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Abstract: Robots execute diverse load operations, including carrying, lifting, tilting, and moving
objects, involving load changes or transfers. This dynamic process can result in the shift of interactive
operations from stability to instability. In this paper, we respond to these dynamic changes by utilizing
tactile images captured from tactile sensors during interactions, conducting a study on the dynamic
stability and instability in operations, and propose a real-time dynamic state sensing network by
integrating convolutional neural networks (CNNs) for spatial feature extraction and long short-term
memory (LSTM) networks to capture temporal information. We collect a dataset capturing the entire
transition from stable to unstable states during interaction. Employing a sliding window, we sample
consecutive frames from the collected dataset and feed them into the network for the state change
predictions of robots. The network achieves both real-time temporal sequence prediction at 31.84 ms
per inference step and an average classification accuracy of 98.90%. Our experiments demonstrate
the network’s robustness, maintaining high accuracy even with previously unseen objects.

Keywords: tactile sensor; robotic grasping; grasp stability prediction

1. Introduction

Given the increasing application of robotics across diverse domains, the demand
for efficient and stable interactions with unknown environments and humans has risen
significantly [1]. However, these interactions are often unstable, particularly when tasks
involve tools or when interacting with dynamic environments. Unlike humans, who
effortlessly adapt to such situations, robots generally lack these adaptive capabilities and
have not been traditionally designed to handle unstable interactions [2,3].

As shown in Figure 1, when a robot grasps an object like a cup, the initial grasping
state is stable. However, during human–robot interaction, the stability of the robot’s grip on
the cup can undergo a transition from a stable to an unstable state. For example, if a person
pours liquid into the cup, increasing its weight, it disrupts the robot’s previously stable
grasp. The dynamic change in weight significantly influences the stability of the robot’s
grip. Providing timely feedback to the human during such interactions is crucial. This
immediate feedback not only enhances the overall human–robot interaction, but also assists
in maintaining a coherent and safe collaboration. Keeping the human informed about the
changing dynamics of the grasping state allows for better coordination and adjustment,
contributing to a smoother and more effective interaction between the human and the
robot. Recent advancements in robotic manipulation [4,5] emphasize the need for adaptive
grasping strategies that can respond to changing conditions in real time. This provides a
strong rationale for our focus on detecting transitions from stability to instability, especially
in dynamic human–robot interaction scenarios.
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Figure 1. An example of a robot grasping, shifting from a stable grasp to an unstable grasp as the
mass of the grasped object increases. In the diagram, the grasping process is divided into two phases:
(1) Approaching the object, grasping it, and lifting it; (2) Incrementing the gripper’s load, resulting
in the gradual descent of the cup. The shift from a stable to an unstable grasp is visually captured
through images recorded by the tactile sensor GelSight.

However, in the field of robotic manipulation, most current research focuses on strate-
gies to achieve stable grasps on arbitrary objects, promptly identify grasp failures, and on
implementing preventive measures to avoid such failures [6], which overlooks the potential
changes in the manipulation state that may occur due to human involvement after the
initial stable manipulation. While significant progress has been made in slip detection and
control algorithms for object manipulation [7,8], there remains a gap in addressing the
dynamic nature of human–robot interaction, particularly in scenarios wherein the object’s
properties change during manipulation. This limitation is particularly evident in collabora-
tive tasks wherein humans and robots interact closely, potentially altering the conditions of
the manipulated object. Some researchers, exemplified by Yang et al. [2] and Lu et al. [9],
have ventured into addressing this issue, focusing on the challenge of instability in human–
robot interaction from the perspective of robot controller development, and the quest
for effective solutions is still ongoing. Subsequent efforts by Rubert et al. [10] involve
the utilization of mathematical and physical models encompassing geometry, kinematics,
and dynamics to calculate stable grasps, but these models face challenges in transferring
seamlessly to the real world, encountering difficulties in accurately representing physical
interactions between a manipulator and an object. Additionally, Fang et al. [11] introduced
an innovative approach by utilizing visual information, presenting a visual-guided robotic
system specifically engineered for achieving stable object grasping. It is noteworthy that
prevailing solutions to instability are often predefined, incorporating methods such as
direct visual observation or the consideration of specific variables, like trajectory [12],
to tackle this challenge.

With the continuous advancement of tactile sensors [13–15], like GelSight [16], DIGIT [17],
TacTip family [18], DenseTact [19], and GelFinger [20], the trend of detecting manipulation
stability based on tactile information is gaining momentum. For example, Chen et al. [21]
provided a comprehensive overview of tactile sensors for friction estimation and incipi-
ent slip detection, highlighting the diversity in sensor technologies, including capacitive,
piezoelectric, and optical sensors. Similarly, the work by Wang et al. [22] discussed the ap-
plication of the PapillArray optical tactile sensor for incipient slip detection, demonstrating
the effectiveness of learning-based methods for enhancing robotic gripping performance.
James et al. [23] engineered a biomimetic optical tactile sensor for rapid slip detection.
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Veiga et al. [24] introduced a novel slip prediction method to achieve stable object manipu-
lation, and Calandra et al. [25] monitored incipient slip to achieve stable grasps. Informed
by comprehensive surveys and case studies in diverse robotic environments [26,27], we aim
to explicitly address the need for robust, real-time stability detection in various settings,
including those involving human–robot collaboration. However, these studies primarily
focus on detecting grasping stability during the lifting phase (see the phase of grasping ob-
ject in Figure 1), rather than within the phase of human–robot interaction. Therefore, in this
paper, we comprehensively address the impact of grasping position, applied force, and fluc-
tuations in the object’s weight on grasping stability during human–robot interaction. Our
primary objective is to provide corrective reminders for humans when the robot shifts
from stable manipulation to an unstable state based on tactile sensing, enabling humans to
conclude the interaction. The primary contributions of this paper include the following:

(1) Division of stable/unstable temporal zones. As shown in Figure 2, we explicitly
introduce the stable/unstable critical point, demarcating the boundary between the
stable and unstable temporal zones. Unlike other methods that primarily focus
on adjusting the stability of the grasping process, we recognizes the grasping state
transitions from stable to unstable due to external disturbances, even when it is initially
in a stable state.

(2) Spatio-temporal information. The dynamics of human–robot interaction are intricate,
and relying on a single frame for state change prediction is suboptimal. Therefore,
we employ a sliding window to sample consecutive frames, harnessing temporal
information to enhance prediction accuracy.

(3) Stable/unstable prediction. We propose a real-time dynamic state sensing network
tailored for predicting changes in the robot’s state through analysis of a tactile sensing
dataset. This model provides instantaneous feedback to humans during human–
robot interaction, thereby improving the overall smoothness and effectiveness of
collaboration between humans and robots. The network achieves both real-time
temporal sequence prediction, with an inference step duration of 31.84 ms, and an
impressive average classification accuracy of 98.90%.

Temporal

Stable Temporal Zone Unstable Temporal Zone

Figure 2. Description of stable and unstable temporal zone. During the human–robot interaction in
Figure 1, when a robot transitions from a stable to an unstable grasping state, the temporal region
between the stable state and the vicinity of the stability threshold is referred to as the stable temporal
zone. Beyond this threshold, slipping occurs, marking the entry into an unstable state.
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2. Related Work

Tactile sensing plays a crucial role in robotic manipulation [28]. Traditional tactile
sensors measure the deformation of surfaces under pressure to obtain tactile information
during interaction [29]. However, with the advancement of new materials, an array of
novel tactile sensors has been designed, expanding the application in robot manipulation
tasks. This includes soft visual-based tactile sensors that mimic human skin, providing
tactile sensing capabilities closely resembling those of humans. Simultaneously, the rapid
development of deep learning has made visual-based tactile sensors combined with deep
learning methods increasingly popular [30]. This integration facilitates smoother and
more effective interactions between humans and robots. Hence, we will introduce some
previous works on visual-based tactile sensors and deep learning methods in human–robot
interaction, respectively.

2.1. Visual-Based Tactile Sensors

In visual-based tactile sensors, images of the deforming sensing surface are captured
to extract tactile features [31]. Typically, this soft sensing surface is fitted with markers
or pins on its inner side, and the camera records the displacements of these markers or
pins [32,33]. Alternatively, some sensors detect the imprints left by external objects on
the sensing skin [34–36]. This approach requires a larger sensor form factor to house the
camera, its lighting, and to maintain the necessary distance from the sensing surface for an
optimal view.

Van Duong et al. [37] introduced TacLINK, a large-scale tactile sensing system de-
signed for robotic links. TacLINK can be assembled into a complete tactile sensing robot
arm, offering scalability in size, durability, and cost-effectiveness, while delivering high
performance. This versatility makes it suitable for designing robotic arms, prosthetic limbs,
humanoid robots, and more. Xu et al. [38] presented a prototype that captures both visual
and tactile data through a fusion of vision and tactile information, aimed at assessing the
overall quality of flexible materials. Kara et al. [39] developed a vision-based surface tactile
sensor to characterize and identify the sensitivity required for the reliable detection of
polyps. Lin et al. [40] proposed GelSplitter, a novel framework featuring a multi-modal
visual tactile sensor with synchronized multi-modal cameras, designed to mimic a more
human-like tactile receptor.

2.2. Visual-Based Tactile Sensors in Human-Robot Interaction

Visual-based tactile sensors serve a dual purpose: they not only offer tactile feedback
to enhance robotic manipulation capabilities but also provide tactile information, such as
sensing the texture of objects, to convey a human-like sense of touch [41]. This additional
information enhances communication between humans and robots, enabling humans to
make informed and reasonable actions during human–robot interaction.

During human–robot interaction, Huang et al. [42] presented a robotic system equipped
with a fully soft and inherently safe tactile interface. This interface, sized appropriately for
interaction with human upper limbs, delivered detailed tactile sensory data via depth cam-
era imaging of the soft interface. This innovative design empowered the robot to react to
pokes from a human finger, adjusting its pose in response to tactile input. Agarwal et al. [43]
pioneered the development of the first comprehensive optical tactile simulation system
for a GelSight [16] sensor. This system, utilizing physics-based rendering techniques,
delivered high-resolution, compact, and cost-effective data. It proved instrumental for
achieving precise in-hand manipulation and facilitating human–robot interaction. Andrus-
sow et al. [44] presented a pioneering soft vision-based tactile sensor named Minsight,
designed to emulate the size and shape of a human fingertip. This sensor was used to
generate high-resolution maps of 3D contact force by combining deep learning methods.
The experimental results underscored Minsight’s ability to furnish robots with detailed
fingertip touch sensing, a crucial element for achieving dexterous manipulation and facili-
tating physical human–robot interaction.
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However, the previously mentioned visual-based tactile sensors primarily emphasize
providing high-resolution tactile information, overlooking considerations for the robot’s
state change. In this paper, we specifically address the transition of the robot’s state from
an initial stable state to an unstable state based on tactile information gathered from tactile
sensors during human–robot interaction, which is for the development of a new method for
detecting slippage. This approach aims to alert humans to anticipate changes, promoting
more informed and deliberate interactions.

2.3. Visual-Based Tactile Sensors with Deep Learning

With the rapid development of deep learning, an increasing number of researchers
are exploring the integration of deep learning methods with visual-based tactile sensors.
The goal is to deliver real-time sensing information and appropriate interaction methods
between humans and robots. Substantial evidence suggests that leveraging deep learning
methods can significantly enhance the performance of human–robot interactions [45,46].
To date, the majority of deep learning methods are constructed upon foundational archi-
tectures rooted in convolutional networks, with notable examples including VGG [47],
ResNet [48], and DenseNet [49], etc.

Deep learning methods applied in the field of human–robot interaction signify ad-
ditional effective applications built upon foundational network architectures. For exam-
ple, Ding et al. [50] employed the TacTip [18] optical tactile sensor and trained a neural
network to predict the locations and angles of edges when in contact with the sensor.
Sferrazza et al. [33] designed a visual-based tactile sensor and employed an artificial deep
neural network to execute tactile sensing tasks with high accuracy, particularly for a specific
indenter. The sensor exhibited spatial resolution and sensing range comparable to the
human fingertip. Subsequently, he extended the work by reconstructing the distribution
of three-dimensional contact forces. This was achieved through training a customized
deep neural network entirely on simulation data, showcasing promising generalization
capabilities to previously unseen contact conditions [51]. Takahashi et al. [52] presented a
deep neural network that estimates tactile properties, such as slipperiness or roughness,
solely from visual perception. This model extended an encoder–decoder network, with the
latent variables encompassing both visual and tactile features. The outcomes of these works
serve as compelling evidence showcasing the effectiveness of incorporating deep learning
methodologies in the field of robotic manipulation.

However, our method distinguishes itself from previous methods in two key aspects.
Firstly, we comprehensively leverage spatial–temporal information by utilizing consecu-
tive frame samples from a video as inputs to the classification model. This ensures that
the model’s classification accuracy is not solely reliant on a single frame, enhancing its
robustness to temporal dynamics. Secondly, we employ the convolutional neural network
(CNN) [53] framework to extract spatial features. The features extracted by the CNN are
then fed into a sequential model such as long short-term memory (LSTM) [54] for tempo-
ral processing. In time series forecasting, the sequential model is typically employed to
capture long-term dependencies in the data. This enables these components to adapt their
internal states based on different segments of the time series, allowing for the retention and
omission of specific information. Ultimately, this method facilitates real-time feedback on
the robot’s state changes, providing adaptability to dynamic scenarios.

3. Preliminary Work
3.1. Robotic Platform

As shown in Figure 3, we set up a six degrees-of-freedom (DOF) robot arm, manufac-
tured by JAKA Robotics (Simpang Ampat, Malaysia) and referred to as JAKA MiniCobo.
At the end of the robot arm, we fix a two-jaw parallel gripper (PGE-50-26 by DH-Robotics
(Shenzhen, China)) for grasping tasks. We then replace original gripper fingers with 3D
printed fingers made of polylactic acid (PLA) material, facilitating the integration of tactile
sensors. The tactile sensors (GelSight Mini) is produced by GelSight (Waltham, MA, USA),
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which is a soft, high-resolution tactile sensor that mimics human skin to sense the shape
of an object on contact, accurately capturing the surface topography (see Figure 1). These
tactile sensors are seamlessly connected to a computer, transmitting captured images for
further analysis and processing.

Robot Arm

Tactile Sensors

Parallel Gripper

RGB-D Camera

RGB Camera

Computer 

Figure 3. Robotic platform. It includes a 6-axis robot arm (JAKA MiniCobo by JAKA Robotics),
a two-jaw parallel gripper (PGE-50-26 by DH-Robotics), a RGB-D camera (Intel Realsense D435i;
Intel Corporation, Santa Clara, CA, USA), a computer based on LINUX (Ubuntu 20.04.6 LTS), and
two tactile sensors (GelSight Mini).

3.2. Data Collection from Tactile Sensors

We collect tactile data during human–robot interaction, starting from the time when
the robot completes stable grasp (see Figure 1). Numerous factors influence grasp stability,
including the position at which an object is grasped, the applied grasping force, and fluctu-
ations in the object’s weight. Consequently, we establish varying levels of grasping force
and diverse grasp positions for the same object, while also accounting for fluctuations in
the object’s weight.

As shown in Figure 4, there are five different cups, each featuring a unique handle
design. We categorize the handle into three segments: upper, middle, and lower. Employing
the gripper, we grasp various sections of the cup handle while maintaining an equal
distribution ratio of 1:1:1 (see Figure 5). The gripper force is adjustable, and we configure
four different force levels: 30%, 50%, 80%, and 100% of the gripper’s maximum capacity
(15 N, 25 N, 40 N, 50 N). The interaction duration with humans is limited to 6 s, aligning
with the acquisition time for each video from tactile sensors. Operating at a frequency
of 60 Hz, each video comprises 360 frames. We obtain a dataset of 21,600 frames from
a total of 60 videos, each possessing a spatial resolution of 320 × 240 pixels. For model
training, 48 videos are utilized, while the remaining 12 videos are reserved for testing.
Notably, we categorize these videos based on the objects being grasped, ensuring that each
object appears exclusively in either the training or testing dataset. Finally, every frame is
labeled as either a stable (0) or unstable (1) grasp, maintaining a balanced ratio of stable and
unstable instances to mitigate class imbalance. We define the stability of grasp as follows:
if the tactile images do not change throughout the video, we label each frame as stable (0)
and consider the object to be stably grasped. If the tactile image changes compared to the
first frame during the video, indicating that the object is unstably grasped, we label that
frame as unstable (1).
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Stable (0)Stable (0) Unstable (1) Unstable (1)

Figure 4. Data collection. Five cups with distinct handles are employed to collect tactile data,
incorporating varied grasp forces corresponding to each handle. It is observed that several factors
contribute to grasp stability, encompassing the grasping position, applied force, and fluctuations
in the object’s weight. Additionally, a notable trend emerged during image acquisition from tactile
sensors, revealing rotational occurrences in the detection of object features.

Upper

Middle

Lower

Gripper 

force

Figure 5. Grasping configuration. We partition the cup’s handle into three sections: upper, middle,
and lower. Subsequently, the gripper applies different grasping forces (15 N, 25 N, 40 N, 50 N) to
grasp each of the three parts separately.

4. Methodology

As shown in Figure 6, the design of the network framework takes into account the char-
acteristics of the collected dataset and aligns with the objectives of the task. The framework
primarily comprises two main components: convolutional neural networks (CNNs) [53],
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serving as the backbone for spatial feature extraction, and a sequential model designed to
capture temporal information.

Stable (0) Unstable (1) Unstable (1)

Temporal

T0 Tn TN

Sliding Window (k frames)

Backbone

k2242243 

k2242243 

Backbone

k1000 

k1000 

C
Sequential 

Model
k2000 

Stable

Or

Unstable

C Concatenate

Dense, Sigmoid

Figure 6. Overview of network framework. The temporal sequences from the left and right tactile
sensors (Gelsight Mini) serve as dual inputs for the classification network. Employing a sliding
window of size k frames, we traverse the tactile temporal sequences. Consequently, the input shape
of the network is defined as (k, height, width, channel), with k denoting the number of timesteps.
The corresponding label for each input is established by determining the maximum label value within
the k frames. We utilize pretrained models such as ResNet50 [48], ResNet101 [48], DenseNet121 [49],
etc., as the backbone for the network framework. We feed the output of the backbone into sequential
models, such as LSTM [54] or Transformer [55], to handle temporal sequences. However, the final
choice is contingent upon assessing their classification accuracy, allowing us to determine the most
suitable model for our specific application.

4.1. Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) are specialized neural networks designed
for processing data with spatial relationships, and widely applied across domains such as
image processing and time series prediction [56]. Their framework mainly includes three
parts: an input layer, an output layer, and multiple hidden layers. These hidden layers
contain convolutional layers that perform dot products between the input matrix and the
convolution kernel [57]. Considering the characteristics of our dataset, we will employ a
CNN framework to extract spatial features from the video sequences.

In the illustration of Section 3.2, each video is constrained to a duration of 6 s, compris-
ing a total of 360 frames. To input the network framework and utilize temporal information,
we employ a sliding window to sample the video (see Figure 6). Each frame, denoted
as I(Tn), is labeled either 0 or 1, representing stable or unstable, respectively. The corre-
sponding label G(Tn) is determined as the maximum value within the sequence [G(Tn),
G(Tn+1), · · · , G(Tn+k−1)]. We feed the temporal sequences with a shape of (k, weight,
height, channel) into distinct upper and lower channels of the network framework. k
denotes the number of timesteps. Following that, we utilize pre-trained ImageNet models
as the backbone to extract spatio features from these sequences. For instance, if we opt for
ResNet50 [48] as the backbone, we retain its fully connected layer, resulting in an output
shape of (k, 1000).

We then concatenate these two outputs to yield a final output shape of (k, 2000).
To maintain the timesteps dimension of the backbone module and the concatenated layer,
we employ the TimeDistributed layer (https://keras.io/api/layers/recurrent_layers/time_
distributed/ (accessed on 19 July 2024)), a valuable tool for handling time series data or
video frames. This layer enables the application of a single model to each input, simplifying
the management of data over time. Finally, the output, shaped as (k, 2000), is fed into
a sequential model. LSTM [54] and Transformer [55] are widely recognized as popular
sequential models, as detailed in the following section.

https://keras.io/api/layers/recurrent_layers/time_distributed/
https://keras.io/api/layers/recurrent_layers/time_distributed/
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4.2. Sequential Models
4.2.1. Long Short-Term Memory (LSTM)

Long short-term memory (LSTM) is a specialized form of recurrent neural network
(RNN) [54]. LSTM is adept at processing sequential data by retaining a memory of past
inputs. Unlike conventional feed-forward neural networks that analyze data in a single
pass, LSTM is tailored to manage data with temporal dependencies, such as time series.
The LSTM cell has several key components:

(1) Forget Gate ft
ft = σ(W f · [ht−1, xt] + b f ) (1)

(2) Input Gate it
it = σ(Wi · [ht−1, xt] + bi) (2)

(3) Output Gate ot
ot = σ(Wo · [ht−1, xt] + bo) (3)

where σ represents the sigmoid activation function, [ht−1, xt] denotes the concatenation of
the previous hidden state ht−1 and the current input xt, and W f , Wi, Wo are weight matrices,
while b f , bi, bo are bias vectors. The Forget Gate ft decides which information from the
cell state ct−1 should be discarded. The Input Gate it determines which new information
from c̃t (Equation (6)) should be stored in the cell state. The Output Gate ot regulates the
information that will be output as the hidden state ht (Equation (4)).

ht = ot · tanh(ct) (4)

ct = ft · ct−1 + it · c̃t (5)

c̃t = tanh(Wc · [ht−1, xt] + bc) (6)

where Wc is a weight matrix, bc is a bias vector.
Therefore, LSTM is designed to selectively remember or forget information over long

sequences, making it effective for capturing dependencies in time series or sequential data.

4.2.2. Transformer

Transformer is a neural network architecture based on attention mechanisms. Its
strength lies in efficiently processing data with temporal information, especially in the
context of time series data, by capturing the relationships across different positions in the se-
quence through global attention. The Transformer consists of several essential components:
self-attention mechanism, multi-head attention, and positional encoding.

The self-attention mechanism computes a set of attention scores for each element in
the input sequence. The attention scores are used to form a weighted sum, allowing the
model to focus on different parts of the input sequence differently.

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (7)

where Q, K, and V represent the query, key, and value matrices, respectively. dk is the
dimensionality of the key vectors.

To enhance the model’s ability to capture diverse patterns, multiple self-attention
mechanisms, or attention heads, are employed in parallel.

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (8)

where h is the number of heads, and WO is the output matrix.
Since Transformer lacks inherent sequential order information, positional encodings

(PosE) are added to the input embeddings to impart knowledge of the position of elements
in the sequence. Two separate formulas are employed for encoding positional information
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along both the even and odd dimensions. This is to ensure that the model can distinguish
between different positions effectively.

Even dimensions (2γ):

PosE(pos, 2γ) = sin
(

pos
100002γ/dmodel

)
(9)

Odd dimensions (2γ + 1):

PosE(pos, 2γ + 1) = cos
(

pos
100002γ/dmodel

)
(10)

where pos represents the position of the element in the sequence, γ represents the dimension
index, and dmodel is the dimensionality of the model.

These components collectively enable the Transformer to effectively model and process
sequential data, offering significant advantages in various applications.

As previously mentioned, we leverage both LSTM and Transformer architectures to
manage temporal data. Finally, the output from the LSTM or Transformer is directed into
a dense layer featuring a sigmoid activation function, culminating in the generation of
prediction results. The ultimate selection between LSTM and Transformer hinges on an
evaluation of classification accuracy, enabling us to identify the most fitting model for our
particular application.

Our method is designed to be both predictive and proactive in nature. By continuously
monitoring the tactile feedback, the system is capable of detecting early signs of instability.
This approach allows the system to provide an early warning and trigger corrective actions
before significant instability occurs. Specifically, our method analyzes subtle changes in the
tactile images to anticipate potential issues and maintain a stable grasp proactively.

5. Experiment and Results
5.1. Implementation and Experimental Setup

We conduct our experiments using Keras/TensorFlow on NVIDIA GeForce RTX 4090 GPU
servers. The binary crossentropy of Keras serves as the loss function for the entire network,
predicting a probability distribution over classes through a sigmoid function. For opti-
mization, we employ the Adam optimizer [58] with parameters (batchsize = 4, β1 = 0.9,
β2 = 0.999, ε = 0.001, learning rate = 0.001), without incorporating learning rate decay.
The network is trained for 100 epochs based on the collected dataset. A preprocessing step
is applied to the videos, resizing each frame to an image size of 224 × 224 pixels, which
aligns with the input shape requirements of pretrained ImageNet models.

We evaluate the performance of our method using classification accuracy as the met-
ric. This measure is determined by the ratio of the number of correct predictions to the
total number of predictions made. The emphasis on maintaining a balanced distribution
of data during the collection process contributes to achieving a high classification accu-
racy, showcasing the effectiveness of both the proposed classification network and the
collected dataset.

5.2. Results and Discussion

In accordance with Figure 6, there is a need to define specific hyperparameters and
network structures. Given a sliding window size of k = 8, our subsequent experiments
involve testing different pretrained ImageNet models to identify the most optimal back-
bone for our framework. In Table 1, we evaluate various pretrained models as backbones
in conjunction with LSTM [54] and Transformer [55]. Comparative analysis with Effi-
cientNetB0 [59], ResNet50 [48], and ResNet101 [48] reveals that the highest classification
accuracy is consistently achieved when DenseNet121 [49] is employed as the backbone
based on LSTM, reaching an accuracy of 98.90%. Therefore, we choose DenseNet121 as the
backbone, ensuring efficient classification without imposing a significant computational
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burden. This choice enables real-time feedback, with an inference time of 31.84 ms during
the human–robot interaction stage. The inference time of 31.84 ms refers to the time it
takes for our algorithm to process an entire video and produce a stability prediction, which
includes the time required for feature extraction, running the model, and outputting the
stability status.

Table 1. Classification accuracy percentage of different backbones on the test dataset.

Backbone Accuracy (%) ↑ Parameters ↓ Time (ms) per
Inference Step ↓ Size (MB) ↓

LSTM [54]

DenseNet121 [49] 98.90 8,126,801 31.84 62.72
EfficientNetB0 [59] 92.27 5,394,868 22.32 41.43

ResNet50 [48] 96.13 25,701,009 25.81 196.3
ResNet101 [48] 95.58 44,771,473 42.61 342.22

Transformer [55]

DenseNet121 [49] 96.69 9,242,921 33.56 66.99
EfficientNetB0 [59] 91.71 6,510,988 23.84 45.71

ResNet50 [48] 90.61 26,817,129 26.78 200.58
ResNet101 [48] 87.29 45,887,593 44.96 346.5

Note: LSTM [54] is configured with a single layer in the network framework of Figure 6, and parameters have an
output space dimensionality of 8, returning the last output in the output sequence. For Transformer [55], a single
layer is utilized, focusing solely on its encoder module. The parameters are set with 4 attention heads, each with a
size of 32 for both query and key. The bold formatting indicates the best accuracy.

In Table 1, we exclusively employ a single LSTM layer. To explore the influence of
the composition of LSTM layers, we conduct tests with varying numbers of LSTM layers
(see Figure 7). As the number of LSTM layers increases, there is a noticeable reduction
in classification accuracy (see Table 2). This observation suggests that an indiscriminate
increase in the number of layers may not necessarily lead to improved classification accu-
racy. The decrease in accuracy when using more than one LSTM layer can be attributed to
overfitting due to the increased model complexity, the vanishing gradient problem during
training, and the relatively small size of our dataset (60 videos), which is insufficient to
support deeper networks. Additionally, increased computational complexity with more
layers can lead to longer training times and suboptimal convergence. Hence, we ultimately
configure the LSTM with a single layer in the network framework.

LSTM 1 LSTM m

m LSTM layers

n_feature

n

n+1

n+k-2

n+k-1

T
im

e
step

s 2000

Figure 7. m LSTM layers. In the sequential model of Figure 6, the composition of LSTM layers varies.
When a single LSTM layer is employed, its output has a shape of [n_feature]. However, if multiple
LSTM layers are utilized, the final layer retains the shape [n_feature], while the output of preceding
LSTM layers takes the form [k, n_feature]. This is because the outputs of the additional LSTM layers
encompass all hidden states across each time step.
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Table 2. Classification accuracy percentage of varying numbers m of LSTM [54] layers on the
test dataset.

m Accuracy (%) ↑ Parameters ↓ Time (ms) per
Inference Step ↓ Size (MB) ↓

1 98.90 8,126,801 31.84 62.72
2 97.24 8,127,345 36.00 62.72
4 95.03 8,128,433 37.72 62.74

Note: The bold formatting indicates the best accuracy.

The aforementioned experiments primarily revolve around a sliding window size of
k = 8. However, the performance of the classification model is influenced by the choice
of sliding window size. Consequently, we proceed to assess the impact of various sliding
window sizes. In Table 3, the classification accuracy is presented for sliding window sizes
ranging from 2 to 8. The optimal result is achieved with a sliding window size of 8. Setting
the sliding window size too small or too large does not yield optimal classification accuracy
for the model.

Table 3. Classification accuracy percentage with varying numbers k of sliding windows on the
test dataset.

k Accuracy (%) ↑

2 88.15
3 94.66
4 94.03
5 94.39
6 94.76
7 96.77
8 98.90
9 95.45

10 96.49
11 95.78

Note: The bold formatting indicates the best accuracy.

To validate the efficacy of implementing our proposed method on a real robot platform,
we continuously output the grasp state (stable/unstable), as illustrated in Figure 8. Our
experimental results demonstrate that the proposed method effectively provides early
warnings of potential instability. By detecting subtle changes in tactile feedback before
significant instability manifests, the method allows for proactive adjustments to be made,
thereby maintaining a stable grasp.

Stable Stable Stable

Unstable Unstable Unstable

Figure 8. Grasp stability prediction on the robotic platform. The two-jaw parallel grippers, equipped
with GelSight tactile sensors, randomly grasp the cup’s handle, while the cup’s weight undergoes
continuous changes during interactions with humans.
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In this study, our method offers several advantages over existing methods that measure
grasp slip or stability:

(1) Unlike traditional incipient slip detection methods that react to the onset of slip,
as shown in the grasping object phase of Figure 1, our approach continuously monitors
tactile feedback to detect both subtle and significant changes in the human–robot
interaction phase of Figure 1. This allows for early detection and proactive adjustments.
As shown in Figure 8, this continuous monitoring successfully identified instability
before any significant slippage occurred, showcasing the method’s effectiveness in
early detection.

(2) Our method is designed to provide real-time feedback, predicting potential instability
before it fully manifests. This early warning system enables corrective actions to be
taken proactively, which is crucial in dynamic human–robot interaction scenarios.
In our results (Tables 1 and 2), we observed that our method could detect instability
transitions with an average inference time of 31.84 ms per video.

(3) Our method’s inference time is of 31.84 ms per video, which ensures rapid response
to potential instability. The continuous monitoring and comparison of tactile images
ensure high accuracy in detecting changes in grasp stability. Specifically, our method
achieved an accuracy rate of 98.9% in detecting instability transitions. Although a
direct quantitative comparison with other methods in terms of speed and accuracy
was not performed in this study, our results demonstrate that the proposed method
can effectively avoid unstable grasps.

Although we propose that our method can offer real-time feedback to improve
human–robot interaction, the present study does not include experiments wherein such
feedback is provided to humans. Consequently, while our results demonstrate the method’s
capability to detect instability, in the future, further research is necessary to validate the
effectiveness of real-time feedback in enhancing human–robot interaction.

6. Conclusions

In this paper, we introduce a real-time dynamic state sensing network that com-
bines DenseNet121 [49] and LSTM [54] to predict changes in the robot’s state during
human–robot interaction. Our approach begins with the creation of a tactile sensing
dataset, recorded during the interaction between humans and the robot, serving as a fun-
damental component for data-driven methods. To leverage temporal information, we
employ a sliding window with a size of 8 to sample the obtained videos, feeding them
into the classification network for real-time feedback on the robot’s state changes, enabling
humans to respond appropriately. Additionally, we validate the model’s generalization
by applying it to unseen objects, achieving an average classification accuracy of 98.90%.
In the future, our focus will be on providing corrective actions to enhance the smooth and
effective interaction between humans and robots. We plan to develop a fully closed-loop
control system that enables the robot to adeptly navigate the transition from a stable state
to an unstable state.
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