Skip to main content
. 2024 Jul 30;24(15):4924. doi: 10.3390/s24154924

Table 5.

Metrics of the network trained with different types of encoders.

Exp. Encoder Acc F1 IoU Precision Recall
1 EFFNet-b0 0.9942 0.9540 0.9113 0.9171 0.9942
2 EFFNet-b1 0.9179 0.9417 0.8901 0.9669 0.91795
3 EFFNet-b2 0.9129 0.9369 0.8817 0.9624 0.9129
4 EFFNet-b3 0.9115 0.9441 0.8944 0.9792 0.9115
5 EFFNet-b4 0.9350 0.9460 0.8979 0.9573 0.9350
6 EFFNet-b5 0.9584 0.9406 0.8883 0.9236 0.9584
7 EFFNet-b6 0.9302 0.9537 0.9117 0.9785 0.9302
8 EFFNet-b7 0.9285 0.9519 0.9085 0.9767 0.9285
9 MVT-0 0.8979 0.9365 0.8808 0.9787 0.8979
10 MVT-1 0.8717 0.9247 0.8603 0.9849 0.8717
11 MVT-2 0.9264 0.9477 0.9007 0.9700 0.9264
12 MVT-3 0.9407 0.9588 0.9210 0.9777 0.9407
13 MVT-4 0.9307 0.9551 0.9141 0.9808 0.9307
14 MVT-5 0.8800 0.9291 0.8681 0.9844 0.8800
15 ResNet34 0.9572 0.9587 0.9210 0.9603 0.9572
16 ResNet50 0.9436 0.9591 0.9206 0.9752 0.9436
17 ResNet101 0.9160 0.9461 0.8980 0.9784 0.9160
18 ResNet152 0.9217 0.9494 0.9039 0.9789 0.9217

The abbreviation MVT refers to Mix-vision-transform. EFFNet refers to EfficientNet.