroscopy (fNIRS)
fMRI Functional Magnetic Response Imaging
MI Motor Imagery
SSVEP Steady-State Visual-Evoked Potential
SVM support vector machines
MLP Multi-layer Perceptron
LDA Linear Discriminant Analysis
AAR Adaptive Autoregressive
CSP Common Spatial Pattern
NCA Neighborhood Component Analysis
PCA Principal Component Analysis
CSP Common Spatial Pattern
Inf-FS Infinite Feature Selection
ILFS Infinite Latent Feature Selection
FSV Feature Selective Validation
SD Statistical Dependency
DNN Deep Neural Network
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