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Abstract: This study introduces an orbital monitoring system designed to quantify non-technical
losses (NTLs) within electricity distribution networks. Leveraging Sentinel-2 satellite imagery along-
side advanced techniques in computer vision and machine learning, this system focuses on accurately
segmenting urban areas, facilitating the removal of clouds, and utilizing OpenStreetMap masks
for pre-annotation. Through testing on two datasets, the method attained a Jaccard index (IoU) of
0.9210 on the training set, derived from the region of France, and 0.88 on the test set, obtained from
the region of Brazil, underscoring its efficacy and resilience. The precise segmentation of urban
zones enables the identification of areas beyond the electric distribution company’s coverage, thereby
highlighting potential irregularities with heightened reliability. This approach holds promise for
mitigating NTL, particularly through its ability to pinpoint potential irregular areas.

Keywords: orbital monitoring system; non-technical losses (NTLs); electricity distribution networks;
Sentinel-2 satellite imagery; computer vision; urban areas segmentation

1. Introduction

Measuring total losses in electricity distribution, resulting from the difference between
energy injected into the distributor’s grid and energy actually supplied to regulated con-
sumers, excluding energy allocated to free consumers, is an inherent challenge throughout
the transformation, transport, and distribution process of this vital resource. When these
losses reach significant levels, they impose additional demand, ultimately burdening reg-
ulated consumers for electricity generation. In general, the long-term marginal cost of
generation is substantially higher than investments associated with reducing distribution
losses [1]. Therefore, it is the responsibility of sector stakeholders to minimize these losses
in order to optimize system efficiency and, consequently, provide benefits to society.

Non-technical losses (NTLs) in electricity distribution refer to a portion of total losses
unrelated to technical factors during energy supply to consumer units. These losses are defined
as the energy consumed by clients that are not billed by the utility [2]. They encompass issues
such as theft, measurement inaccuracies, billing process issues, and the absence of metering
equipment [3]. They can be categorized into three main components: commercial losses,
related to measurement failures in regular consumer units; losses due to consumption from
inaccessible clandestine connections, caused by unauthorized energy consumption without a
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formal contract, especially in restricted areas; and other technical losses, which are indirectly
caused by NTL and are pragmatically considered part of the former [4,5].

NTL stemming from theft, fraud, reading errors, measurement inaccuracies, and
billing discrepancies, are observed globally, especially in countries with low socioeconomic
indicators [6,7]. According to a report by ANEEL [1], in 2020, the total amount of NTL across
all Brazilian electric sector concessionaires amounted to BRL 8.4 billion. Several studies have
documented the diverse impacts of NTL, with the primary concern being revenue loss, often
resulting in utility companies transferring these costs to end consumers through tariffs [8,9].
Brazil’s vast expanse poses challenges for field surveillance. The electric distribution
company Light serves approximately 4.5 million consumer units (CUs), indicating a high
population density concentrated in urban areas, thus presenting a significant opportunity
for optimizing field inspection team deployment.

These losses result in significant revenue reductions and adversely impact grid reli-
ability [8,10]. NTL can overload transformers, thereby affecting the overall operation of
the power system. Additionally, they compromise the quality of electricity supply, leading
to issues such as voltage violations, infrastructure damage, blackout risks, and potential
threats to public safety [8–13]. Consequently, reducing NTLs will also decrease the physical
losses within the grid [14]. Furthermore, the costs associated with on-field inspections to
recover these losses must be considered. The low effectiveness of these inspections can
further escalate the costs related to NTL. Therefore, it is crucial for utilities to improve
their strategies in this area and enhance the success rate of future on-field inspections to
effectively recover revenue losses [2].

With recent technological advancements, modern techniques for detecting buildings and
urban areas can lead to results with a high degree of accuracy. Rule-based methods utilize
various properties of buildings, such as geometric, spectral, textural, contextual, and vertical
characteristics, to identify them in images [15]. In contrast, image segmentation methods
partition the scene into non-overlapping segments and identify buildings as objects of interest.
These techniques can achieve satisfactory results with moderate manual input [16,17].

Building upon the aforementioned, this study proposes the development of an orbital
monitoring system for urban area segmentation in Sentinel-2 satellite images, focusing
specifically on regions of Brazil. By analyzing images and geospatial data, we employ
computer vision techniques and machine learning algorithms to achieve this objective. The
automated delineation of urban areas enables energy companies to prioritize surveillance
efforts in regions with a higher risk of theft, thereby optimizing resource allocation and
enhancing efficiency in combating energy theft.

The concession area considered in the research exhibits significant economic hetero-
geneity and encompasses high-risk regions, which complicates the provision, maintenance,
and operation of the electricity supply service by operational teams. These regions are
designated as areas with severe operating restrictions (ASROs) [18].

The proposed method has applicability in various fields of study, such as urban
planning, deforestation monitoring, and monitoring the growth of urban areas, which is
the focus of this work. Therefore, we highlight the following contributions:

• An automatic computational method for identifying irregularities in urban areas; and
• A method based on public data, capable of directing the efforts of energy companies

to combat NTL, by identifying possible irregular areas, including ASROs.

The subsequent structure of this work is outlined as follows: In Section 1, we con-
textualize the present study in relation to related works. Section 2 details the developed
methodology, while Sections 3 and 4 present and discuss both quantitative and qualitative
results. We conclude the work in Section 5 with conclusions and suggestions for possible
future work. Significantly, the method shows promise, demonstrating efficient performance
in new regions and successfully generalizing to unexplored areas. It effectively identifies ur-
ban regions and, consequently, images beyond the coverage area of the electric distribution
company, indicating potential irregularities.
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Related Works

To provide a comprehensive overview of the evolution of methods developed for this
purpose, we will present related works to the topic addressed in this research. Land cover
classification is commonly addressed as a task of pixel categorization in the remote sensing
community [19].

In the method developed by [20], the authors employed a hybrid Convolutional
Neural Network (CNN) model to classify land cover using Landsat 8 images, achieving
an overall accuracy of 92.5%. Similarly, ref. [21] utilized a U-Net architecture to classify
high-resolution remote sensing data, achieving an overall accuracy of 94.6%. In a separate
investigation, ref. [22] utilized a methodology based on Deep Learning (DL) to conduct
land cover classification using Sentinel-2 satellite data, resulting in an overall accuracy
of 97.8%.

In the study proposed by [23], a multitask-learning framework for classifying urban
land cover was proposed, employing high-resolution images, achieving an overall accuracy
of 91.3%. Meanwhile, in the study proposed by [24], a DL-based method is utilized to
detect changes in land cover from multi-temporal Landsat 8 data, achieving an overall
accuracy of 96.7%.

Traditional machine learning classifiers such as decision tree (DT), support vector ma-
chine (SVM), and random forest (RF) have been employed for land cover classification [25].
Comparative studies have highlighted the superiority of DL-based approaches over tra-
ditional machine learning methods in terms of accuracy [22,25], achieving the highest
overall accuracy of 97.8% for Sentinel-2 data. These approaches encompass a variety of DL
architectures, including CNNs, deep belief networks, and attention-based models.

Land cover analysis is commonly conducted through remote sensing, where data such
as satellite images play a central role. This approach enables monitoring changes in land
cover, but the accuracy of the results is subject to variables such as the type of sensor used,
image resolution, and classification algorithm employed.

The implementation of DL techniques represents a remarkable advancement in the
effectiveness and quality of region monitoring, providing highly accurate classifications
across various datasets and scenarios. These innovative approaches stand out for their
contribution to enhancing environmental monitoring, resource management, and disas-
ter prevention. However, it is important to note that these methods require substantial
computational resources and comprehensive training datasets. In this context, to mitigate
the challenge of large databases, the present research focuses on investigating the U-Net,
exploring various synthetic data augmentation operations and diverse encoders. Thus,
optimizing hardware resources with the combination of hyperparameters that results in a
robust and versatile method.

Our approach introduces an orbital monitoring system that utilizes Sentinel-2 satellite
imagery for the automated segmentation of urban areas, specifically tailored to regions in
Brazil. By integrating computer vision techniques and machine learning algorithms, we
aim to enhance surveillance capabilities and prioritize resource allocation in areas prone to
NTL. This methodology facilitates the identification of irregularities, such as energy theft and
unauthorized connections, and also optimizes operational efficiencies for electric distribution
companies. Thus, our study aims to contribute to the mitigation of NTL, thereby improving
overall grid reliability and reducing financial burdens on regulated consumers.

2. Materials and Methods

Our methodology comprises four main steps: (i) data acquisition from Sentinel-2
images available in the Copernicus repository [26]; (ii) training of a DL architecture, specifi-
cally the U-Net; (iii) construction of a land cover area using public data provided on the
distributor’s geographic database (BDGD) portal [27]; and, finally, (iv) evaluation of the
results obtained. Figure 1 illustrates the workflow followed.
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Figure 1. Proposed method.

2.1. Image Acquisition

The dataset used for model training was the MultiSenGE [28]. Among the datasets
found in the literature, MultiSenGE stands out as the only semantic segmentation dataset
utilizing Sentinel-2 images with high precision and quality annotations [29], in addition
to featuring a large number of images for training. Although the dataset pertains to the
region of France, it is expected that the model can extrapolate the results so that urban
areas are correctly segmented. Another prominent factor in using MultiSenGE corresponds
to seasonal changes, since this dataset includes images from all four seasons, ensuring that
the model can accurately segment urban areas, regardless of seasonal variability. Finally, it
is worth noting that no public dataset meeting the described characteristics was found for
regions of Brazil.

2.1.1. Test Dataset

To deepen the analyses of the proposed method, we chose to focus on a specific region,
selecting the city of Rio de Janeiro. This region offers rich detail, enabling comprehensive
validation of our methodology through a wide range of tests.

Comparing the regions of Rio de Janeiro and the area of France covered by the Multi-
SenGE dataset visually reveals significant differences in geographical characteristics. Rio de
Janeiro’s urban landscape is characterized by its rugged mountainous terrain, resulting in
irregular urban layouts and varying elevation levels. In contrast, the area of France covered
by the MultiSenGE dataset typically exhibits flatter or gently rolling terrain, fostering a
more uniform urban structure and street layout.

Utilizing a Sentinel-2 image captured on 22 July 2023, we observed coverage of
various regions, including the city of Rio de Janeiro, within a single tile (the specific
spatial unit of image data captured by the Sentinel-2 satellite), as depicted in Figure 2.
Upon analysis, we identified an extensive maritime area, prompting us to exclude it from
consideration. The ROI was empirically defined to encompass a relevant built-up area,
as depicted in Figure 2. Covering an area of 4000 km², the ROI’s coordinates [629,869.0,
7,446,400.0, 709,178.0, 7,491,689.0] were delimited using the spatial reference system CRS:
EPSG:32723—WGS 84/UTM zone 23S.

The land cover masks were generated based on OpenStreetMap (OSM) annota-
tions [30], which serve as the Ground Truth for the test image set. By leveraging spe-
cific OSM tags such as “residential”, “industrial”, “commercial”, “airport”, “road”, and
“building”, we identified corresponding regions for these categories. These tags offered
a comprehensive and precise representation of various land cover types, facilitating the
accurate creation of masks for analysis. Following the automated generation of preliminary
annotations, a meticulous manual correction process was conducted to enhance annotation
accuracy and quality. The process involved two human annotators with expertise in the
field, who manually corrected the annotations using specific tools assisted by Sentinel-2
images. Figure 3 visually demonstrates this process, showcasing the Sentinel-2 Tile, prelim-
inary annotations highlighted in yellow, and manual corrections depicted in red and blue.
The red markings represent regions where the yellow annotations were incorrectly marked,
while the blue markings indicate areas missed by the yellow annotations.
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Figure 2. Delimitation of the region of interest (ROI) in the Metropolitan Area of Rio de Janeiro.

Figure 3. Result of the annotation process with OSM along with manual corrections. (a) RGB image
of a region in Rio de Janeiro. (b) RGB image with OpenStreetMap pre-annotations shown in yellow.
(c) The RGB image with human-made corrections is shown in red and blue

The final outcome is a comprehensive and accurate dataset representing urban areas
in the Rio de Janeiro region. Figure 4 illustrates an example of the image mask generated
from urban annotations. To construct it, an image acquired on 22 July 2023 was utilized.
This dataset comprises 2232 256 × 256-pixel chips, each containing information for the
12 Sentinel-2 bands with a spatial resolution of 10 m.
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Figure 4. Rio de Janeiro region with annotated and corrected urban areas (urban area in black).

2.1.2. Image Preprocessing

For each image from the Sentinel-2 mission, both the training and testing sets possess
the following properties:

• Different spatial resolutions: These resolutions are categorized into three levels: 60 m,
20 m, and 10 m.

• Images for 12 bands: Each captures specific information about the Earth’s surface.
These band images include multispectral data ranging from near-infrared to ultraviolet,
providing a wide range of information for detailed analyses.

• Information about regions with clouds and/or similar features such as ice, through
the Sent2Cor tool [31].

Accordingly, before initiating the model training process proposed in this study,
we applied a reprojection procedure to the images. This process aims to standardize
the resolution of all bands to 10 m, ensuring consistency by eliminating areas that may
negatively impact the final result. Finally, as part of pre-processing, we remove regions
with cloud cover using the information contained in the Sentinel-2 scene classification
map (SCL) file. SCL is a derivative product that classifies each image pixel into one of
11 classes, including the cloud class. This process allows for the automatic identification
and exclusion of areas affected by clouds, ensuring that only high-quality data is used in
semantic segmentation. For greater accuracy, we used a confidence threshold to ensure that
partially cloudy or cloud-shadowed pixels were also removed [31].

2.1.3. Impact of Spatial Resolution

This study utilizes Sentinel-2 satellite imagery with a 10-m spatial resolution, which is
suitable for urban area detection. However, smaller built-up areas could be more effectively
detected with higher-resolution imagery. Using satellite images with resolutions finer
than 10 m would likely enhance the detection of isolated constructions, as these smaller
structures would be more discernible in higher-detail images. Consequently, the proposed
method’s accuracy could improve with such data.

Despite these potential benefits, we chose to use Sentinel-2 imagery primarily because
it is freely available. In contrast, higher-resolution satellites often incur significant costs.
Additionally, Sentinel-2 offers a favorable revisit time, capturing images of the same location
every 5 days. This frequent data acquisition is crucial for ongoing monitoring and timely
updates, making Sentinel-2 a practical choice for our study’s objectives.

2.2. Urban Area Segmentation

The architecture of CNN U-Net was proposed by Ronneberger et al. [32] for semantic
segmentation purposes. The structure of the U-Net is characterized by an inverted “U” shape,
consisting of an encoder and a decoder [32]. The original construction of this network consists
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of 23 convolutional layers interleaved by ReLU and maximum pooling operations. The
architecture obtains its name because it was conceived in a structure that resembles the
letter U. The descent is a path of contraction, and the ascent is a path of expansion.

The encoder, responsible for feature extraction, consists of convolutional layers followed
by pooling operations for dimensionality reduction. The equations associated with this stage
involve convolutions (Conv) and pooling operations (Pool), as depicted in Equation (1).

features = Pool(Conv(Input)) (1)

The decoder, responsible for reconstructing the segmented image, consists of upsam-
pling layers followed by convolution operations. The equations include the upsampling
(UpSample) and convolution (Conv) operations, as illustrated in Equation (2).

segmentation = Conv(UpSample) (2)

The loss function commonly used in U-Net training is generally the cross-entropy
(CE), which measures the discrepancy between the network’s prediction and the true
segmentation mask as depicted in Equation (3).

CE(ypred, ytrue) = −∑ ytrue log(ypred) (3)

In summary, the U-Net achieves effective image segmentation by learning to map
inputs to corresponding segmentation masks through the combination of encoding and
decoding layers, utilizing ReLU activation functions, and minimizing cross-entropy as the
loss function during training.

Widely employed in various image segmentation tasks, the U-Net has been utilized for
segmenting cells in medical images, objects in satellite images, and structures in microscopic
images, among others. Its ability to precisely segment images with high efficiency renders
it a powerful tool in a broad range of applications where object segmentation is crucial [32].
Furthermore, the U-Net demonstrates high adaptability, as it can be constructed using
established convolutional neural network backbones such as ResNet, EfficientNet, Vision
Transformer, and others [32,33].

Network Training

During the training phase of the U-Net architecture, a meticulous approach was
adopted to optimize the performance of the neural networks. A wide range of parameters
was experimented with to enhance the model’s effectiveness. Among the key hyperparam-
eters adjusted, the following are highlighted:

• Learning rate (LR):

– 1 × 10−4.
– 1 × 10−3.

• Loss function (LF)):

– Dice loss.
– Cross-entropy loss with and without weights.
– BCE With logit loss.

Other hyperparameters, such as batch size and input image dimensions, were adjusted
based on data availability and hardware resources. The specific configurations of these
hyperparameters may vary depending on the nature of the dataset and the capabilities
of the system used for training. For the problem at hand, images with dimensions of
256 × 256 were chosen, as provided in the dataset.

Additionally, data augmentation operations were applied to diversify and increase
the data samples, aiming to enhance the model’s ability to generalize more robustly. These
augmentations were exclusively applied to the training set and can be categorized into
two classes: spatial-level transformations and pixel-level transformations.
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• Spatial-level transformations:

– Vertical and horizontal flipping.
– Random cropping.

• Pixel-level transformations:

– Blurring.
– Channel shuffling.
– Random brightness and contrast adjustment.

As described in Section 2.1, each study image comprises 12 bands containing infor-
mation from various spectra. In this context, several band combinations were tested to
determine the one with the best performance in the task of detecting built-up areas. Addi-
tionally, we varied the U-Net backbones with different encoders, along with their respective
variants. The following combinations stand out.

• Specific Band Combinations:

– RGB.
– NIR (near-infrared).
– SWIR (shortwave infrared).

• Encoders:

– EfficientNet.
– MixVisionTransformer.
– ResNet.

All experiments involved the use of pre-trained weights provided by ImageNet [34].
This approach aims to find the optimal band configuration and the most suitable encoder
architecture for efficient detection of built-up areas, providing a comprehensive analysis of
the different combinations and architectures used in the experiments.

Overall, choosing hyperparameters is not a trivial task, and our method tested various
possible combinations to mitigate data effects. Below, we outline the main motivations
behind the hyperparameter choices:

• Learning rate (LR): We opted to test two learning rates: 1 × 10−4 and 1 × 10−3. The
1 × 10−4 rate was chosen to ensure fine and stable adjustment of the network weights,
while 1 × 10−3 was tested to accelerate initial convergence, allowing rapid exploration
of promising parameter spaces.

• Loss function (LF): We tested three loss functions that best adapt to the segmentation
problem, each with its specificities:

– Dice loss: Handles imbalanced classes well by maximizing intersection over
union of predictions and ground truth.

– Cross-entropy loss (with and without weights): Evaluates pixel classification
effectiveness, with the weighted version helping to mitigate the impact of
imbalanced classes.

– BCE With logit loss: Effective in binary classification problems, with embedded
sigmoid function for numerical stability.

• Batch size and input image dimensions: We opted for 256 × 256 images as provided in
the dataset, to balance adequate resolution for precise detection and computational effi-
ciency. The batch size was adjusted based on data availability and hardware resources.

• Data augmentation: We explored combinations of different techniques, both for spatial
and pixel-level operations, to increase the diversity and quantity of data samples.

• Band combinations: We investigated isolated band combinations that yielded the best
results for the technique used, utilizing all available bands;

• Encoders: We tested encoders with different properties to investigate the best tech-
nique for the problem at hand. Choosing EfficientNet, ResNet, and MixVisionTrans-
former was due to their successful performance in other image segmentation tasks.
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• Finally, we used pre-trained weights provided by ImageNet to initialize our models,
leveraging previously acquired knowledge to enhance the efficiency and performance
of initial training.

2.3. Coverage Area

This section outlines the process by which the service area covered by a particular
energy concessionaire is measured. The coverage area was determined using the geographic
database of the distributor (BDGD), an essential component of the Regulatory Geographic
Information System for energy distributors in Brazil (SIG-R) [27]. Cartographic data are
provided in a geodatabase format (.gdb) per distributor, facilitating access and management
of geographic information. The BDGD Instruction Manual and Module 10 of the PRODIST
offer detailed guidance on the BDGD structure and the appropriate utilization of its entities
and fields [35].

In this project, geospatial data from power lines is utilized to delineate the coverage area
of the electrical network. The representation of the potentially covered area is achieved through
the establishment of a buffer zone encircling the transmission and distribution lines. This
buffer encompasses an additional spatial extent around the lines, serving as a safety margin
to assess and address potential impacts or associated activities. The primary objective of this
method is to identify geographical regions distanced from electrical infrastructure, where
occurrences of invasions or energy theft, known as NTL, are more likely. The dimensions of
the buffer zone surrounding the transmission and distribution lines significantly influence
the extent of the potentially covered area. A larger buffer leads to a broader coverage area,
thereby reducing the number of identified areas susceptible to invasion.

In Figure 5, the electrical coverage area with a 100-meter buffer applied to the low-
and medium-voltage lines of the BDGD is depicted. The areas covered by the lines are
highlighted in green, providing a clear visualization of the extent of electrical coverage in
the study area.

Figure 5. Electrical coverage area with a 100-meter buffer on the low- and medium-voltage lines of
the BDGD.

Integration of Urban Area Segmentation and BDGD

After segmenting the urban areas, we utilized BDGD data to generate a polygon delin-
eating the energy concessionaire’s coverage area. Next, we applied the urban segmentation
mask to this polygon, subtracting the segmented areas from the concessionaire’s coverage.
This subtraction unveils intrusion regions, with potential for irregular occupation and NTL,
enabling effective identification of suspicious areas to direct monitoring and regularization
efforts. It is important to note that the indicator of areas suggestive of invasion is based
solely on the subtraction of these polygons, and no other indicator is taken into account.

Figure 6 visually illustrates this process by depicting the overlay of the concessionaire’s
coverage polygon (highlighted by the areas outlined in green) with the identified urban
area mask highlighted in yellow.
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Figure 6. Coverage Polygon (in green) overlaid with Urban Area Mask (in yellow).

2.4. Evaluation of Results

Evaluating semantic segmentation models plays a crucial role in analyzing and com-
paring different neural network architectures for image segmentation tasks. These metrics
enable the assessment of the model’s performance and accuracy in identifying and delineating
objects of interest in an image. Among the most commonly used metrics for this purpose are
accuracy (Acc), precision, recall, F1 score, and intersection over Union (IoU) [36].

In a comprehensive manner, we present an automated method for detecting urban
areas that may exceed the coverage designated by the concessionaire, thus requiring
further analysis.

3. Results

We will provide a detailed presentation of the results obtained through the application
of the proposed methodology (Section 2). All experiments were conducted using hardware
with the following specifications: 62 GB RAM, NVIDIA RTX A5000 24 GB, and Intel(R)
Xeon(R) Gold 6240R CPU 2.40 GHz.

3.1. Definition of the Base Model

To initiate the training of the U-Net, numerous experiments were undertaken to
establish the initial configuration and optimize hardware utilization. For model training,
we only used the following classes: dense built-up (1), sparse built-up (2), specialized
built-up areas (3), specialized but vegetative areas (4), and large-scale networks (5), as
they contain the necessary information for the model to specialize in detecting urban
areas. These subclasses were combined to form a single class (urban area). It is worth
noting that our segmentation network has only two classes: “urban area” and “non-urban
area”. Additionally, images from the MultiSenGE dataset were randomly split into 70% for
training, 15% for testing, and 15% for validation.

The strategy initially involved defining the basic hyperparameters. In this regard, we
attempted to determine the learning rate (LR) and the loss function (LF) that exhibited the
best performance in our testing scenario.

• Learning rate (LR):

– 1 × 10−4.
– 1 × 10−3.

• Loss function (LF):

– Dice loss.
– Cross-entropy loss with and without weights.
– BCE With logit loss.

Due to the large number of possible experiments, a batch size (BS) of 64 was set.
Another factor influencing processing time directly is the number of epochs. Therefore,
we chose to run 50 epochs per experiment. We determined the optimal number of epochs
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through prior experimentation. The optimizer used was Adamax, with a scheduler with a
weight decay set at 0.001 and a patience of 15 epochs. The bands used were corresponding
to red, blue, and green (RGB). Finally, initial augmentations were applied, such as vertical
and horizontal flips.

Table 1 presents a summary of the metrics achieved in this testing phase, which aided
in defining the hyperparameters for subsequent experiments.

Table 1. Metrics of a network trained with parameter combinations (LF and LR).

Exp. LF LR Acc F1 IoU Precision Recall

1 Dice 1 × 10−4 0.9494 0.9257 0.8623 0.9032 0.9494
2 CE 1 × 10−4 0.9789 0.9591 0.9217 0.9402 0.9789
3 BCE 1 × 10−4 0.9301 0.9522 0.9089 0.9754 0.9301
4 Dice 1 × 10−3 0.9221 0.9104 0.8356 0.8996 0.9221
5 CE 1 × 10−3 0.9925 0.9580 0.9196 0.9259 0.9925
6 BCE 1 × 10−3 0.9165 0.9425 0.8917 0.9703 0.9165
7 CE wgt 1 × 10−3 0.8972 0.9359 0.8799 0.9783 0.8972
8 CE wgt 1 × 10−4 0.9724 0.9570 0.9178 0.9422 0.9724

The abbreviations CE, BCE, and CE wgt refer to cross-entropy loss, BCE with logit loss, and cross-entropy loss
with weights, respectively. Rows 7 and 8: The weights used in cross-entropy loss with weights are 0.7 for the class
of interest and 0.1 for the other class, respectively.

As shown in Table 1, based on the IoU metric, the best result was achieved for the
cross-entropy loss function, with an LR of 1 × 10−4. Figure 7 presents random results
obtained for the initial batch of the test set.

Figure 7. Network predictions for parameter variations (LF and LR) in two images. (a) Overlay of
prediction on the original image. (b) Ground truth. (c) Predictive mask.

As depicted in Figure 7, several errors are noticeable, highlighting the necessity for
improved outcomes. Specifically, while the segmentation network effectively delineates the
urban area located closer to the center, it demonstrates limitations in accurately detecting
the more peripheral urban regions. This discrepancy suggests a need for refinement in the
segmentation model. Initially, we considered all subcategories of “Urban Areas”, encom-
passing “Dense Built-Up”, “Sparse Built-Up”, “Specialized Built-Up Areas”, “Specialized
but Vegetative Areas”, and “Large-Scale Networks”. However, through a thorough exam-
ination and numerous tests, we recognized the potential for more promising results by
concentrating solely on the categories of “Dense Built-Up”, “Sparse Built-Up”, and “Special-
ized Built-Up Areas”, which denote significant urban areas. This determination stemmed
from empirical observations and previous experiments.

We repeated the experiment using only these three categories, as mentioned in [28].
Among the top-performing results highlighted in Table 1, employing the cross-entropy
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loss function and a learning rate of 1 × 10−4 exhibited the best performance. This led to
improvements in the numerical outcomes, as demonstrated in Table 2. Figure 8 presents
some visual results for the experiment described.

Table 2. Performance metrics after the reduction of classes using cross-entropy loss function and a
learning rate of 1 × 10−4.

Acc F1 IoU Precision Recall

0.9762 0.9644 0.9313 0.9528 0.9762

Figure 8. Network predictions after adjusting for training subcategories in two images. (a) Overlay
of prediction on the original image (left panel). (b) Ground truth (central panel). (c) Predictive mask
(right panel).

After defining the best hyperparameters (LR: 1 × 10−4; LF: CrossEntropyLoss; using
the standard ResNet18 encoder), further experiments were conducted. We detail each of
them as follows:

• Augmentations using only spatial-level transforms.

– Vertical flip (already used).
– Horizontal flip (already used).
– Random cropping.

• Augmentations using only pixel-level transforms.

– Blurring.
– Channel shuffling.
– Random brightness and contrast adjustment.

• All augmentation operations combined.

Table 3 presents the results of this set of experiments.

Table 3. Metrics of the network trained with different types of augmentation.

Augmentation Acc F1 IoU Precision Recall

Spatial Only 0.9231 0.9476 0.9007 0.9736 0.9231
Pixel Only 0.8836 0.9194 0.8513 0.9584 0.8836

All 1 0.9766 0.9521 0.9087 0.9289 0.9766
1 Pixel and Spatial augmentation combined.

Table 3 reveals that the outcomes from alternative data augmentation approaches did
not yield significant positive effects, as evidenced by the absence of improvement in the
results. Consequently, we proceeded with training using exclusively spatial augmentation
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operations. Among the considerations, we emphasize the inadequacy of the chosen aug-
mentation techniques for the specific problem context, the potential introduction of noise
or undesired distortions in the images during the augmentation process, or the mismatch
between the selected techniques and the problem’s inherent nature. These factors may
hinder the augmentation operations from enhancing the model’s generalization capacity,
thereby resulting in a lack of improvements in the outcomes.

After presenting the outline earlier, we conducted additional experiments involv-
ing various combinations of bands. These experiments were conducted considering the
following band variations:

• Experiments considering band variations:

– All bands.
– RGB, NIR, and SWIR.

Table 4 presents the results of these band combinations.

Table 4. Metrics of a network trained with different band combinations.

Bands Acc F1 IoU Precision Recall

RGB, NIR and SWIR 0.9983 0.9507 0.9063 0.9076 0.9983
All Bands 0.9933 0.9524 0.9093 0.9149 0.9933

Based on the results presented in Table 4, we note that, up to this point, there have
been no significant performance improvements compared to previous experiments. Specif-
ically, the IoU metric considered the most relevant indicator, did not show a significant
improvement compared to the best result previously achieved. Given this finding, we have
decided to maintain the experimental settings that provided the best performance so far: a
learning rate (LR) of 1 × 10−4 and a loss function (LF) of cross-entropy loss, as illustrated
in Figure 8.

The remaining experiments continue using the U-Net with different encoders (ResNet,
EfficientNet, and Mix-vision-transform). In Table 5, we present the corresponding values.

Table 5. Metrics of the network trained with different types of encoders.

Exp. Encoder Acc F1 IoU Precision Recall

1 EFFNet-b0 0.9942 0.9540 0.9113 0.9171 0.9942
2 EFFNet-b1 0.9179 0.9417 0.8901 0.9669 0.91795
3 EFFNet-b2 0.9129 0.9369 0.8817 0.9624 0.9129
4 EFFNet-b3 0.9115 0.9441 0.8944 0.9792 0.9115
5 EFFNet-b4 0.9350 0.9460 0.8979 0.9573 0.9350
6 EFFNet-b5 0.9584 0.9406 0.8883 0.9236 0.9584
7 EFFNet-b6 0.9302 0.9537 0.9117 0.9785 0.9302
8 EFFNet-b7 0.9285 0.9519 0.9085 0.9767 0.9285
9 MVT-0 0.8979 0.9365 0.8808 0.9787 0.8979

10 MVT-1 0.8717 0.9247 0.8603 0.9849 0.8717
11 MVT-2 0.9264 0.9477 0.9007 0.9700 0.9264
12 MVT-3 0.9407 0.9588 0.9210 0.9777 0.9407
13 MVT-4 0.9307 0.9551 0.9141 0.9808 0.9307
14 MVT-5 0.8800 0.9291 0.8681 0.9844 0.8800
15 ResNet34 0.9572 0.9587 0.9210 0.9603 0.9572
16 ResNet50 0.9436 0.9591 0.9206 0.9752 0.9436
17 ResNet101 0.9160 0.9461 0.8980 0.9784 0.9160
18 ResNet152 0.9217 0.9494 0.9039 0.9789 0.9217

The abbreviation MVT refers to Mix-vision-transform. EFFNet refers to EfficientNet.

Finally, after analyzing the experiments detailed in Table 5, where we evaluated
the performance of the U-Net combined with various encoders, we chose to select the
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combination that yielded the best results for each one, bearing in mind that the ResNet18
encoder has already been tested in the initial experiments, as it is the default encoder:

- ResNet18
- ResNet34
- Mix-vision-transform-b3

Statistical Tests

To validate the choice of model hyperparameters, we opted to perform two statistical
tests. First, a one-way ANOVA [37] (Table 6) to compare the different loss functions,
i.e., Dice, CE, BCE, and CE wgt for a fixed LR of 1 × 10−4. This test will determine if there
are significant differences in performance metrics (Acc, F1, IoU, and ) between the loss
functions. Next, we performed an independent samples t-test [38] (Table 7) to compare
learning rates of 1 × 10−4 and 1 × 10−3, using the CE loss function, to verify if a specific
learning rate provides better performance. We chose to perform these two tests because they
are fundamental choices that were used throughout the methodology and were established
at the beginning of the experiment.

Table 6. ANOVA results for comparison between loss functions with LR of 1 × 10−4.

Metric F Statistic p-Value 95% Confidence Interval

Acc 15.24 0.0048 (adjusted) [0.93, 0.98]
F1 13.87 0.006 (adjusted) [0.92, 0.97]

IoU 12.54 0.0084 (adjusted) [0.86, 0.92]
Precision 11.43 0.0112 (adjusted) [0.90, 0.95]

Recall 16.32 0.004 (adjusted) [0.93, 0.98]

The results presented in Table 6 show significant differences in the performance metrics
Acc, F1, IoU, precision, and recall among the different loss functions when the learning rate
is fixed at 1 × 10−4. To account for multiple comparisons, the Bonferroni correction [39]
was applied. All adjusted p-values remain below the standard significance level of 0.05,
confirming the statistical significance of these differences.

Table 7. t-Test results for comparison between learning rates with CE loss function.

Metric t Statistic p-Value 95% Confidence Interval

Acc 2.87 0.045 [0.96, 0.99]
F1 2.65 0.052 [0.95, 0.98]

IoU 2.48 0.059 [0.90, 0.93]
Precision 2.71 0.049 [0.93, 0.95]

Recall 2.91 0.043 [0.98, 0.99]

The t-test results (Table 7) indicate significant differences in the performance metrics
Acc, F1, IoU, precision, and recall between the two learning rates of 1 × 10−4 and 1 × 10−3,
using the CE loss function. For Acc, precision, and recall, the p-values are lower than the
standard significance level of 0.05, indicating that the differences are statistically significant,
with a learning rate of 1× 10−4 showing superior performance. For F1 and IoU, the p-values
are slightly higher than 0.05, suggesting that the differences are nearly significant, still
indicating a trend of better performance for the 1 × 10−4 learning rate.

In conclusion, both tests affirm the superior performance of using the CE loss function
with LR of 1 × 10−4 across a range of evaluation metrics.

3.2. Results of the U-Net Applied to the Rio de Janeiro Region

After defining the necessary hyperparameters for model construction, we evaluated
them in the ROI defined in Section 2.1.1 (Figure 2), namely, for the Rio de Janeiro region.
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Specifically, a subset of images corresponding to 2232 images from 22 July 2023, was chosen
due to the absence of cloud cover in the ROI. Table 8 presents the results of the different
combinations of encoders considered.

Table 8. Metrics of the network in the region of interest of Rio de Janeiro.

Encoder Acc F1 IoU Precision Recall

ResNet-34 0.9871 0.8764 0.7801 0.7881 0.9871
EFFNet-b6 0.9426 0.9298 0.8688 0.9173 0.9426
MVT-b3 0.9269 0.9411 0.8888 0.9557 0.9269

The abbreviations MVT refer to Mix-vision-transform. EFFNet refers to EfficientNet.

When applying the U-Net trained on the MultiSenGE dataset to the region of Rio de
Janeiro, we observe promising results, with IoU scores exceeding 88% for the test image set.
It is noteworthy that the U-Net was originally trained using data from France (MultiSenGE)
and has now been applied to a different geographical area (Rio de Janeiro, Brazil). This
scenario facilitates the evaluation of the model’s generalization capacity across diverse
geographic contexts.

In Figure 9, we display the outcome of the network for the ROI. As can be seen, the num-
bers presented in Table 8 corroborate the qualitative outcome of the proposed methodology.

Figure 9. Qualitative results of the network prediction (in red) in the delimited area for the Rio de
Janeiro region on 22 July 2023.

3.3. Results of Urban Area Segmentation versus BDGD

In this section, we investigate the relationship between urban area segmentation data
and coverage information provided by the electric distribution company in the BDGD
repository. Initially, we present the coverage area of the electric distribution company based
on BDGD data for the ROI with a 100 m buffer.

In Figure 10, it is possible to observe the area segmented by the model proposed in
the methodology advocated here (in red), compared to the coverage area of the electric
distribution company (in yellow).

To identify probable invasion areas, we conducted a subtraction between the region
formed by the union of the medium and low voltage network coverages and the result of
the proposed methodology. This procedure reveals the ‘excess’ area that requires further
investigation by the electric distribution company. In Figure 11, we can see the result for
the entire region of interest.
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Figure 10. BDGD coverage area (yellow) vs. methodology prediction (red).

Figure 11. Results of subtracting the BDGD coverage area from the network prediction.

As seen in Figure 11, many red areas lie outside the coverage area provided by the
electric distribution company; these regions are what our methodology characterizes as
potential invasion areas.

3.4. Case Studies

To facilitate the understanding of the results and investigate potential areas suggestive
of invasion, we conducted detailed case studies. In these case studies, a buffer zone of 100
m around the transmission and distribution lines was selected to represent the potentially
covered area. There are clandestine connections within the buffer zone with a distance
of less than 100 m to the power grid. Therefore, this method is more suitable for critical
regions such as Rio de Janeiro. This choice ensures that only areas considerably distant
from the coverage area are identified as potential invasion zones. Given their distance
from the coverage area, these regions are more suspicious of being potential invasion
areas. However, it is important to highlight that the chosen buffer value directly impacts
the number of regions suggestive of irregularities. The smaller the buffer, the greater the
number of identified regions. Therefore, this parameter can be adjusted according to the
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needs and characteristics of the location (areas with higher or lower urban concentration)
of the analysis to be conducted.

In Figure 12, we present an example of areas suggestive of invasion. The central point
(approximate) is located at −22.845202, −43.531593, and the average area is 496,922.767 m2

or 0.497 km2.

Figure 12. Example 1 of areas suggestive of invasion. The central point (approximate): −22.845202,
−43.531593. Average area: 496,922.767 m2 or 0.497 km2.

It is important to highlight that only the larger region (bounded by dashed lines)
was considered for area calculation, but as can be seen, other regions also exhibit similar
characteristics and require further analysis by the electric distribution company.

Continuing with the case studies, we now delve into the situation illustrated in Figure 13.
Upon analyzing the example, it becomes evident that the region in question exhibits highly
suggestive characteristics of invasion, as its growth extends toward the peripheral area.

Figure 13. Example 2 of areas suggestive of invasion. The central point (approximate): −22.827001,
−43.596853. Average area: 528,803.764 m2 or 0.529 km2.

Lastly, Figure 14 illustrates several areas exhibiting behavior suggestive of invasion.
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Figure 14. Example 2 of areas suggestive of invasion. Central point (approximate): −22.812473, −43.600857.

4. Discussion

Based on the experimentation conducted in Sections 3.1–3.3, we observe that the
method demonstrates promising efficacy. We will highlight the key points that we consider
fundamental to the proposed methodology:

1. The method employs images with a spatial resolution of 10 m per pixel, a crucial choice
in the context of remote sensing. This resolution provides the essential capability to
examine significant details in the urban environment.

2. The proposed method exhibited significant performance on the test set, achieving re-
markable results with IoU scores surpassing 88% in the task of urban area segmentation.

3. Given the robustness and extensive exploration of the method, it is noteworthy
that the U-Net’s approach allowed for the incorporation of various encoders. This
facilitated the recognition of diverse areas, leading to the development of robust and
versatile architecture.

4. We believe that the Vision Transformer-based encoder produces superior outcomes
owing to its capability to partition images into smaller “patches”, thereby enhancing
precision in pixel classification during semantic segmentation.

5. In addition to achieving promising results as previously presented, it is worth high-
lighting that the method is generic, enabling training in one region of the world and
testing in another, providing positive indications of its generalization capability. This
was evidenced by making predictions in the Rio de Janeiro region without the need
for model retraining.

6. The strategy used to construct the coverage area with BDGD data was crucial, enabling
the coverage of different electric distribution companies and the examination of
various regions in Brazil.

7. The results of areas outside the electric distribution company’s coverage demonstrate
that the method efficiently indicates regions with limited urban area information.

8. By exploring the case studies, we observe suggestive indications that the areas identi-
fied are indeed invasion areas.

9. The precise segmentation of urban areas and the identification of irregularities can
inform early warning systems, highlighting construction regions in risky or unautho-
rized areas or even possible invasions, which irregularly burden energy distribution
networks, in addition to causing real risks to the lives of everyone involved.

10. It is also possible to encourage detailed urban mapping that can assist in land use
planning, ensuring that energy distribution networks are resilient and adaptable to
future growth and environmental and urban challenges.



Sensors 2024, 24, 4924 19 of 23

11. Finally, the integration of this knowledge increases the reliability and safety of energy
infrastructure, contributing to the effective management of geological risks.

The method demonstrates satisfactory performance in the presented case study, effec-
tively identifying suspicious regions as potential areas of encroachment. This facilitates a
more confident decision-making process by the electric distribution company.

In terms of potential improvements, it is important to note that some aspects need to
be enhanced with this method. Figure 15 exemplifies certain regions that were identified as
false positives.

Figure 15. Examples of regions considered false positives.

Among the areas delineated in Figure 15 and considered as false positives, we have
the following:

• Airport.
• Military areas.
• Public areas.

5. Conclusions

The proposed method demonstrated promising results in urban area detection, both
in the training and test datasets. The effectiveness was evidenced by quantitative results,
with IoU scores exceeding 88% in the task of urban area segmentation, and by qualitative
results from the presented case studies.

The cloud removal strategy using masks available in the SCL allowed for a more
thorough analysis, facilitating a more precise and reliable assessment of urban areas. This
approach ensured more consistent and informative results.

In the context of constructing the test dataset, the use of masks available in Open-
StreetMap as a form of pre-annotation proved to be significant. This allowed for the
demarcation of areas independent of location, although some corrections are necessary due
to the collaborative nature of the annotations in OpenStreetMap.

Apart from the promising segmentation results, the method proved to be generic,
allowing training in one region of the world and successful application in another without
the need for retraining. This generalization potential was confirmed through predictions in
the Rio de Janeiro region.
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The integration of different encoders in the U-Net approach, especially the use of
a Vision Transformer-based encoder, enhanced precision in pixel classification during
semantic segmentation, thanks to its ability to divide images into small “patches”.

The strategy employed for constructing the coverage area with BDGD data was crucial,
covering different electric distribution companies and allowing the analysis of various
regions in Brazil. The results obtained outside the coverage area of the electric distribution
companies demonstrated that the method efficiently identifies regions with limited urban
information, indicating possible irregularities. The case studies suggest that the identified
areas are indeed invasion areas, which can have significant implications for the assessment
and management of geographic risks.

Finally, the integration of this knowledge can increase the reliability and safety of en-
ergy infrastructure, contributing to the effective management of geological risks. Accurate
identification of urban areas and irregularities is essential for land use planning and to
ensure that energy distribution networks are resilient and adaptable to future challenges.

For future research aimed at enhancement, we propose:

• Model refinement to mitigate false positives, by considering specific characteristics of
airports, military areas, and public spaces.

• Exploration of advanced image processing techniques to improve segmentation accu-
racy, particularly in challenging areas.

• Investigation of alternative indicators or data sources to complement the identification
of areas susceptible to invasions or NTL. This could include analyzing factors such as
energy consumption patterns, payment behavior, historical outage data, population
density, economic activity, community reports, and the urban growth rate of the region.

• Assessment of the urban growth rate using the proposed methodology applied to
past years’ data, providing insights into the expansion of urban areas and potential
correlations with irregularities in energy consumption or distribution.

• Utilization of machine learning techniques to predict NTL hotspots, enhancing the
precision of identifying high-risk areas.

• Integration of additional datasets to improve the understanding of urban energy
consumption patterns, potentially including socio-economic data, climate data, and
detailed infrastructure maps.
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Acc accuracy
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BDGD distributor’s geographic database
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CAPES National Council for the Improvement of Higher Education
CE cross-entropy
CNN convolutional neural network
CNPq National Council for Scientific and Technological Development
CUs consumer units
DL deep learning
DT decision tree
IOU intersection over union
LF loss function
LR learning rate
LULC land use/land cover
NIR near-infrared
NTL non-technical losses
OSM OpenStreetMap
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ReLU rectified linear unit
RGB red, blue, and green
ROI region of interest
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SVM support vector machine
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