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ABSTRACT Urinary tract infections (UTIs) cause a
substantial health care burden. UTIs (i) are most often caused
by uropathogenic Escherichia coli (UPEC), (ii) primarily affect
otherwise healthy females (50% of women will have a UTI),
(iii) are associated with significant morbidity and economic
impact, (iv) can become chronic, and (v) are highly recurrent.
A history of UTI is a significant risk factor for a recurrent UTI
(rUTI). In otherwise healthy women, an acute UTI leads to a
25 to 50% chance of rUTI within months of the initial infection.
Interestingly, rUTIs are commonly caused by the same strain
of E. coli that led to the initial infection, arguing that there exist
host-associated reservoirs, like the gastrointestinal tract and
underlying bladder tissue, that can seed rUTIs. Additionally,
catheter-associated UTIs (CAUTI), caused by Enterococcus and
Staphylococcus as well as UPEC, represent a major health care
concern. The host’s response of depositing fibrinogen at the
site of infection has been found to be critical to establishing
CAUTI. The Drug Resistance Index, an evaluation of antibiotic
resistance, indicates that UTIs have become increasingly difficult
to treat since the mid-2000s. Thus, UTIs are a “canary in the coal
mine,” warning of the possibility of a return to the preantibiotic
era, where some common infections are untreatable with
available antibiotics. Numerous alternative strategies for both
the prevention and treatment of UTIs are being pursued, with a
focus on the development of vaccines and small-molecule
inhibitors targeting virulence factors, in the hopes of reducing
the burden of urogenital tract infections in an antibiotic-sparing
manner.

INTRODUCTION
Urinary tract infections (UTIs) refer to bacterial coloni-
zation of the urinary tract and are one of the most
common bacterial infections, infecting an estimated 150
million people worldwide annually. In the United States
alone, nearly 11 million cases are reported each year,

resulting in approximately $5 billion in indirect and di-
rect costs annually (1, 2). More than 50% of women will
experience at least one UTI in their lifetime, and, despite
antibiotic intervention, 20 to 30% of women with an
initial UTI will experience a recurrent UTI (rUTI) within
3 to 4 months of the initial infection (2, 3). Such infec-
tions therefore represent a great health care burden and,
as such, demand further research to advance treatment
options and improve patient care. This article outlines
what is currently known about the determinants and
features of Escherichia coli pathogenesis in UTIs and
highlights how such knowledge is now being translated
into tools for alleviating that burden clinically.

UROGENITAL TRACT
The principal function of the urinary tract is to collect,
transport, store, and eliminate urine, which is composed
of excreted metabolic products and waste generated in
the kidneys (4, 5). From its proximal to distal end, the
urinary tract is composed of the kidneys, ureters, blad-
der, and urethra, and each of these organs plays a critical
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role in maintaining the homeostasis of this system. The
upper urinary tract consists of the kidneys, which filter
blood to produce urine, and the ureters, bilateral fibro-
muscular tubes that carry urine from the kidneys to the
bladder. The bladder is a hollow, distensible organ com-
posed of smooth muscle, collagen, and elastin (6). When
devoid of urine, it adopts a tetrahedral shape; upon being
filled, it becomes ovoid (7). Finally, the urethra connects
to the neck of the bladder, begins at the distal end of the
urethral sphincter, and serves as a duct by which urine is
eliminated out of the body from the bladder (7).

In both males and females, the luminal surface of
the urinary tract is lined with specialized epithelial tissue
broadly known as the urothelium. The urothelium serves
as a distensible and effective permeability barrier to ac-
commodate urine flow and volume while preventing the
unregulated exchange of metabolic products between the
blood and urine (8). The superficial urothelium com-
prises a single layer of large polyhedral, multinucleated,
highly differentiated umbrella cells, also termed super-
ficial facet cells (8). Umbrella cells are decorated with a
crystalline array of uroplakin proteins that form urothelial
plaques. Importantly, uroplakins play a critical role in the
maintenance of the superficial urothelium’s permeability
barrier (9–13). The intermediate and basal layers of the
urothelium are significantly smaller and less differentiated,
and they are believed to contain urothelial stem cells re-
quired for umbrella cell regeneration (7, 14–16).

The urinary tract is thought to be relatively sterile
(17), although recently, evidence for a urinary micro-
biota was presented (18). As is discussed in the following
sections, upon accessing the urinary tract, bacteria can
exploit tissue-specific receptors to establish infection.

INFECTION OF THE URINARY TRACT
The majority of uncomplicated UTIs manifest as in-
fections of the lower urinary tract: infection and in-
flammation of the urethra (urethritis) or urinary bladder
(cystitis) (2). If bacteria ascend the ureters to the upper
urinary tract, this results in pyelonephritis (2). This is
particularly concerning, as bacteria in the kidneys may
enter the bloodstream, causing sepsis (2). Asymptomatic
bacteriuria (ASB) is marked by positive urine cultures
in the laboratory without urinary symptoms (2). Cystitis
is typically diagnosed based on symptomology, such as
frequency and urgency of urination, burning pain and
sensation during urination, abdominal discomfort, and/
or turbid, odorous urine paired with high levels of bac-
teria in the urine (bacteriuria) (2). Pyelonephritis typi-
cally presents with bacteriuria, pyuria (white blood cells

in the urine), flank pain, or fever and may or may not
present with symptoms associated with cystitis (2). The
majority (85%) of uncomplicated, community-acquired
UTIs are caused by uropathogenic E. coli (UPEC), and
the remaining 15% are caused by other Gram-negative
bacilli like Klebsiella or Gram-positive cocci such as En-
terococcus or Staphylococcus (19). Risk factors for un-
complicated UTI include sexual activity, history of UTI,
contraception, and host genetics and immune responses
(2, 20). E. coli can also exist in the urinary tract asymp-
tomatically in a condition known as ASB (21).

In the health care setting, catheterization increases
the risk of complicated UTIs (22). Catheter-associated
UTIs (CAUTI) account for 30 to 40% of all health care-
associated infections in the United States (23). The ma-
jority of CAUTI are asymptomatic, but these infections
can present with fever, chills, malaise, and/or generaliz-
able discomfort or as cystitis or pyelonephritis once the
catheter is removed (2). The twomajor causative agents of
CAUTI are UPEC (65%) and Enterococcus spp. (11%)
(24). CAUTI are particularly threatening, as they have the
potential to disseminate in the health care setting.

Due to their prevalence and the high rate of recur-
rence, UTIs are a significant cause of morbidity in women
throughout their lifetime. It is estimated that one in three
women will be prescribed antibiotics to treat a UTI before
the age of 24 (2). In the outpatient setting, 15% of an-
tibiotic prescriptions have been reported to be for UTI
treatment (25, 26). Frequent antibiotic usage coupled
with antibiotic resistance among uropathogens (27)
highlights the urgent need to develop new and improved
treatment and prevention options.

UTI PATHOGENESIS
Uropathogenic Escherichia coli
UPEC (Fig. 1) lacks a “genetic signature” (28) that dis-
tinguishes it from non-UPEC. This is likely due to the
broad definition of UPEC as any strain that is recovered
from the urine of a patient with a symptomatic UTI.
Recently, a high-resolution, comparative genomic study
performed on E. coli isolates from women with recur-
rent UTIs revealed that the isolates were diverse and
represented five major E. coli clades: A, B1, B2, D, and E
(28). Two-thirds of these strains belonged to the clade
B2, which comprises the majority of UPEC strains iso-
lated in the United States and Europe (28). Interestingly,
the strain’s phylogenetic background and carriage of vir-
ulence factors are not entirely predictive of its urovir-
ulence (28). Instead, the expression of certain genes, such
as those involved in motility and transport of sugars, is a
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better predictor of the virulence of a given strain in mice.
Lending support to this is the fact that in some women
suffering from recurrent UTIs with a strain different from
that which caused the previous event, the new strain can
actually encode fewer putative urovirulence factors than
the strain that was replaced. Thus, work in multiple mouse
models of UTIs has defined a “lock-and-key” mechanism
of UTI pathogenesis in which the disease outcome is not
completely fixed based on the pathogen or the host but,
rather, is determined in part by how the fitness level of the
introduced pathogen is matched against the resistance or
susceptibility level of the host, which is influenced by his-
tory of infection and the presence of foreign bodies (28–30).

The type 1 pilus is an important mediator of bladder
colonization (31, 32). The adhesive tip protein or adhesin
(33) of the type 1 pilus FimH binds to mannose (31, 34).
This ligand is present on uroplakin 1a and on β1 and α3
integrin molecules on the surface of bladder urothelial
cells (31, 35, 36). Changes in host cell cytoskeletal ele-
ments, thought to be mediated through Rho GTPases,

allow type 1 facilitated invasion into urothelial cells (31,
37, 38). During infection, pathogen-associated molecular
patterns (PAMPs) can stimulate the pattern recognition
receptor Toll-like receptor 4 to activate host responses.
One example of a PAMP is bacterial lipopolysaccharide
(39). Cytokine production (39), the influx of inflamma-
tory monocytes and neutrophils (40), bacterial eviction
from host cells (39, 41), and the exfoliation of urothelial
cells (39, 42) are all innate host responses encountered by
UPEC (39) (Fig. 1C). Further, work has demonstrated
that the role of urothelial exfoliation is to eliminate in-
fected bladder cells from the body, thus reducing the
UPEC burden in the bladder (43, 146). UPEC-induced
exfoliation results in dead or dying shed epithelial cells,
rather than the predominantly living host cells shed by
chemical exfoliation (43). This exfoliation may occur by
multiple pathways, including interleukin 1β (IL-1β) sig-
naling and the NLRP3 inflammasome (42).

Exfoliation can be a double-edged sword, as it leads
to the exposure of the underlying transitional epithelium,

FIGURE 1 UPEC pathogenesis. (A) UPEC is housed in a reservoir in the gastrointestinal
system. The bacteria are able to colonize the urinary tract from this reservoir. (B) Bacteria
are able to adhere to and invade the bladder epithelial cells. (C) Bacterial cells can be
evicted from the host cell in response. Bacterial cells can also enter the cytoplasm (D) and
initiate IBC formation (E). (F) UPEC can, upon fluxing out of the host cells, filament and
reinfect other urothelial cells. (G) To counteract intracellular pathogens, the host can ini-
tiate a programof host cell exfoliation. (H) Chronic cystitis inmice can occur with persistent
high titers of bacteriuria. (I) QIRs can be established, in mice with resolved infections, in
layers below superficial urothelial cells. Image and caption are adapted from reference 31.
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where bacteria can invade and persist in small quiescent
intracellular reservoirs (QIRs) even after resolution of
bacteriuria. The bacteria localized in QIRs can subse-
quently reactivate to seed recurrent UTI (44). Evidence
suggests that chymase, from mast cells, activates pro-
caspase to initiate this cytolysis (43). Interestingly, mast
cells have been shown to induce an anti-inflammatory
response in the bladder as well. In C57BL/6 mice infected
with a UPEC isolate, IL-10 expression spikes at 6 hours
postinfection in the bladder and remains elevated for at
least 72 hours. Mast cells, which have been shown to
increase in numbers in the bladder upon UPEC infection,
can secrete IL-10, which also functions to reduce the
number of mature dendritic cells and possibly other im-
mune cells (45).

In humans, UPEC infections have numerous outcomes,
including ASB, acute and self-resolving UTIs, chronic
UTIs, and/or recurrent UTIs (20) (Fig. 1H and I). Murine
models of cystitis have been developed that are capa-
ble of mimicking these clinical outcomes. For example,
C3H/HeN mouse models have recapitulated two dis-
ease courses. Mice experience (i) acute infection followed
by spontaneous resolution within 1 to 4 weeks of in-
fection, or (ii) acute infection that then progresses to a
long-lasting persistent infection termed chronic cystitis
(39).

The fate of infection is determined in part by whether a
host-pathogen checkpoint is activated. Activation of the
checkpoint leads to elevated levels of COX2 expression
(see below), which licenses the transmigration of neutro-
phils across the bladder epithelium, leading to the asso-
ciated mucosal damage that ensues (40). Thus, activation
of the host-pathogen checkpoint leads to persistent high-
titer bacteriuria, which is accompanied by severe immu-
nopathology and ablation of the terminally differentiated
superficial umbrella cells in a condition we have termed
chronic cystitis. Chronic and recurrent cystitis can be pre-
dicted 24 hours postinfection by increased levels of the
serum biomarkers IL-5, IL-6, neutrophil cytokine CXCL1,
and granulocyte colony-stimulating factor (29, 40). Simi-
larly, in the sera of young women with acute UTI, UTI
recurrence was predicted by increased levels of soluble
biomarkers involved in myeloid cell development and
chemotaxis (40).

While type 1 pili are important for the progression
of acute and chronic cystitis, another pilus type, Fim-like
(Fml) or F9, is also important for UPEC persistence in
the inflamed bladder. Bladder inflammation leads to the
exposure of the galactose β1-3 N-acetylgalactosamine
receptor recognized by the Fml adhesin FmlH which fa-
cilitates binding to the inflamed tissue and enables per-

sistent bacteriuria and high bladder bacterial burdens
throughout chronic cystitis (46).

Furthermore, clinically, a history of cystitis is one of
the key risk factors for the development of recurrent
infections (rUTIs), specifically, an incidence of UTI at a
young age or two or more previous incidences of UTIs
(29). Mechanistically, a possible explanation for this phe-
nomenon was recently proposed. The remodeling of the
urothelium during chronic infection permanently alters
its architecture, even after antibiotic therapy and conva-
lescence from infection, resulting in hundreds of differ-
entially expressed genes and proteins in the remodeled
bladder compared to an age-matched naïve bladder (29).
Thus, mice with a history of chronic infection are left
with a molecular imprint on the bladder defined by a
defect in terminal differentiation of the bladder epithe-
lium, resulting in significantly smaller luminal cells and
an altered transcriptome (29). Importantly, bladder re-
modeling changes host-pathogen interactions during
acute pathogenesis by conferring resistance to early col-
onization events. However, mice with a history of chronic
infection succumb to severe bladder infection, a process
that is COX-2 dependent and leads to the transmigration
of neutrophils across the bladder epithelium, mucosal
wounding, and unchecked bacterial replication (29). In
support of this, treatment with a COX-2 inhibitor leads to
a significant reduction in both chronic and recurrent cys-
titis (29, 40). Thus, bladdermucosal remodeling can occur
as a consequence of persistent infection, and this repro-
gramming of the bladder predisposes the host to more
severe rUTI upon subsequent bacterial exposure, even
with less pathogenic strains.

UPEC in the gastrointestinal tract
The major source of UPEC is thought to be the gastro-
intestinal tract, where UPEC can reside transiently or as a
commensal member of the gut microbiota (3, 47–49).
UPEC is then shed in the feces, inoculating the periurethral
area or vagina, and subsequently introduced into the uri-
nary tract during periods of physical manipulation, such
as during sexual activity or catheterization (20). Several
recent studies identified chaperone usher pathway (CUP)
pilus types that promote the establishment and/or main-
tenance of the UPEC intestinal reservoir. Interestingly, a
role for type 1 pili in UPEC intestinal colonization in mice
has been reported by several groups (47, 50, 51). Addi-
tionally, a previously uncharacterized pilus, the F17-like
pilus, has also been implicated in UPEC intestinal colo-
nization in mice (47). Purified lectin domains of the type 1
and F17-like adhesins (FimH and UclD, respectively) were
shown to bind within the colonic crypt, suggesting that
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type 1 and F17-like pili facilitate colonization within that
niche (Fig. 1A). However, further studies examining the
localization of whole bacteria expressing type 1 or F17-
like pili within the mouse gut are required to determine if
UPEC binds within the crypts during intestinal coloniza-
tion in vivo. Phylogenomic and structural analyses suggest
that UPEC acquired F17-like pili from intestinal patho-
gens, and B2 UPEC strains causing same-strain recur-
rences were found to be significantly enriched for the
carriage of the F17-like pilus gene cluster (47). These
analyses reveal that F17-like pili might have evolved to
enable maintenance of a UPEC intestinal reservoir by
promoting UPEC persistence in womenwith rUTIs. Thus,
the identification of UPEC genes involved in gastrointes-
tinal colonization provides the framework for future
studies elucidating the mechanisms that underlie UPEC
persistence in the gut.

Intracellular bacterial communities
Intracellular bacterial communities (IBCs) are clonal col-
lections of bacterial cells housed within the cytoplasm
of superficial facet cells of the bladder (52, 53). IBCs are
encased within a biofilm-like matrix (31, 52) and are
replicative, metabolically active communities (52, 54).
IBCs provide a mechanism for UPEC replication in the
bladder while being protected from immune responses
and possible antibiotic treatment (31, 52). Studies have
found that the IBCs, although studied extensively in mice
(39, 55, 56), are a feature of human infection (31, 57,
58). IBC formation has also been documented in a num-
ber of bacterial species in the family Enterobacteriaceae
(52). IBC formation occurs during acute infection and is
restricted to the superficial umbrella cells. Exfoliation of
these cells is part of an innate defense, and the ablation of
the luminal epithelium restricts further IBC formation
during chronic infection (39, 52).

A number of factors have been found to be critical in
IBC formation. FimH, the type 1 pilus adhesin known to
mediate binding to and invasion of bladder urothelium
(53, 59), also plays a role in bacterial association within
the IBC biomass (60). The K1 capsule also allows clump-
ing of cells within the host cell (52). LacZ and GalK,
factors involved in metabolism, have been found to be
important for the establishment of IBCs. In a murine
model, strains with individual deletions of the genes
encoding these proteins were found to lack fitness in
competitive infections against the wild type (54). YeaR,
a recently described protein involved in the oxidative
stress response, is critical to IBC formation in a type 1-
dependent manner (54). Iron uptake systems, including
siderophore biosynthetic genes, are highly upregulated

in IBCs, as are reciprocal iron responses in neighboring
host cells. Thus, a competition for iron occurs at the in-
terface between the IBC and neighboring epithelial cells
(61). For example, ChuA, a hemin receptor, is highly
upregulated in IBCs, and neighboring epithelial cells
respond by upregulating the transferrin receptor, an
iron-scavenging factor (52, 61). Developmentally, bac-
terial cells within IBCs progress from a coccoid shape to
a rod shape. Bacteria then generally take a filamentous
form, mediated by SulA, a cell division regulator, as they
exit host cells to the extracellular environment (52). This
development and exit are of note, as they provide a
mechanism of infection of neighboring cells, allowing the
infection to spread in the bladder (52). It is clear that the
formation of IBCs is a hallmark of UPEC pathogenesis
(52) and represents a critical topic for future study.

Quiescent intracellular reservoirs
QIRs are small communities of bacterial cells contained
within Lamp1+ vesicles in host cells (44, 52). These
communities contain 4 to 10 bacterial cells, oriented in a
rosette-like fashion (44), and are nonreplicating (52), in
contrast to IBCs (52). QIRs can be present in both su-
perficial epithelial and transitional bladder cells (44) and
can persist for 12 weeks (44). Beyond being protected
from antibiotics (62), such reservoirs are thought to be
able to initiate a recurrent infection (52), as work has
demonstrated that in mice possessing bladder QIRs,
exfoliation of the superficial bladder epithelial cells can
result in an activation of the bacteria within the QIR to
cause pyuria, bacteriuria, and increased bacterial blad-
der titers (44). Interestingly, there may exist an interplay
between the vaginal microbiome and rUTI, as it has been
shown that in bladders containing QIRs, exposure to
Gardnerella vaginalis can result in activation of the res-
ervoir, leading to rUTI (63). Additional work has exam-
ined the contribution of host cytoskeletal elements to
QIR behavior. Interrupting the host actin network causes
QIRs to replicate and then exit the vesicle into the cy-
tosolic space (64). Considering the substantial burden of
recurrent UTI, QIRs represent a rich area of study to un-
derstand the mechanisms of recurrence.

Virulence and Bacterial Colonization
The determinants by which UPEC causes UTIs (Fig. 2)
have been extensively studied. To facilitate survival within
human urine, an environment rich in amino acids and
peptides, UPEC relies on amino acid biosynthesis and
amino acid and carbohydrate metabolism (65, 66). As
described above, to fulfill nutritional metal requirements
to survive within host cells, UPEC utilizes iron acquisi-
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tion molecules called siderophores to chelate iron from
the host environment. Iron-siderophore complexes are
then recognized by cognate outer membrane (OM) re-
ceptors on the bacterium for their reuptake into the
bacterial cell. In particular, enterobactin, yersiniabactin,
and salmochelin are important siderophores in the con-
text of UTIs (67). UPEC also utilizes certain toxins that
play important roles in pathogenesis (68, 69). Finally,
surface-localized structures, such as flagella, pili, cap-
sule, and OM adhesins, and the regulation of these
factors are important for the motility, colonization,
and biofilm formation of UPEC during infection (Fig. 2)
(70).

CUP pilus assembly
Pili and adhesins are particularly important, as they are
critical for all stages of the UPEC pathogenic cascade,
except for growth in urine (71, 72). To facilitate adhe-
sion to host- and tissue-specific niches, UPEC encodes
CUP pili. E. coli carries genes for at least 38 CUP pili in
its pangenome, and UPEC utilizes CUP pili, such as type
1 and P pili, to mediate adherence critical in cystitis and

pyelonephritis, respectively (Fig. 3) (19, 73–76). Gram-
negative bacteria assemble CUP pili to mediate adhesion
to host and environmental surfaces, facilitate invasion
into host tissues, and promote formation of intra- and
extracellular biofilm communities (77). Further, as dis-
cussed above, recent work suggests that the type 1 and
F17-like pilus types promote UPEC colonization within
the mouse colon (47, 50, 51). Expression of type 1 pili is
under the control of an invertible promoter, fimS, that
oscillates between ON and OFF (72). Interestingly, there
exist factors in the urine that promote fimS, in plank-
tonic UPEC in the urine, to adopt a phase OFF orien-
tation; however, bacteria bound to bladder cells shed
into the urine remain in phase ON (72). Microarray and
RNA-Seq studies of bacteria isolated from the urine of
UTI patients have revealed patients with different pat-
terns (both high and low) of fim expression (71, 78).
Based on these and other human studies and from work
in a murine model, one hypothesis is that planktonic
bacteria in urine are (or become) nonpiliated, while bac-
teria colonizing the bladder tissue or bound to shed epi-
thelial cells express type 1 pili (71, 79–81). Additionally,

FIGURE 2 Overview of UPEC fitness and virulence factors. Surface-associated structures
that play a role in UTI pathogenesis include lipopolysaccharide, polysaccharide capsule,
flagella, pili, toxins, secretion systems (SS), and siderophore receptors. Image and caption
are adapted from reference 68.
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it has been postulated that exponential growth in hu-
man urine suppresses type 1 pilus expression (82). Taken
together, these results indicate that type 1 pili are tem-
porally and spatially regulated and are required for col-
onization of host tissues.

CUP pili are assembled by dedicated chaperone-usher
machinery, which is encoded by operons that contain the
genetic determinants required to assemble a mature pilus:
a periplasmic chaperone protein, an OM usher protein,

major and minor pilus subunits, and, in most cases, a tip
adhesin protein (77). Adhesins are two-domain proteins,
with an N-terminal lectin domain that binds to receptors
with stereochemical specificity, while the C-terminal pilin
domain joins the adhesin to the pilus rod (59). In CUP
pilus assembly, individual pilus subunits or pilins are
first exported across the inner membrane to the peri-
plasm, where they are guided to the OM usher via the
chaperone (59) (Fig. 3A). Each pilin comprises a single

FIGURE 3 Overview of CUP of pilus assembly and mode of action of antivirulence com-
pounds. (A) Sec transports unfolded subunits of the pilus structure into the periplasmic
space. (B, C, G, H) Pilus subunits interact with the pilus type-specific chaperone and fold.
(D) Chaperone-subunit complexes interact with the N terminus of the pilus usher. (E) Se-
creted subunits, bound together through donor strand exchange, form the pilus. (F) Small-
molecule inhibitors, mannosides and galactosides, antagonize interactions between the
adhesive tip of the pilus and its ligand. Pilicides bind to the chaperone (I) and interrupt the
interaction between chaperone and the N terminus of the usher (J). Image and caption are
adapted from reference 31.
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domain having an immunoglobulin (Ig)-like structure
(59) that is incomplete because it lacks a seventh C-
terminal β-strand.

In a process termed donor-strand complementation,
the chaperone, a boomerang-shaped protein composed of
two complete Ig-like domains, provides in trans its G1 β-
strand to transiently complete the pilin’s Ig-like fold, thus
catalyzing folding directly on the chaperone template (59)
(Fig. 3B, C, G, and H). Chaperone-pilin complexes are
then targeted to the OM usher, a β-barrel channel that
catalyzes subunit-subunit interactions through a reaction
called donor-strand exchange, wherein every pilin sub-
unit has an N-terminal extension that completes the Ig
fold of its neighboring subunit (59) (Fig. 3D and E). The
OM usher is composed of five functional domains: a 24-
stranded integral β-barrel translocation domain (TD), a
β-sandwich plug domain that gates the pore of the TD,
a periplasmic amino-terminal domain (NTD), and two
carboxy-terminal domains (CTD1 and CTD2) (83, 84).
The concerted coordination of the usher’s domains en-
sures that the subunits interact productively during fiber
polymerization. The molecular mechanisms that drive
this cooperative coordination of the different domains of
the usher have been studied, and the studies have dem-
onstrated that conformational flexibility and allostery
drive this bacterial nanomachine in the absence of cel-
lular energy at the OM (83–91). In particular, it has been
shown that upon initiation of CUP pilus assembly, the
TD and PD undergo marked rearrangements to accom-
modate transit of the growing fiber, while the periplas-
mic NTD and CTDs participate in substrate recruitment,
catalysis of donor strand exchange, and translocation
through the TD pore (83, 84).

While the OM usher serves as the assembly platform
for the growing pilus fiber and anchors it to the OM, the
majority of the pilus is composed of homopolymers of
the major rod subunit (59). Once the pilus rod extrudes
into the extracellular milieu, it coils into a right-handed
helical fiber that has the ability to unwind into a linear
structure (59). Recent structural studies on the type 1 and
P pilus rods have identified the molecular determinants
for the formation of the helical rod (92–94). Disruption
of critical subunit-subunit interactions within the rod
resulted in pili that were more prone to helical unwinding
in the presence of shear force and displayed attenuation
in murine models of cystitis and intestinal colonization
by UPEC (92–94). Taken together, these studies suggest
that the dynamics of rod coiling and uncoiling play a
critical role in UPEC pathogenesis.

Beyond its own role in pathogenesis, the pilus rod also
serves as a scaffold to present the pilus tip adhesin at the

host-pathogen interface. In addition to the OM usher
and pilus rod displaying conformational flexibility, re-
cent work has shown that the two-domain adhesin
protein, FimH, exists in equilibrium between conforma-
tional states as well (95). One study focusing on the type
1 pilus adhesin FimH demonstrated that it adopts two-
state conformational ensembles (95). Remarkably, it
appears that positively selected residues within the pro-
tein modulate the equilibrium between these two states,
and this equilibrium is crucial to bacterial persistence
within the bladder during the progression of UTI (95). In
summary, conformational dynamics play a significant
role at every level of pilus assembly.

Virulence factors
A variety of virulence factors have been the subject of
study in UPEC pathogenesis. Work has revealed that
surface-associated structures such as capsules are also
critical for immune evasion and for the successful de-
velopment of IBCs during infection (96–99) (Fig. 2).
Among such virulence factors is antigen 43 (Ag43), an
autotransporter protein of the AIDA-I type, which func-
tions in the formation of biofilms and aggregation (100,
101). Ag43 is thought to be important to bladder colo-
nization, as evidence suggests that deletion of one Ag43,
Ag43a, in CFT073 causes attenuation of bladder colo-
nization 5 days postinfection (101). Structurally, Ag43
exhibits a functionally significant L-shaped secondary
structure. Along an interface of this structure, Ag43a
autoaggregates in an interaction mediated by hydrogen
and electrostatic bonding. As such, a “Velcro-like”
mechanism has been proposed for cellular adhesion
mediated by Ag43 (100). Additionally, curli, secreted
amyloids which contribute to the formation of biofilm
extracellular matrix (102), have been found to improve
bacterial adherence to kidney epithelial cells. Curli also
improve relative growth of bacteria when exposed to
human antimicrobial peptide LL-37 and mouse anti-
microbial peptide mCRAMP (103). A number of other
characterized virulence factors are briefly described in
Table 1.

Gender and UPEC UTIs
Women are more likely to experience uncomplicated,
community-acquired UTIs than men. This is thought to
be due to higher rates of bacterial colonization of the
urethral and periurethral body sites (2). This, paired with
shorter urethral lengths in women, makes it more likely
for bacteria to ascend the urethra and access the bladder
for colonization and to establish an infection in this pop-
ulation (2). However, there is a significant male patient
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population that experiences complicated UTIs due to risk
factors that include spinal cord injuries, anatomical and
physiological abnormalities in the urinary system (such as
vesicoureteral reflux), diabetes, and urethral instrumen-
tation (3).

Demographic data suggest that beyond simple ana-
tomical differences between the male and female urinary
tracts, hormones could play a role in pathogenesis (104).
Cell culture work has found that estrogen aids the host
defense against UTIs, increasing the expression of genes
for antimicrobial peptides and proteins involved in form-
ing cellular junctions while reducing intracellular bacterial
titers in vivo (105). On the other hand, while community-
acquired UTIs are more common among females, the
rate of mortality from complicated UTI and pyelone-
phritis is higher in males (106). In order to study how sex
influences UTI pathogenesis, surgical and nonsurgical
male models for studying UTIs have been developed
(106, 107). The surgical model of infection using the
C3H/HeN strain of mice found that male C3H/HeN
mouse bladders are colonized with UTI89 at higher
levels at 6 hours postinfection than female bladders and
that males were more likely to develop chronic cystitis
(106). Furthermore, male C57BL/6 and C3H/HeN mice
exhibited higher kidney titers with UTI89 than their fe-
male counterparts, and all of the UTI89-infected C3H/
HeN mice developed renal abscesses, while less than
10% of their female counterparts developed them (106).
Beyond developing a male model of UTI, the same study
demonstrated that testosterone plays a role in the ob-
served higher kidney and bladder colonization in C3H/

HeN male mice (106). Discrepancies in the character-
istics of UTIs between males and females represent an
opportunity to further probe the features which define
the natural history of UTI.

Catheter-associated UTIs caused by UPEC
Catheterization is a common phenomenon in inpatient
settings, where 20 to 50% of patients can be catheterized
(108). Catheterization is responsible for a substantial
majority, 70 to 80%, of complicated UTIs (24), and
about one-half of all CAUTI are caused by UPEC (109).
Catheter-associated infections can also be caused by a
number of other microorganisms, including Enterococ-
cus, Staphylococcus, and Proteus (108, 110, 111). The
use of urinary catheters has been shown to have an effect
on the pathobiology of UPEC UTIs (30). Catheterization
induces bladder inflammation and edema (30), and UPEC
thus enters and colonizes a different environment than it
would normally (30). For example, it has been shown that
timing of infection postcatheterization can affect initial
UPEC colonization (109). Furthermore, work has shown
that implanted bladders exhibit lower IBC burdens than
nonimplanted bladders while remaining morphologically
similar. Nonetheless, implanted bladders exhibit greater
exfoliation than the nonimplanted bladders, suggesting
that the reduction of IBC burden results from this ex-
foliation phenomenon. Additionally, the mere presence
of an implant activates bacteria in QIRs of previously
infected mice, resulting in recurrence of infection.

This study also identified FimH as a virulence factor in
CAUTI (30). Deletion of FimH reduced infectious bur-

TABLE 1 Virulence factors in UPEC pathogenesis

Virulence factor(s) Type of factor Role in pathogenesisa Reference(s)

QseBC, Cpx, and PhoPQ Two-component
regulatory systems

Regulation of virulence factor expression 130–135

SAT (secreted
autotransporter toxin)

Toxin Induction of vacuolation within the bladder and kidney cells in vitro; UPEC
proliferation

69

CNF-1 Toxin Activates Rho GTPases; enhances UPEC invasion of urothelial cells in vitro 136
HlyA (alpha-hemolysin) Toxin Exfoliation of urothelium; partially regulated by Cof phosphatase 42, 137, 138

YefM-YeoB Toxin-antitoxin system Bladder colonization in competitive infection 139
YbaJ-Hha Toxin-antitoxin system Bladder colonization in competitive infection 139
PasT-PasI Toxin-antitoxin system Kidney colonization in both competitive and noncompetitive infections;

PasT promotes formation of persister cells
139

RqiL Component of toxin-
antitoxin system

GIT colonization 140

GlpG Protease Deficient growth in mucus medium (recapitulating the GIT mucus) 141
UpaB Autotransporter Bladder colonization 1 dpi 142
TosA RTX factor Upper urinary tract, liver, and spleen adherence 143
UpaH Autotransporter Bladder infection (from competitive studies); biofilm formation (CFT073) 144
neaT Acyltransferase gene Bacteremia 145

aGIT, gastrointestinal tract; dpi, day postinfection.
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den in implanted mouse bladders and correspondingly
affected biofilm formation in vitro and bacterial coloni-
zation of the implant itself. However, this study suggests
that factors other than FimH could play a role in this
pathogenesis (30).

TREATMENT STRATEGIES FOR UROGENITAL
INFECTIONS
Antibiotic Resistance
Antibiotic resistance of UTI-causing bacteria has in-
creased in recent years. UTIs became more difficult to
treat from 1999 to 2010 according to the Drug Resis-
tance Index, which evaluates the degree of difficulty in
the treatment of infections, with this trend being attrib-
uted to increasing antibiotic resistance (112). In the
United Kingdom, resistance to trimethoprim specifically
has become prevalent in uropathogens (27). One exam-
ple of a general antibiotic resistance phenotype is ST131.
ST131 represents a group of strains of extraintestinal E.
coli exhibiting multidrug resistance (51, 113, 114). These
strains exhibit resistance to beta-lactams and fluoro-
quinolones and, indeed, seem to be driving antibiotic
resistance globally (113). Such strains have become pan-
demic, with isolates being identified across the globe (51,
113–115), causing, among other infections, UTIs and
bacteremia (115).

Novel Lines of Treatment
Vaccines
With the substantial health care burden UTIs cause,
vaccine development has become an important pillar in
the effort to reduce and prevent the disease burden. Such
work has leveraged current understandings of virulence
factors. One group of factors targeted in vaccine devel-
opment is bacterial adhesins, including FimH, FmlH,
pilus, PapG, and EbpA. IgG antibodies to FimH, gener-
ated in response to vaccination with FimCH in mice and
cynomolgus monkeys, were shown to protect against
UTI (116, 117). It has been postulated that the anti-
bodies’ effect is based on its ability to prevent bacterial
colonization by FimH-tipped type 1 pili (116). Addi-
tionally, a FimCH experimental vaccine recently com-
pleted a phase 1a/1b trial. Vaccination of two different
cohorts, whose members had a 24-month history of rUTI
upon enrollment, resulted in 74% and 70% reductions
in total UTI once FimH immunity was achieved. For
UTIs caused specifically by E. coli and Klebsiella, 70%
and 87% reductions, respectively, were observed (Gary
Eldridge, personal communication). Based on these prom-

ising results, the FDA has allowed compassionate use of
the vaccine for patients suffering from infections caused by
multidrug-resistant UPEC strains.

Vaccination of mice with FmlHAD (the lectin domain
of the two-domain FmlH adhesin protein) prior to in-
fection with CFT073 significantly decreased bladder and
kidney bacterial burden 2 and 3 days after infection in
mice (46). P pili, tipped with the PapG adhesin, have
been shown to play a critical role in pyelonephritis in
cynomolgus monkeys (75). IgG antibodies are produced
when cynomolgus monkeys are vaccinated with PapDG
(118). No difference in bacteriuria between vaccinated
and nonvaccinated monkeys was observed, but histo-
logically, with the exception of mononuclear cells, vac-
cinated monkeys exhibited none of the other recorded
signs of kidney pathology, with a subset of these cate-
gories proving statistically significant, while each of these
signs of pathology was found in a proportion of non-
vaccinated control monkeys (118).

Enterococci express Ebp pili that are tipped with
EbpA, which is a fibrinogen-binding adhesin. Urinary
catheterization results in the release of fibrinogen, which
subsequently coats the catheter. Enterococcus uses EbpA
to bind to and form biofilms on the fibrinogen-coated
catheter. Recent evidence has shown that antibodies to
the N-terminal domain of EbpA can prevent and treat
Enterococcus-mediated CAUTI (108). However, in a
mouse model, a history of Enterococcus infection is not
sufficient to reduce future Enterococcal infection (108).
Beyond harnessing structural components of adhesion
for vaccine development, siderophores have been found
to be a promising lead. Yersiniabactin and aerobactin
conjugated to bovine serum albumin and administered
together to immunize mice exhibited reduced kidney
colonization and pathology 48 hours postinfection com-
pared to a nonconjugated bovine serum albumin mock
vaccination, while bladder colonization and pathology
remained similar (119). Vaccination and subsequent
boosting with factors involved in the iron uptake are
able to reduce murine bladder (LutA and IreA) and
kidney (FyuA) colonization 48 hours postinfection, and
further thought has been given to generating multivalent
vaccines from these iron uptake proteins (120).

Small-molecule inhibitors
The critical nature of host-pathogen interactions during
the course of UPEC pathogenesis has warranted the
development of ligand mimetics designed to inhibit ad-
hesion to host tissues or block the biogenesis of CUP pili.
The ultimate goal of these compounds is to create novel
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antibiotic-sparing therapies that selectively deplete UPEC
from their various habitats in the host.

Mannosides
Mannosides are compounds developed to be ligand mi-
metics to the FimH adhesin that tips the type 1 pilus,
which is important for establishing bladder infections
(34, 121, 122). Built on a biphenyl scaffold linked to a
mannose moiety, early iterations of mannosides with
various substituent groups were developed and evaluated
for the ability to inhibit type 1-mediated biofilm forma-
tion (122). Early iterations of mannosides demonstrated
greatly improved inhibitory activity relative to methyl-α-
mannose, with an increase in potency of hemaggluti-
nation inhibition on the order of approximately 105-
to 107-fold (31, 34). An initially optimized compound
showed, in a murine model, the ability to (i) reduce bac-
terial titers in bladders, both luminally and intracellularly,
when administered prophylactically; (ii) efficaciously treat
UTIs after oral delivery; and (iii) improve the ability of
trimethoprim-sulfamethoxazole (TMP-SMX), an antibi-
otic, to reduce bladder bacterial load (122). Mannoside
ZFH-04269 was able to render a TMP-SMX-resistant
ST131 strain, EC958, sensitive to TMP-SMX treatment
by preventing invasion of UPEC into the bladder epithe-
lium, thus exposing the luminal UPEC to concentrations
of TMP-SMX above the MIC (123).

Structural data and inhibitory assays suggest that
interactions with the tyrosine gate associated with the
binding pocket on the FimH lectin domain, composed
of Tyr48 and Tyr137 and a hydrophobic region, Ile13,
would generate more potent inhibitory compounds (121,
124). Continued optimization has looked to improve the
stability of originally O-linked mannosides, by replacing
the O linkage located between the biphenyl scaffold and
alpha-D-mannose moiety with a C linkage (121). Itera-
tions of C-linked mannosides showed improved ability to
prevent and treat infections in mice (121). Moreover, in
mice, oral mannoside treatment reduces intestinal coloni-
zation of genetically diverse UPEC isolates, while simul-
taneously treating UTI, without significantly disrupting the
structural configuration of the gut microbiota. By selec-
tively depleting the intestinal UPEC reservoir, mannosides
could significantly reduce the rate of UTI and rUTI by
eradicating the reservoir (47). Recently, a small-molecule
compound, which is orally available, has been identified
for the prevention and treatment of UTIs (125).

Galactosides
In line with this mannoside work, recent structure-based
drug design efforts have resulted in the development of

glycomimetic inhibitors of the FmlH adhesin from the
Fml/F9 pilus involved in UPEC persistence during blad-
der inflammation (Fig. 3F) (33, 46). These high-affinity
aryl galactosides are able to competitively block bind-
ing of the FmlH to its endogenous ligand in vitro, in
in vivo murine models of UTI, and in ex vivo binding
assays using healthy human kidney tissues (33). This
study provides further evidence for the utility of the de-
velopment of ligand mimetics for efficacious antivirulence
strategies.

Pilicides
Pilicides are compounds capable of disrupting pilus bio-
genesis (126). A pipeline of pilicide development on a
bicyclic 2-pyridone base structure has been established,
and pilicides have been shown to reduce type 1, P, S, and
Dr pilus biogenesis (126–128). Mechanistically, struc-
tural studies demonstrate that the pilicide interrupts pi-
lus biogenesis by blocking the targeting of chaperone-
subunit complexes to the usher’s N terminus (126, 129).
Characterization of the effect of pilicides, specifically
ec240, found altered gene expression of non-CUP pilus
genes, including those involved in motility and iron ho-
meostasis, suggesting a broader antivirulence effect beyond
simply pilus biogenesis (127). Such compounds could
work in concert with ligand mimetics like mannosides or
galactosides and prove efficacious by targeting the for-
mation of the pilus (126) as a whole while also targeting
the specific function of the pilus type.

CONCLUSION
UTIs, encompassing a variety of infectious etiologies, rep-
resent a significant threat to human health, and work in
the field has broadened our understanding of the multi-
factorial set of determinants that contribute to coloniza-
tion, pathogenesis, and morbidity. Of great significance
to human health is the burden of antibiotic resistance in
urinary tract-colonizing microorganisms, which dictates
that the field place an increased emphasis on the devel-
opment of antivirulence strategies. This has led to the
targeting of the bacterial machinery necessary for estab-
lishing colonization and infection and competitive in-
hibition of bacterial adhesins critical in host-pathogen
interactions. Such work has harnessed the field’s knowl-
edge of UTI pathogenesis and promises to deliver relief to
those affected.
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