
Citation: Cremaschini, S.; Torriero, N.;

Maceri, C.; Poles, M.; Cleve, S.;

Crestani, B.; Meggiolaro, A.; Pierno,

M.; Mistura, G.; Brun, P.; et al.

Magnetic Stirring Device for Limiting

the Sedimentation of Cells inside

Microfluidic Devices. Sensors 2024, 24,

5014. https://doi.org/10.3390/

s24155014

Academic Editors: D. Marshall

Porterfield, Kwang W. Oh and

Christabel Tan

Received: 28 June 2024

Revised: 18 July 2024

Accepted: 29 July 2024

Published: 2 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Magnetic Stirring Device for Limiting the Sedimentation of Cells
inside Microfluidic Devices
Sebastian Cremaschini 1 , Noemi Torriero 1, Chiara Maceri 1, Maria Poles 2, Sarah Cleve 1, Beatrice Crestani 1 ,
Alessio Meggiolaro 1, Matteo Pierno 1 , Giampaolo Mistura 1 , Paola Brun 3 and Davide Ferraro 1,*

1 Department of Physics and Astronomy, University of Padua, 35131 Padua, Italy
2 Department of Medicine, University of Verona, 37124 Verona, Italy
3 Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
* Correspondence: davide.ferraro@unipd.it

Abstract: In experiments considering cell handling in microchannels, cell sedimentation in the storage
container is a key problem because it affects the reproducibility of the experiments. Here, a simple and
low-cost cell mixing device (CMD) is presented; the device is designed to prevent the sedimentation
of cells in a syringe during their injection into a microfluidic channel. The CMD is based on a slider
crank device made of 3D-printed parts that, combined with a permanent magnet, actuate a stir bar
placed into the syringe containing the cells. By using A549 cell lines, the device is characterized in
terms of cell viability (higher than 95%) in different mixing conditions, by varying the oscillation
frequency and the overall mixing time. Then, a dedicated microfluidic experiment is designed to
evaluate the injection frequency of the cells within a microfluidic chip. In the presence of the CMD,
a higher number of cells are injected into the microfluidic chip with respect to the static conditions
(2.5 times), proving that it contrasts cell sedimentation and allows accurate cell handling. For these
reasons, the CMD can be useful in microfluidic experiments involving single-cell analysis.

Keywords: microfluidics; cell sedimentation; magnetic stirring; microfabrication; 3D printer

1. Introduction

One of the main goals of microfluidics is the development of the so-called “lab-
on-a-chip”, integrating the protocols commonly performed in large laboratories within
small and portable devices [1–3]. Through the pursuit of this goal, over the past twenty
years, several examples of microfluidic devices have been proposed to handle and analyze
various biological samples, e.g., body fluids [4,5], nucleic acids [6,7], proteins [8], and
cells [9,10]. In particular, the integration of single-cell analysis in microfluidic systems is
currently revolutionizing cell biology, allowing the study of cellular heterogeneity in a
high-throughput manner [11].

One of the most common limitations in the handling of cells within microfluidic devices
is their sedimentation. In fact, most cells are denser than the surrounding aqueous phase
and, under the influence of gravity, they tend to sediment within the container. In detail, the
sedimentation speed v is driven by Stokes’ law v = d2

(
ρo − ρ f

)
g/

(
18 µ f

)
, where d and ρo

are, respectively, the diameter and density of the cell, ρ f and µ f are the density and viscosity of
the surrounding liquid, and g is the acceleration of gravity [12,13]. For example, considering
a cell of 10 µm (ρ0 ~ 1 g/cm3) dispersed in water (ρ f ∼ 0.997 g/cm3, µ f ~ 1 mPa·s), its
sedimentation speed is about 10 µm/min.

To avoid the problem of sedimentation, a conventional approach is to resuspend
cells by gently pipetting the solution every few minutes [14]. However, this method
cannot be applied in microfluidic experiments because of the small volume typically
employed and the confinement of liquids in closed containers (e.g.,: syringes, tubes, or
capillaries). Another approach is to match the density between cells and the surrounding
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medium [15,16]. However, this method can slow the sedimentation but cannot completely
prevent it; additionally, the choice of the right density-matching reagent may influence the
experiment [17].

To face these limitations, some strategies have been proposed in the literature that can be
divided into (i) mechanical movement of the liquid container and (ii) magnetic stirring. For
the first, rotating syringe pumps have been developed to continuously resuspend polystyrene
beads [18]; however, this approach has not been tested using cells and requires a complex
fabrication process. We recently proposed a method based on mechanical shaking at high
frequency [19]. This method is effective for magnetic beads, but it could induce cell damage.
Differently, the approaches exploiting magnetic stirring generally consist in adding a stir bar in
the container that can be actuated by an external magnet [20–22]. However, these methods have
been validated using polymeric microparticles, but without employing living cells. Well-known,
simple, and low-cost approaches suggest collecting both the cell suspension and the stir bar
in the same syringe and agitating a permanent magnet near the system [23,24]. However, no
data are reported on mixing efficiency and cell viability. Similarly, these performances are not
characterized by the commercial technology proposed for this scope (i.e., Nemix-50, by Cetoni,
Korbussen, Germany).

Inspired by existing methods, in this work, we present an automated cell mixing device
(CMD) that contrasts cell sedimentation in a syringe during a microfluidic experiment, vali-
dated in terms of cell viability and injection within a microchannel. In detail, the CMD consists
of a slider crank mechanism, fabricated with 3D-printed components, devoted to transfer the
circular motion of a gear motor to the linear movement of a permanent magnet, which is used
to activate the motion of a stir bar placed inside a syringe. In particular, in this way, the stir
bar is moved back and forth along the entire length of the syringe in an automated manner.
After mechanical characterization, the device is characterized at two levels of complexity by
using lung cancer cell lines (A549): at first, in terms of cell viability under various agitation
conditions (i.e., by varying the oscillation frequency and mixing time), and then, by evaluating
the injection frequency of cells within a microfluidic device. Interestingly, this approach
shows a higher injection efficiency with respect to static conditions (about 2.5 times). Given
this result, the proposed device can be easily integrated into all microfluidic experiments
that consider constant and homogeneous cell injection in the microfluidic channel, such as
single-cell analysis.

2. Materials and Methods
2.1. Creation of the Cell Mixing Device

The cell mixing device (CMD) shown in Figure 1a is based on a slider crank mechanism:
a 12 V DC gear motor (Distrelec, HL149.12.43, Milan, Italy) is coupled to a rotating cylinder,
which transfers its circular motion to a conrod embedding a cylindrical permanent magnet
(S-05-08-N, Supermagnete, Gottmadingen, Germany). In this way, the circular motion of
the gear motor leads to a linear back and forth motion of the magnet. The gear motor is
connected to a power supply (Elind 32DP8, Metaf, Siena, Italy), which allows the voltage
to be varied continuously between 0 and 12 V. The slider crank and holders are made by
a stereolithographic 3D printer (Form 3, Formlabs, Somerville, MA, USA), using Grey V4
resin (by Formlabs, Somerville, MA, USA). The source files (in STL format) for the 3D-
printed components can be found in the Supplementary Information section (see Note S1,
Supplementary Materials).

As shown in Figure 1b, the cell mixing device is placed in correspondence to a 1 mL
plastic syringe (plunger length 88 mm, internal diameter 4.43 mm, and volume 1 mL; Pikdare
S.p.A., Como, Italy), containing a small magnetic stir bar (length 2 mm and diameter 2 mm;
442-0359, VWR International Srl, Milan, Italy) washed with ethanol, and mounted on a syringe
pump (11 Elite Module Pico Single, Harvard Apparatus, Holliston, MA, USA). The syringe
is connected to the device through a 25-gauge needle (Like Sun GmbH, Essen, Germany),
PTFE capillaries (inner/outer diameter 0.5/1 mm; Sigma Aldrich, Darmstadt, Germany)
and a silicone joint (inner/outer diameter 0.5/1 mm; Deutsch & Neumann, Henningsdorf,
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Germany). The syringe is mounted in a horizontal configuration as typically performed in
microfluidic experiments involving cell injection into microchannels [16,25]. The syringes and
needles used for the experiment were purchased in a sterile package and used immediately
after opening.

When the motor is activated, the stir bar is continuously moved back and forth due
to magnetic interaction with the permanent magnet placed in the conrod (see Video S1,
Supplementary Materials).
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Figure 1. (a) Three-dimensional structure of the CMD. (b) Picture of the CMD moving the magnetic
stir bar inside a plastic syringe, connected to the syringe pump. The PTFE capillary is connected to
the inlet of the microfluidic chip for cell counting experiments.

2.2. Microfluidic Device Preparation

The design of the microfluidic chip for cell counting is reported in Figure 2a,b: it presents
a straight channel with rectangular cross section (height of 160 µm, width of 250 µm, and
total length of L = 9 mm). In the center of the channel, the height is reduced to 30 µm over
a length of d = 1 mm, to better observe and count cells flowing into the microfluidic chip.
A deeper channel would prevent cells from passing out of the focal plane of the objective,
whereas a channel with uniformly low height would lead to a higher pressure drop inside of
the microchannel.
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Figure 2. Schematic (a) top and (b) section views of the microfluidic chip used for cell counting
(schemes are not scaled). The width w of the channel is 250 µm, and the height of the two layers h1

and h2 is 160 and 30 µm, respectively. The total length L is 9 mm, while the length of the thinnest part
d of the chip is 1 mm. The latter corresponds to the observation area for counting the cells flowing
in the microchannel within PBS. Light blue color indicates the microchannel, while orange circles
represent the flowing cells. The white rectangle in (a) is the PDMS chip. Black arrows indicate the
flow direction inside the microchannel, from the inlet to the outlet. (c) Picture of the final microfluidic
chip made on PDMS and with PTFE capillaries fixed using epoxy glue.
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The microfluidic device for cell counting is prepared using a replica molding technique,
starting from a master prepared using double-layer photolithography (see Figure 2c). In
detail, two overlapping SU8-2050 layers are realized by spin-coating on a silica substrate,
with thicknesses h1 = 30 µm and h2 = 160 µm. The photolithography process is performed
using micro maskless-aligner technology (Heidelberg Instruments, Germany); the exposure
doses are 220 and 300 mJ/cm2, while the percentages of defocusing are −40% and −60%
for the thinner and larger layers, respectively. The master is coated with 1H,1H,2H,2H-
Perfluorooctyltrichlorosilane (Alfa Aesar, Kandel, Germany) to create an anti-sticking layer
and prevent adhesion of PDMS [26]. The microfluidic chip is made of polydimethylsiloxane
(PDMS, Sylgard 184, Dow Corning, Midland, MI, USA) using conventional soft-lithography
and bonded to a glass coverslip using oxygen plasma treatment [27]. PTFE capillaries
are fixed in the inlet and outlet using epoxy glues (Bostik®, Bolton Adhesives, Rotterdam,
Netherlands). Finally, the microchannel walls are treated with a solution of Phosphate-
Buffer Saline (1X PBS) to which 0.01% w/v of Bovine Serum Albumine (BSA) is added; the
latter prevents cell adhesion to the channel walls due to electrostatic interaction [28]. The
final microfluidic chip is reported in Figure 2; it has a width (w) of 250 µm and a total length
between the inlet and the outlet (L) of 9 mm, while the length of the thinner part of the
channel (d) is 1 mm. The latter corresponds to the observation area for image acquisition
during cell counting experiments. The tubing and microfluidic chips are not sterilized; new
chips and tubing are used for experiments carried out on different days.

2.3. Optical Setup for the Characterization and Validation of the Cell Mixing Device

The experimental setup for the acquisition of image sequences is shown in Figure 3a;
a fast camera (VEO-E-310L, Phantom, Wayne, NJ, USA) is mounted on an inverted mi-
croscope (Eclipse Ti2, Nikon, Tokyo, Japan) equipped with a 40X objective (MRL00402,
Nikon, Tokyo, Japan) and a white LED light (Nikon, Tokyo, Japan) for illumination. For cell
counting experiments, cells are observed flowing in the thinnest part of the microfluidic
channel (see Figure 3b). The cell number is quantified for three different time intervals
from the start of the cell infusion: (i) between 5 and 20 min, (ii) between 35 and 55 min, and
(iii) between 70 and 90 min. For each time interval, sequences of 18 s are acquired every
minute at a frame rate of 200 fps (see Video S2 in the Supplementary Materials).
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The analysis of the videos and the cell counting is performed by exploiting a combination
between tools specific of ImageJ software 1.54j and a Labview 2024 program (see Note S2 and
Figure S1, Supplementary Materials).

2.4. Cell Cultures

A human lung adenocarcinoma A549 cell line (CCL-185, ATCC, Manassas, VA, USA)
is cultured in Dulbecco’s Modified Eagle Medium (DMEM, Gibco™, Fisher Scientific,
Waltham, MA, USA, 41965-039) supplemented with 10% of Fetal Bovine Serum (FBS), 1%
penicillin/streptomycin 100X. Cells are grown at 37 ◦C in a humified atmosphere and
5% CO2.

For each experiment, 70–80% confluent cells are detached with trypsin and centrifuged
at 1200 rpm for 5 min. The obtained pellet is then resuspended with an appropriate volume
of fresh cell culture medium, and cell viability is quantified using a Trypan Blue exclusion
assay. Specifically, a suspension of cells is mixed with Trypan Blue dye and loaded on the
hemocytometer. The viable (unstained) and non-viable (stained) cells are visualized and
counted under the microscope. Once the viability and cell number are verified, the cells are
centrifuged at 1200 rpm for 5 min and resuspended in 1 mL of PBS 1X solution with 150 µL
of OptiPrep™ Density Gradient Medium (Sigma Aldrich, St. Loius, MO, USA, D1556) and
1 µL of 10% Pluronic® F-68 (Gibco™, Fisher Scientific, Waltham, MA, USA, 24040-032) (see
Figure 4) [15].
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3. Results

The performance of the CMD is evaluated by (i) characterizing its mechanical behavior,
(ii) studying cell viability under different conditions, and (iii) monitoring the number of cells
flowing inside the microchannel at different time intervals, with and without the CMD.

3.1. CMD Mechanical Characterization

As shown in Figure 5, the cell mixing device is first characterized by evaluating the
oscillation frequency for different voltages (V) applied to the gear motor, under two dif-
ferent conditions: (i) by assembling the moving conrod on the CMD (with conrod), and
(ii) by using only the rotating cylinder (without conrod). In the first case, the oscillation fre-
quencies are determined by measuring the total time interval of 10 consecutive oscillations
with a chronometer, and then the time for a single oscillation is computed. The oscillation
frequency is determined as reciprocal of the time for a single oscillation. For each voltage
applied, ten repeated measurements are performed; the final frequencies and related error
bars are calculated as average values and standard deviations, respectively. In the second
configuration (without conrod), the same procedure is repeated considering the rotations
of the cylinder mounted on the gear motor. Figure 5 shows the values of the oscillation
frequencies as a function of the voltage applied to the gear motor for both configurations.
The oscillation frequency varies linearly by changing the applied voltage in both cases. In
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detail, by actuating the motor between 0 and 10 V, it is possible to move the magnet back
and forth with a frequency up to 1.20 Hz. The two datasets overlap in the investigated
range, showing that the components of the slider crank do not induce mechanical problems.
If a less efficient motion conversion was observed, the power of the gear motor should
be increased.
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Figure 5. Frequency characterization of the cell mixing device (CMD), by varying the voltage applied
to the gear motor with (blue square) and without (red circle) the conrod. If not visible, error bars are
smaller than the data points.

3.2. Cell Viability

Cell viability is evaluated by counting the total number of alive and dead cells after
a defined time (1.5, 3, and 6 h) and specific mixing conditions (between 0 and 1.2 Hz).
Specifically, the syringe with the magnetic stir bar placed inside is prefilled with 500 µL of
cell suspension; then, the cell mixing device is activated and after the chosen time, cells are
extracted from the syringe and their viability is quantified. Cell viability is evaluated by
varying the oscillation frequency of the conrod and the overall mixing time. Initially, before
injecting into the syringe, the cell viability is found to be about 97%. Figure 6a shows that
the mixing frequency applied to the cells does not affect their viability, which is about 95%
for all investigated cases, including the case without mixing (0 Hz). This suggests that the
CMD does not induce cell death. However, Figure 6b reports that by fixing the oscillation
frequency at 0.72 Hz, cell viability decreases from about 95% after 1.5 h to 90% after 6 h of
incubation in the syringe at room temperature.
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Figure 6. (a) Cell viability quantification by increasing oscillation frequency; each experiment is
performed for 90 min. Data at 0 Hz are taken with the CMD not activated. (b) Cell viability for
longer mixing times (between 1.5 and 6 h) at a frequency of 0.72 Hz (6 V). The number above each
column corresponds to the total number of cells alive or dead counted in each experiment. The cell
concentration in the syringe is 4 × 105 cells/mL in both cases.
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Given this characterization, during subsequent experiments, the chosen parameters are
0.72 Hz (corresponding to 6 V) for the oscillation frequency and 1.5 h for the experimental
time, respectively.

3.3. Cell Counting Experiments

To evaluate the applicability of the cell mixing device, cell counting measurements
are performed by mounting the setup shown in Figure 2a: a plastic syringe is filled with
approximately 500 µL of cell solution and then the solution is injected into the microfluidic
chip with a computer-controlled syringe pump, setting a working flow rate of 250 µL/h.
The connection between the plastic syringe and the inlet of the microfluidic chip is approxi-
mately 20 cm long and is as short as possible to prevent cell sedimentation within the PTFE
capillary. This connection has a volume of about 40 µL.

Video acquisition and image analysis are performed with the procedure described in
Section 2.3 and Note S2 of the Supplementary Materials. For each experiment, two different
conditions are compared: in the presence (mixing) and absence (no mixing) of the CMD.
Different and independent experiments are performed on three different days to ensure
reproducibility in the behavior of the CMD. Figure 7a reports data from one of the three
experiments, comparing mixing and no mixing conditions. The complete acquired data
are reported in Figure S2 in Note S3 of the Supplementary Materials. Figure 7b, showing
the averaged data acquired from all the experiments, clearly indicates that during the first
10 min, cell injection is similar for both mixing and no mixing conditions. Afterwards,
the presence of the CMD allows keeping constant the cell injection during the entire
investigated time range (90 min), while the injection rate dramatically decreases (by about
2.5 times) in the no mixing case due to the cell sedimentation inside the syringe.
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concentration is 2 × 105 cells/mL.

4. Discussion and Conclusions

We have developed a cell mixing device (CMD) based on magnetic stirring and made
with 3D-printed components. The device is tested for up to 6 h of continuous mixing without
showing any variation in the mechanical behavior and does not require any lubricant.

The CMD functionality is characterized using lung cancer cells (A549 cell line). The
cells have high viability under different mixing conditions, by varying both the oscillation
frequency and the total mixing time. It is noteworthy that cell viability is always about
95% for the entire range of the oscillation frequency considered (up to 1.20 Hz). Moreover,
Figure 7b shows that cell viability is 95% for experiments lasting up to 3 h, while if the total
time duration reaches 6 h, cell viability decreases to 89%. Therefore, the mixing process is
not responsible for cell mortality.

The performance of the CMD is then evaluated by monitoring the number of cells
flowing inside a microfluidic chip at different time instants, showing the great importance of
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the CMD in reducing cell sedimentation. During the first 10 min of cell injection, the number
of cells arriving in the microchannel is similar in both mixing and no mixing cases, whereas
the difference between the two is remarkable afterwards: in the no mixing experiments,
the number of incoming cells drastically reduces because of the cell sedimentation inside
the syringe. On the other hand, by using the CMD, cell injection is constant over 90 min,
which can be considered a typical time duration of a microfluidic experiment. Additionally,
according with Figure 7, the cell mixing is not affected by the fact that the stir bar is confined
in a progressively smaller volume of the syringe. These results are reproducible in different
experiments carried out on different days.

A density gradient medium (i.e., OptiPrep™), which is typically employed to prevent
cell sedimentation in microfluidic experiments, is added to the cell suspension [16,29–31].
However, the sedimentation process is not completely prevented, as shown in Figure 7.
The gentle and constant agitation provided by the CMD allows improving the cell injection
into the microchannel.

Our cell mixing device combines magnetic stirring and mechanical motion in a con-
tinuous and automated manner. Furthermore, compared to similar approaches [16,19–22],
it has been quantitatively validated in terms of cell viability and efficacy in cell injection
in a microfluidic channel. Then, being based on a simple gear motor and 3D-printed com-
ponents, it represents a reliable and low-cost alternative to more complex and expensive
technology. In fact, the price can be estimated to be about 50 euros. In case a larger sample
volume is required with a greater syringe, it is recommended to employ a bigger size stir
bar to take advantage of the mixing performance.

Therefore, the CMD can be safely implemented in any microfluidic experiment involv-
ing the presence of biological samples, such as single-cell sequencing or encapsulation in
droplet experiments [11,25,32].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s24155014/s1; Video S1: Cell mixing device (CMD); Video S2:
Cells flowing in the microfluidic channel; Note S1: Three-dimensional design of the cell mixing device
(*.stl); Note S2: Image analysis procedure; Note S3: Cell counting data of the experiments performed
on different days.
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