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Abstract: Chlorophyll fluorescence is a well-established method to estimate chlorophyll content in
leaves. A popular fluorescence-based meter, the Opti-Sciences CCM-300 Chlorophyll Content Meter
(CCM-300), utilizes the fluorescence ratio F735/F700 and equations derived from experiments using
broadleaf species to provide a direct, rapid estimate of chlorophyll content used for many applications.
We sought to quantify the performance of the CCM-300 relative to more intensive methods, both
across plant functional types and years of use. We linked CCM-300 measurements of broadleaf,
conifer, and graminoid samples in 2018 and 2019 to high-performance liquid chromatography (HPLC)
and/or spectrophotometric (Spec) analysis of the same leaves. We observed a significant difference
between the CCM-300 and HPLC/Spec, but not between HPLC and Spec. In comparison to HPLC,
the CCM-300 performed better for broadleaves (r = 0.55, RMSE = 154.76) than conifers (r = 0.52,
RMSE = 171.16) and graminoids (r = 0.32, RMSE = 127.12). We observed a slight deterioration in
meter performance between years, potentially due to meter calibration. Our results show that the
CCM-300 is reliable to demonstrate coarse variations in chlorophyll but may be limited for cross-plant
functional type studies and comparisons across years.

Keywords: chlorophyll fluorescence; chlorophyll content meter; plant functional type; CCM-300

1. Introduction

Chlorophyll is an essential compound within the chloroplast, the organelle responsible
for housing the photosynthetic process that gives plants their green color. As a vital com-
ponent of photosynthesis, chlorophyll captures light energy and converts it into chemical
energy, which is used to yield glucose and oxygen [1]. Photosynthetic efficiency is impacted
by pigment concentrations [2–4], thus quantification of chlorophyll content provides in-
sights into plant growth [5] and photosynthetic functioning [6,7], as well as plant response
to environmental [8,9] and climatic [10] interactions.

Increasingly, there is a demand for large volumes of rapidly collected chlorophyll
measurements, particularly for agronomic applications requiring rapid assessments for
nutrient or disease management [11,12]. However, laboratory methods for quantifying
pigments, such as high-performance liquid chromatography, may be logistically infeasible
for these applications due to both expense and the need for special handling of samples.
Chlorophyll can also be estimated from remote sensing imagery [13,14], but calibration and
validation of remote sensing maps require large sample sizes, often collected within a short
time window to match remote sensing observations [15].

To meet these demands, various types of portable chlorophyll meters have been
developed to non-destructively estimate leaf chlorophyll content in situ. Most of these
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meters infer the chlorophyll content by measuring leaf spectral characteristics, especially
in wavelengths between 400 nm and 1000 nm that have distinct pigment absorption,
reflectance, or fluorescence features.

Absorptance meters, such as the SPAD-502 chlorophyll meter (Konica Minolta Sensing,
Tokyo, Japan) and Opti-Sciences CCM-200plus Chlorophyll Content Meter (Opti-Sciences,
Hudson, NH, USA), measure leaf absorptance at light wavelengths near 650 nm and 940 nm
(red and near-infrared, respectively). Absorptance meters do not provide a direct output of
chlorophyll content, but instead utilize the ratio of transmittance (which yields a ‘chloro-
phyll content index’ or ‘SPAD unit’, for example) to produce a relative chlorophyll content
measurement, which is the sole output of absorptance meters. Regression analyses can be
the basis to convert these measurements to units of chlorophyll content [16]. Reflectance
meters, like the UniSpec Spectral Analysis System (PP Systems, Amesbury, MA, USA),
record leaf reflectance across many wavelengths (ultraviolet, visible, near-infrared). The
output of reflectance meter measurements provides multiple data points, allowing for
extensive analyses from a single leaf scan.

Chlorophyll meters based on leaf absorptance/reflectance features suffer from a
few drawbacks. First, there is a documented decrease in the accuracy of chlorophyll
estimations when leaf chlorophyll content increases due to saturation of absorption [17].
Additionally, the indices generated by such meters require careful evaluation through
time (e.g., assessment of calibration consistency), and across species and phenology [18].
Finally, meter measurements are affected by factors other than chlorophyll content, such as
differences in leaf structure [19] and structural materials of cell walls [20].

Leaf fluorescence measurements have emerged as an alternative to absorptance/
reflectance for quantifying chlorophyll content in leaves. Light that is not absorbed by
chlorophyll for photochemistry is re-emitted as heat or fluorescence. Fluorescence occurs
during de-excitation after a fluorophore is transitioned into a state of excitement due to ab-
sorption of light [21–23]. Previous studies have shown that the strength of the fluorescence
signal closely tracks the leaf chlorophyll content [24–26].

Unlike absorptance- and reflectance-based meters that measure light from an external
source, fluorescence-based meters measure the light re-emitted from the leaf. Fluorescence
meters, also referred to as fluorometers, measure peak wavelengths in the regions of
685–690 nm (red) and 730–740 nm (far-red, near-infrared). Fluorescence ratios of red
and far-red regions [23,27,28] enable direct estimates of chlorophyll content based on
regression equations. For example, the widely used Opti-Sciences CCM-300 Chlorophyll
Content Meter (hereafter referred to as CCM-300) measures emission ratios of red light
at 700 nm to far-red emission at 735 nm (chlorophyll fluorescence ratio F735/F700) and
estimates chlorophyll content (mg/m2) based on equations from Gitelson et al. [26]. To
obtain consistent fluorescence measurements, the instrument is calibrated to a purple
transparent fluorescent slide with a predetermined value (0.8 for our unit) before each
measurement session.

The CCM-300, a portable, non-destructive device, has gained wide usage in field
biology due to its ease of use and ability to provide rapid and repeatable measurements.
Although the meter has been used to assess plant and ecosystem health in various stud-
ies [29–31], the accuracy of the instrument has rarely been tested. Additionally, Gitel-
son’s [26] equations used by the CCM-300 are based exclusively on broadleaf species,
suggesting the need for testing on other leaf physiognomic types. Indeed, the Opti-Sciences
CCM-300 Chlorophyll Content Meter Operation Manual [32] encourages users to develop
unique calibration parameters for vegetation types not represented by the Gitelson [26]
equations. However, despite its popularity, the validation of the CCM-300’s reliability
across plant functional types is scarce, and we do not know of any published alternative
equations for non-broadleaf species. As far as we are aware, our study is the first to evaluate
the performance of the Opti-Sciences CCM-300 Chlorophyll Content Meter.

In this study, we assess the reliability of the Opti-Sciences CCM-300. We aim to
(1) compare CCM-300 measurements against traditional laboratory chemistry analyses such
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as spectrophotometry and high-performance liquid chromatography (HPLC), (2) analyze
meter consistency between plant functional types, and (3) determine meter reliability across
years, assessing whether there is degradation in estimates as the instrument ages.

2. Materials and Methods
2.1. Materials

In this study, we used two datasets to assess the CCM-300 performance—one contains
samples collected on the campus of the University of Wisconsin-Madison (UW-Madison)
in 2018 purely for CCM-300 testing purposes, and the other is an opportunistic dataset
with samples collected from 12 domains of the National Ecological Observatory Network
(NEON) in 2018 and 2019 (Figure 1). Although the NEON data were not gathered with our
study in mind, they provided valuable and relevant information, enabling us to maximize
the utility of available resources while producing meaningful insights.
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Figure 1. Sample locations. D01–D019 stands for NEON Domain01–Domain019.

The UW-Madison dataset was collected in June 2018, right after the purchase of the
CCM-300. We measured the chlorophyll content for 79 foliar samples (22 broadleaves and
57 conifers) using the CCM-300. For each sample, readings were taken from three different
places on the leaf, and the average was recorded. After the measurements, the leaves were
placed into zip-lock bags with a moist paper towel, sealed, and transported back to the
laboratory in a cooler with ice. For conifer needles, we cut the middle section of each needle
then scanned the area. For broadleaf species, we used hole punchers to collect 1 cm2 leaf
material. Following Zhang et al. [33], the sampled leaf material was immersed in a vial
with N, N-dimethylformamide (DMF) and stored in a dark refrigerator (4 ◦C) until leaf
chlorophylls were completely extracted. It took around five days to bleach most broadleaf
samples. However, for all needles, but especially older ones, more time (~two weeks) was
needed for complete extraction. The absorptance of the solvent at 663.8 nm and 646.8 nm
was then measured using a Genesys 5 spectrophotometer (Thermo Electron Corp.: Waltham,
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MA, USA) and the chlorophyll content was estimated using the equations derived by
Wellburn [34]. These measurements were referred to as laboratory spectrophotometry.

Ca = 12A663.8 − 3.11A646.8, (1)

Cb = 20.78A646.8 − 2.43A663.8, (2)

C = 10(Ca + Cb)× v/s, (3)

where Ca is the content of chlorophyll a in µg/mL−1, Cb is the content of chlorophyll b in
µg/mL−1, v is the volume of the solvent (5 mL in this study), and s is the area of the leaf
sample in cm2. C is the content of total chlorophyll in mg/m2.

To further validate the laboratory spectrophotometry measurements, we flash-froze
leaf material from 44 samples (18 broadleaves and 26 conifers) out of the 79 samples in
liquid nitrogen and transported them in a −20 ◦C freezer to the University of Minnesota-
Twin Cities, where the chlorophyll content was measured using high-performance liquid
chromatography (HPLC) (Agilent 1200 Series HPLC; Agilent Technologies, Santa Clara,
CA, USA). HPLC methods are described by Schweiger et al. [35].

Samples from (NEON) were collected for a large-scale study that utilizes imaging spec-
troscopy to map foliar functional traits [36]. As part of the functional trait measurements,
the same CCM-300 instrument was used to rapidly obtain leaf chlorophyll content in the
field. Following the NEON sampling protocol [36], measurements were averaged over
five leaves in the field. Among these, two to three leaves were immediately flash-frozen to
−80 ◦C in liquid nitrogen. The flash-frozen samples were then kept in a −20 ◦C freezer and
transported to the University of Minnesota-Twin Cities for HPLC measurements. Samples
measured using HPLC were referred to as ‘HPLC’.

This NEON dataset includes 244 samples (104 broadleaves, 129 conifers, 11 graminoids)
and provides a valuable opportunity to evaluate the performance of the CCM-300 for dif-
ferent plant functional types across two years.

2.2. Methods

In each of our analyses, we used methods of laboratory chemistry (HPLC and/or
laboratory spectrophotometry) as our “gold standard” due to the reliable, consistent results
that these methods have yielded over time [34,37].

We first utilized a paired, two-tailed T-test to compare CCM-300 measurements to
HPLC and/or laboratory spectrophotometry results, as well as measurements between
HPLC and spectrophotometry. We then used linear regression to further explore the
relationships between CCM-300 and HPLC measurements for different plant functional
types and across years. Statistical analyses were performed using R (Stats library, R
version 4.3.1).

Before all analyses, we removed outliers outside of the interval defined by
Equation (4) [38] for each measurement type (CCM-300, HPLC, and laboratory
spectrophotometry).

(Q1 − 1.5IQR, Q3 + 1.5IQR), (4)

where Q1 is the first quartile found by calculating the median of the lower half of data
presented in numerical order. Q3 is the third quartile found by calculating the median
of the upper half of data presented in numerical order. IQR is the interquartile range,
calculated by taking the difference between Q3 and Q1. Sample data after outlier removal
are grouped by measurement type pairs in Table 1.
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Table 1. Sample sizes for measurement type, year, and plant functional type presented in terms of
paired sample data.

2018 2019

[CCM-300,
HPLC]

[CCM-300,
Spec] [HPLC, Spec] [CCM-300,

HPLC]

Broadleaf 46 21 18 65
Conifer 109 51 23 31

Graminoid 10 0 0 0
Total 165 72 41 96

2.2.1. Paired, Two-Tailed T-Test

We first conducted the T-test for the 41 samples that were common across all three
measurement types. We then performed the T-test for all the paired samples in the [CCM-
300, HPLC] and [CCM-300, Spec] pairs. We calculated the mean absolute difference between
measurement types for each pair following Equation (5).

∑|X − Y|
n

, (5)

where X and Y correspond to values of different measurements for a same sample, and n is
the total number of samples per pair.

The significance level (p-value) from the T-test is affected by the sample size. Due to
dramatic differences in sample sizes for paired data (Table 1, 165 + 96 vs. 72 vs. 41), it is
difficult to compare their T-test results (significance levels). To obtain more comparable
results, we iteratively subsampled 41 samples randomly from [CCM-300, HPLC] and [CCM-
300, Spec] pairs to match the sample size of [HPLC, Spec] pairs. We ran 1000 permutations
of T-tests for each pair and calculated the p-values for each permutation.

2.2.2. Linear Regression Analysis

We created simple linear regression models to compare HPLC and CCM-300 mea-
surements for different plant functional types with the CCM-300 measurements as the
independent variable (x) and HPLC results as the response (y). We also performed the linear
regression for broadleaf and conifer samples for 2018 and 2019 separately. We calculated
the following evaluation metrics to quantify the quality of our regression models:

Correlation coefficient (r):

∑(xi − x)(yi − y)√
∑ (xi − x)2 ∑ (yi − y)2

, (6)

Root mean square error (RMSE):√
∑
(

yi − yp

)2

n
, (7)

where yi is observed values, yp is predicted values, and n is the number of observations.
Bias:

∑(θ̂ − θ)

n
, (8)

where θ̂ is predicted values, θ is observed values, and n is the number of observations.
Our tests are a comparison of CCM-300 measurements to laboratory chemistry values.

Because our data were gathered opportunistically, each analysis that we conducted does
not include either HPLC or Spec data.
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3. Results
3.1. CCM-300 Measurements vs. Laboratory Chemistry Measurements

Statistics for the paired samples are summarized in Table 2.

Table 2. Sample size, mean (mg/m2), standard deviation (mg/m2), and median (mg/m2) for pairs of
[CCM-300, HPLC], [CCM-300, Spec], and [HPLC, Spec] measurements.

[CCM-300, HPLC] [CCM-300, Spec] [HPLC, Spec]

n 261 72 41
x 420.0, 377.69 439.68, 403.1 375.57, 400.72
sx 119.59, 181.23 132.07, 175.2 152.92, 161.71

median 414.5, 360.67 430.33, 381.48 360.46, 384.39

3.1.1. Paired T-Test for 41 Samples with All Three Measurements

When comparing samples that were subjected to each of the three measurement types
(n = 41), the data showed a higher median for CCM-300 values than both HPLC and
laboratory spectrophotometry (Spec) (Figure 2). The HPLC median was lower than the
laboratory spectrophotometry median.
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Figure 2. Chlorophyll concentrations (mg/m2) by measurement type for paired and presented
41 samples common to all measurement types.

The results of a paired T-test restricted to these pairs showed that the difference
between CCM-300 and HPLC was significant (p = 2.20 × 10−5). There was also a significant
difference between CCM-300 and laboratory spectrophotometry (p = 0.005). We did not see
a significant difference between HPLC and laboratory spectrophotometry (p = 0.32). The
mean absolute difference for [CCM-300, HPLC], [CCM-300, Spec], and [HPLC, Spec] was
136.44 mg/m2, 131.49 mg/m2, and 101.99 mg/m2, respectively (Figure 3). [HPLC, Spec]
in particular is skewed to the right due to a few samples that have a very high absolute
difference, spiking the average for this pair.
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3.1.2. Paired T-Test of All Paired Samples

More paired measurements were available for analysis than the 41 common observa-
tions represented in Figure 2. The patterns of distribution consisting of all available paired
data (Figure 4) were consistent with the distribution of common data points in Figure 2.
The results of the paired T-test for all available pairs showed that there was a significant
difference between CCM-300 and HPLC (p = 2.05 × 10−5). There was also a significant
difference between CCM-300 and laboratory spectrophotometry (Spec) (p = 0.047). There
was no significant difference between HPLC and laboratory spectrophotometry (p = 0.32).
The mean absolute difference for [CCM-300, HPLC], [CCM-300, Spec], and [HPLC, Spec]
was 130.26 mg/m2, 123.73 mg/m2, and 101.99 mg/m2, respectively (Figure 5). Each of the
pairs was skewed to the right to some extent with [CCM-300, HPLC] and [HPLC, Spec]
being impacted by particularly high absolute differences.
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3.1.3. Iterative Subsampling for Randomized, Permutated Analysis

The distribution of p-values from 1000 permutations is shown in Figure 6. We observed
similar distribution patterns for p-values from [CCM-300, HPLC] and [CCM-300, Spec].
The p-value that occurred for [CCM-300, HPLC] most frequently after 1000 permutations
was 0.03. The p-value that resulted most often for [CCM-300, Spec] after 1000 permutations
was 0.047. In comparison, the p-value for the [HPLC, Spec] pair was 0.32.
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3.2. CCM-300 Measurements for Different Plant Functional Types
3.2.1. CCM-300 Measurements for Different Plant Functional Types

We further classified our data into three groups—broadleaf, conifer, and graminoid
based on a structural–functional approach, as described by Box [39]. Our original data
included a shrub functional type which we reclassified into broadleaf or conifer based
on the species. The data available for this part of our study did not include results from
laboratory spectrophotometry.

Mean and standard deviation values for [CCM-300, HPLC] pairs separated by plant
functional type are presented in Table 3. The CCM-300 mean was higher than HPLC for
every plant functional type. The linear regression results between CCM-300 and HPLC
for all functional types are shown in Figure 7. Overall, our data gathered closely around
the 1:1 line. There was a strong correlation between CCM-300 and HPLC measurements
for both broadleaves (r = 0.55) and conifers (r = 0.52), but the correlation was weak for
graminoids (r = 0.32) (Table 4). Interestingly, the model for graminoids yielded the smallest
RMSE (127.12) across all plant functional types, indicating its ability to capture the proper
magnitude of chlorophyll content.

Table 3. Mean (mg/m2) and standard deviation (S.D.) (mg/m2) values for CCM-300 and HPLC by
plant functional type.

Mean (mg/m2) S.D.

Broadleaf
CCM-300 481.19 115.06

HPLC 402.78 156.85
Conifer

CCM-300 374.44 102.93
HPLC 360.45 200.09

Graminoid
CCM-300 378.70 85.60

HPLC 340.59 126.25

Table 4. Regression data for CCM-300 vs. HPLC by functional type.

Functional Type Regression r RMSE (mg/m2)

Broadleaf Y = 0.75x + 41.53 0.55 154.76
Conifer Y = 1.01x − 16.29 0.52 171.16

Graminoid Y = 0.47x + 161.65 0.32 127.12

Positive bias between CCM-300 measurements and HPLC for all plant functional
types (78.41 mg/m2, 13.99 mg/m2, and 38.11 mg/m2 for broadleaf, conifer, and graminoid,
respectively) indicated that CCM-300 generally overestimated chlorophyll content for the
tested samples. The overestimation was most severe for broadleaf, followed by graminoids,
and the least for conifers. Additionally, we observed meter saturation above 625 mg/m2

for conifers.
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3.2.2. Needle Age Analysis

The UW-Madison dataset recorded needle age during the sample collection and
enabled us to explore how needle age affects the CCM-300 measurements. We used
51 conifer samples with both CCM-300 and Spec measurements to further study the effects
of age. It can be seen in Figure 8 that the CCM-300 meter performed well for new needles
but appeared inconsistent for old needles. There was a strong correlation between CCM-300
and laboratory spectrophotometry (Spec) for new needles (Table 5). A similar trend was
observed for the HPLC measurements from the UW-Madison dataset (n = 26, Figure S1).

Table 5. Regression data for CCM-300 (mg/m2) vs. Spec (mg/m2) by needle age.

Needle Age Regression r RMSE (mg/m2)

New Y = 1.09x − 64.61 0.70 91.50
Old Y = 1.24x − 0.32 0.49 222.48

Positive bias for new needles (34.46 mg/m2) indicated that the CCM-300 mostly
overestimated chlorophyll content in the analyzed samples. Negative bias for old needles
(−105.62), however, indicated that the CCM-300 underestimated chlorophyll content in
these samples.
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Figure 8. Comparison of new and old needles for CCM-300 (mg/m2) vs. Spec (mg/m2).

3.3. CCM-300 Performance across Years

There was a positive linear relationship for both years and both functional types
in [CCM-300, HPLC] sample pairs (Figure 9). We observed strong correlations between
CCM-300 and HPLC measurements for broadleaf species in both years, and conifers in
2018 (r > 0.5) while the correlation was weaker for conifers in 2019 (Table 6). For conifer
samples, the CCM-300 appeared to saturate around 625 mg/m2 for all measurements
while HPLC measurements can reach values above 900 mg/m2 (Figure 9). The CCM-300
performed better for broadleaf species with higher r and lower RMSE compared to conifers
in both years.
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Table 6. Regression data for CCM-300 vs. HPLC by functional type and year, where n represents the
number of samples.

n Regression r RMSE (mg/m2)

Broadleaf
2018 47 Y = 1.02x − 140.38 0.81 155.88
2019 65 Y = 0.74x + 52.65 0.56 140.35

Conifer
2018 111 Y = 1.09x − 29.06 0.54 181.18
2019 31 Y = 0.83x + 1.57 0.42 164.27

Positive bias for broadleaf samples analyzed in 2018 and 2019 (127.27 mg/m2 and
66 mg/m2, respectively) indicated that the CCM-300 typically overestimated chlorophyll
content in both years, but more so in 2018. For conifer samples, negative bias in 2018
(−6.28 mg/m2) and positive bias in 2019 (57.63 mg/m2) indicated that the CCM-300 mildly
underestimated chlorophyll content in 2018, but generally overestimated in 2019. The
CCM-300 performance was inconsistent between years.

4. Discussion
4.1. CCM-300 Measurements vs. Laboratory Chemistry Measurements

Based on the results of each of our paired T-tests, we found no statistically signif-
icant difference between HPLC and laboratory spectrophotometric (Spec) estimates of
chlorophyll content (p > 0.1). Both laboratory chemistry methods are reliable for obtaining
chlorophyll content (Figures 2 and 4). The biggest discrepancies between HPLC and Spec
measurements are from old conifer samples (Figure 3, pair [HPLC, Spec]). Old needles
usually have higher chlorophyll content [40] and it takes a longer time to fully extract the
chlorophyll from the needle samples. During HPLC analyses, all samples were subjected
to the same extraction procedure. While the extraction time is enough for most samples, it
may not be for a few old needles with exceptionally high chlorophyll contents, which may
cause discrepancies between HPLC and Spec.

In contrast, we observed a significant difference between both CCM-300 and HPLC,
and CCM-300 and laboratory spectrophotometry (Spec). Comparison of iteratively sub-
sampled paired data (with 41 samples), all pairs, and peak values of permutation p-value
distribution did not influence the significance of paired T-test results, further supporting
our inferences regarding the continued reliability of laboratory chemistry analyses and
the potential limitations of the CCM-300. Our results are significantly different at α = 0.05,
but the significance would change at α = 0.01 for some pairs. This change in alpha would
result in no statistically significant difference for [CCM-300, Spec] pairs from all available
paired data, as well as [CCM-300, HPLC] and [CCM-300, Spec] pairs from the permutation
analysis (Figure 6).

Additionally, for NEON data, CCM-300 measurements represented the average condi-
tions of five samples while the laboratory chemistry only tested two to three samples. This
mismatch could contribute to the observed difference between CCM-300 measurements
and laboratory chemistry results.

Despite the differences between CCM-300 and HPLC in the paired T-test, the regression
model performed reasonably well when predicting HPLC using CCM-300 measurements
(Figure 7). The correlation coefficient (r) for [CCM-300, HPLC] was 0.52. Although the
CCM-300 did not match HPLC exactly, it is able to track the variation in chlorophyll content.
Nevertheless, laboratory chemistry analyses could produce more reliable estimates.

4.2. CCM-300 Measurements for Different Plant Functional Types

The grouping of data around the 1:1 line in Figure 7 implies that the CCM-300 produces
reasonable results for chlorophyll content across the plant functional types analyzed in this
study. A regression relationship can be used to “correct” the trend in the CCM-300 data,
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but no single regression is suitable across plant functional types (Table 4). This observation
has been seen in other meters and has raised concern in the literature [17,41]. Richardson
et al. [17] encourage users of absorptance-based portable chlorophyll meters to consider
the need for species-specific calibration when leaf structure varies among samples, while
Gamon and Surfus [41] concluded that the chlorophyll index used when analyzing leaf
samples with a reflectance-based meter varies between species, specifically those with
dissimilar leaf structures.

The meter performed the best for broadleaf species, followed by conifers, but poorly
for graminoids. The poor performance for graminoids is likely due to the small varia-
tion in range (356 mg/m2 for graminoids, compared to 780.35 mg/m2 for broadleaf and
830.85 mg/m2 for conifer) represented by 10 samples for this functional type in our dataset.

We observed meter saturation around 625 mg/m2 (Figure 7) for conifers, indicating
a deterioration in meter sensitivity and accuracy in measuring needles with chlorophyll
content beyond this threshold. This saturation is the worst for old needles (Figure 8) where
our regression model has the highest RMSE (222.48 mg/m2) (Table 5). We suspect that
differences in leaf anatomy, likely in the cuticle and epidermis, resulted in the saturation we
observed. Needle leaves are known to have thicker and denser external layers compared to
broadleaves; thus, the tough structure of old needles likely contributes to the saturation.
Lhotáková et al. [42] evaluated the effects of leaf structure on meter outputs and determined
that the assessment of needle leaves has several constraints, and it is necessary to perform
other biochemical assessments, such as spectrophotometry, for determination of chlorophyll
content in needle leaves.

While meter measurements suffered from saturation for conifer samples, measure-
ments are mostly reliable for broadleaves. This is not surprising, since the CCM-300 is based
on the work of Gitelson et al. [26], which used broadleaf species exclusively. To the best of
our knowledge, Opti-Sciences has not updated the equations utilized by the meter. Our
recommendation is to primarily use the CCM-300 for broadleaf species. When analyzing
coniferous species with the meter, it is advisable to supplement the measurements with
laboratory chemistry to account for any discrepancies [42].

Other studies have reported potential factors contributing to the varied performance
of absorptance-based portable chlorophyll meters. Richardson et al. [17] suggest that the
size of the measurement area on a given device has an impact on the output of hand-held
chlorophyll meters. However, fluorescence-based meters, such as the CCM-300, do not
suffer from this drawback, as fluorescence is an active technique measuring light actively
emitted from the leaf itself. This does not require the entirety of the measurement window
to be filled by a sample, allowing for the measurement of very small leaves. Various studies
report that absorptance-based meters also produce less accurate estimations as chlorophyll
content increases [17,19,43,44], which is consistent with the results of our study using the
CCM-300. It is not surprising for the CCM-300 to be impacted by meter saturation, as other
types of handheld devices experience the same phenomenon.

4.3. CCM-300 Performance across Years

Based on the results of our analysis between years, the correlation coefficients (r) sug-
gest that the CCM-300 captured chlorophyll variation better in 2018 than in 2019 (Table 6).
This could be attributed to the lack of hardware calibration for the meter, and/or a deterio-
ration in the quality of the calibration slide used before sample collection. After extensive
usage in tough field conditions, the quality of the calibration slide may deteriorate. This
could potentially cause drifts in the calibration and may have led to a worse performance
of the meter in 2019.

As well, it is plausible that a larger overall sample size with greater uniformity among
the sample size of all groups would yield results that are more consistent between both
years and functional types. For broadleaf samples, the sample size from 2018 (n = 47) was
slightly less than 2019 (n = 65). Within conifer samples, 2018 (n = 111) has significantly
more samples than 2019 (n = 31).
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4.4. Study Limitations

The Opti-Sciences CCM-300 provides reasonable results for chlorophyll content if
users desire measurements of coarse-scale relative variations. However, broad applications
of the CCM-300 for precise estimates may be problematic. Our study used opportunistic
data and we cannot rule out that a larger sample size would better validate the precision
of CCM-300 measurements, thus our findings may not fully capture the variability in
CCM-300 performance. We also provide no absolute measure of accuracy for the HPLC
and laboratory spectrophotometric analyses. Regardless, this study provides important
evidence that users must carefully evaluate data from the CCM-300 for their applications.

Due to the expense of laboratory chemistry, our study was limited, to an extent, by cost.
It is not realistic for many researchers to complete laboratory analyses for every sample
in a study, thus portable chlorophyll content meters can be used in certain scenarios as a
cost-effective, non-destructive method.

5. Conclusions

Our study utilizing opportunistic data suggests that the Opti-Sciences CCM-300 can
produce reasonable results for estimating chlorophyll content, but is limited, especially if
comparing measurements across functional physiognomic types. Laboratory chemistry
analyses continue to be the most reliable method for measurement of chlorophyll content.
The CCM-300 is most compatible with broadleaf species and is likely least reliable in
measurements of old needles due to meter saturation. There is mild deterioration of the
CCM-300 performance between years which could be due to calibration drift.

Moving forward, users of the CCM-300 for broad scale studies, such as in situ measure-
ments to support remote sensing, should conduct a dedicated study with a large sample
size composed of many samples from a wider variety of functional types. When measuring
needle leaves, we recommend using equations, such as those represented in Table 5, to
correct for the large bias in the CCM-300 measurements. It is best practice, however, for
users to develop their own equations tailored specifically to their studies.

It may be helpful for those planning future chlorophyll meter studies to consider that
chlorophyll is not uniformly distributed within a leaf, impacting meter outputs depending
on where the measurement is taken [45]. It is recommended that multiple measurements
be taken from each leaf then averaged to improve the accuracy of chlorophyll estima-
tion [32,43]. When doing so, it is best practice to complete measurements of the same leaf
within 3 min of the initial measurement to minimize the effects of chloroplast migration on
meter outputs [32]. The CCM-300 Chlorophyll Content Meter Operation Manual [32] also
recommends that ambient temperatures be considered when taking sample measurements,
as this factor may have the potential to influence measurement results.

It is important to adjust measurement parameters to suit the study at hand, but we
recommend completing studies with multiple replications of each sample. The CCM-
300 includes a range of measuring options that allows users to average between 2 and
30 measurements. Samples with a lower fluorescence emission signal strength may require
more measurements [32].

Finally, one should take note of the conditions of the slide used to calibrate the CCM-
300 meter. After repeated use, the calibration slide may undergo wear and tear that includes
scratches, dents, and loss of adherence to the fluorescence coefficient it was once measured
to be. Integrating an internal calibration slide into the meter would ensure consistent slide
quality, and including a slide replacement schedule would enhance usability.

We hope that, ultimately, this study provides guidance on CCM-300 applications for
large-scale chlorophyll content quantification in support of calibration and validation of
a forthcoming generation of spaceborne imaging spectrometers, such as Surface Biology
and Geology (SBG) and Copernicus Hyperspectral Imaging Mission for the Environment
(CHIME) that will be used to map at high resolutions (30 m) seasonal chlorophyll world-
wide at monthly or better time scales.
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24. Roháček, K. Chlorophyll fluorescence parameters: The definitions, photosynthetic meaning, and mutual relationships. Photosyn-

thetica 2002, 40, 13–29. [CrossRef]
25. Li, R.H.; Guo, P.G.; Michael, B.; Stefania, G.; Salvatore, C. Evaluation of chlorophyll content and fluorescence parameters as

indicators of drought tolerance in barley. Agric. Sci. China 2006, 5, 751–757. [CrossRef]
26. Gitelson, A.A.; Buschmann, C.; Lichtenthaler, H.K. The chlorophyll fluorescence ratio F735/F700 as an accurate measure of the

chlorophyll content in plants. Remote Sens. Environ. 1999, 69, 296–302. [CrossRef]
27. Rascher, U.; Liebig, M.; Lüttge, U. Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained

with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ. 2000, 23, 1397–1405. [CrossRef]
28. Lichtenthaler, H.K.; Buschmann, C.; Knapp, M. How to correctly determine the different chlorophyll fluorescence parameters and

the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 2005, 43, 379–393. [CrossRef]
29. Chouinard, G.; Veilleux, J.; Pelletier, F.; Larose, M.; Philion, V.; Joubert, V.; Cormier, D. Impact of Exclusion Netting Row Covers on

‘Honeycrisp’ Apple Trees Grown under Northeastern North American Conditions: Effects on Photosynthesis and Fruit Quality.
Insects 2019, 10, 214. [CrossRef] [PubMed]

30. Colzi, I.; Renna, L.; Bianchi, E.; Castellani, M.B.; Coppi, A.; Pignattelli, S.; Loppi, S.; Gonnelli, C. Impact of microplastics on
growth, photosynthesis and essential elements in Cucurbita pepo L. J. Hazard. Mater. 2022, 423, 127238. [CrossRef] [PubMed]

31. Chung, Y.S.; Kim, K.-S.; Hamayun, M.; Kim, Y. Silicon Confers Soybean Resistance to Salinity Stress Through Regulation of
Reactive Oxygen and Reactive Nitrogen Species. Front. Plant Sci. 2020, 10, 1725. [CrossRef] [PubMed]

32. Opti-Sciences. CCM-300 Chlorophyll Content Meter Operation Manual. Available online: https://www.manualslib.com/
manual/1390770/Opti-Sciences-Ccm-300.html (accessed on 3 February 2024).

33. Zhang, Y.; Chen, J.M.; Thomas, S.C. Retrieving seasonal variation in chlorophyll content of overstory and understory sugar maple
leaves from leaf-level hyperspectral data. Can. J. Remote Sens. 2007, 33, 406–415. [CrossRef]

34. Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with
Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [CrossRef]

35. Schweiger, A.K.; Cavender-Bares, J.; Townsend, P.A.; Hobbie, S.E.; Madritch, M.D.; Wang, R.; Tilman, D.; Gamon, J.A. Plant
spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nat. Ecol.
Evol. 2018, 2, 976–982. [CrossRef]

36. Wang, Z.; Chlus, A.; Geygan, R.; Ye, Z.; Zheng, T.; Singh, A.; Couture, J.J.; Cavender-Bares, J.; Kruger, E.L.; Townsend, P.A. Foliar
functional traits from imaging spectroscopy across biomes in eastern North America. New Phytol. 2020, 228, 494–511. [CrossRef]
[PubMed]

37. Thayer, S.S.; Björkman, O. Leaf Xanthophyll content and composition in sun and shade determined by HPLC. Photosynth. Res.
1990, 23, 331–343. [CrossRef] [PubMed]

38. Illowsky, B.; Dean, S. Introductory Statistics; OpenStax: Houston, TX, USA, 2018.
39. Box, E.O. Plant Functional Types and Climate at the Global Scale. J. Veg. Sci. 1996, 7, 309–320. [CrossRef]
40. Oren, R.; Werk, K.S.; Buchmann, N.; Zimmermann, R. Chlorophyll–nutrient relationships identify nutritionally caused decline in

Piceaabies stands. Can. J. For. Res. 1993, 23, 1187–1195. [CrossRef]
41. Gamon, J.A.; Surfus, J.S. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 1999, 143, 105–117.

[CrossRef]

https://doi.org/10.1007/s11120-010-9606-0
https://www.ncbi.nlm.nih.gov/pubmed/21188527
https://doi.org/10.1046/j.0028-646X.2001.00289.x
https://doi.org/10.1016/j.agrformet.2022.109059
https://doi.org/10.3390/rs11222706
https://doi.org/10.1093/jxb/ert208
https://www.ncbi.nlm.nih.gov/pubmed/23913954
https://doi.org/10.1093/jexbot/51.345.659
https://doi.org/10.1007/s11120-007-9187-8
https://doi.org/10.1023/A:1020125719386
https://doi.org/10.1016/S1671-2927(06)60120-X
https://doi.org/10.1016/S0034-4257(99)00023-1
https://doi.org/10.1046/j.1365-3040.2000.00650.x
https://doi.org/10.1007/s11099-005-0062-6
https://doi.org/10.3390/insects10070214
https://www.ncbi.nlm.nih.gov/pubmed/31331070
https://doi.org/10.1016/j.jhazmat.2021.127238
https://www.ncbi.nlm.nih.gov/pubmed/34844356
https://doi.org/10.3389/fpls.2019.01725
https://www.ncbi.nlm.nih.gov/pubmed/32117330
https://www.manualslib.com/manual/1390770/Opti-Sciences-Ccm-300.html
https://www.manualslib.com/manual/1390770/Opti-Sciences-Ccm-300.html
https://doi.org/10.5589/m07-037
https://doi.org/10.1016/S0176-1617(11)81192-2
https://doi.org/10.1038/s41559-018-0551-1
https://doi.org/10.1111/nph.16711
https://www.ncbi.nlm.nih.gov/pubmed/32463927
https://doi.org/10.1007/BF00034864
https://www.ncbi.nlm.nih.gov/pubmed/24419657
https://doi.org/10.2307/3236274
https://doi.org/10.1139/x93-150
https://doi.org/10.1046/j.1469-8137.1999.00424.x


Sensors 2024, 24, 4784 17 of 17

42. Lhotakova, Z.; (Charles University, Faculty of Science, Department of Plant Experimental Biology, Czech Republic); Neuwirthova,
E.; (Charles University, Faculty of Science, Department of Plant Experimental Biology, Czech Republic); Potuckova, M.; (Charles
University, Faculty of Science, Department of Applied Geoinformatics and Cartography, Czech Republic); Cervena, L.; (Charles
University, Faculty of Science, Department of Applied Geoinformatics and Cartography, Czech Republic); Hunt, L.; (Charles
University, Faculty of Science, Department of Plant Experimental Biology, Czech Republic); Kupkova, L.; (Charles University,
Faculty of Science, Department of Applied Geoinformatics and Cartography, Czech Republic); Lukes, P.; (Global Change
Research Institute of the Czech Academy of Sciences, Czech Republic); Campbell, P.; (Joint Center for Earth Systems Technology,
NASA/Goddard Space Flight Center, Department of Geography And Environmental Sciences, USA); Albrechtova, J.; (Charles
University, Faculty of Science, Department of Plant Experimental Biology, Czech Republic). Leaf structure matters for field
evaluation of chlorophyll content with portable meters, 2024. (Unpublished work).

43. Monje, O.A.; Bugbee, B. Inherent Limitations of Nondestructive Chlorophyll Meters: A Comparison of Two Types of Meters.
HortScience 1992, 27, 69–71. [CrossRef] [PubMed]

44. Markwell, J.; Osterman, J.C.; Mitchell, J.L. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth. Res. 1995, 46,
467–472. [CrossRef]

45. Uddling, J.; Gelang-Alfredsson, J.; Piikki, K.; Pleijel, H. Evaluating the relationship between leaf chlorophyll concentration and
SPAD-502 chlorophyll meter readings. Photosynth. Res. 2007, 91, 37–46. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.21273/HORTSCI.27.1.69
https://www.ncbi.nlm.nih.gov/pubmed/11537728
https://doi.org/10.1007/BF00032301
https://doi.org/10.1007/s11120-006-9077-5

	Introduction 
	Materials and Methods 
	Materials 
	Methods 
	Paired, Two-Tailed T-Test 
	Linear Regression Analysis 


	Results 
	CCM-300 Measurements vs. Laboratory Chemistry Measurements 
	Paired T-Test for 41 Samples with All Three Measurements 
	Paired T-Test of All Paired Samples 
	Iterative Subsampling for Randomized, Permutated Analysis 

	CCM-300 Measurements for Different Plant Functional Types 
	CCM-300 Measurements for Different Plant Functional Types 
	Needle Age Analysis 

	CCM-300 Performance across Years 

	Discussion 
	CCM-300 Measurements vs. Laboratory Chemistry Measurements 
	CCM-300 Measurements for Different Plant Functional Types 
	CCM-300 Performance across Years 
	Study Limitations 

	Conclusions 
	References

