
Articles
eBioMedicine
2024;106: 105246

Published Online xxx

https://doi.org/10.
1016/j.ebiom.2024.
105246
Intestinal microbiota composition is predictive of
radiotherapy-induced acute gastrointestinal toxicity in
prostate cancer patients
Jacopo Iacovacci,a,∗,k Mara Serena Serafini,b,k Barbara Avuzzi,c Fabio Badenchini,d Alessandro Cicchetti,a Andrea Devecchi,b Michela Dispinzieri,c

Valentina Doldi,e Tommaso Giandini,f Eliana Gioscio,a Elisa Mancinelli,b Barbara Noris Chiorda,c Ester Orlandi,g Federica Palorini,d Luca Possenti,a

Miguel Reis Ferreira,h,i Sergio Villa,c Nadia Zaffaroni,e Loris De Cecco,b,l Riccardo Valdagni,c,d,j,l and Tiziana Rancatia,l

aData Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
bUnit of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
cUnit of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
dProstate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
eUnit of Molecular Pharmacology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
fUnit of Medical Physics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
gRadiation Oncology Clinical Department, National Center for Oncological Hadron Therapy (CNAO), Pavia, Italy
hKing’s College London, London, UK
iGuys and St Thomas NHS Foundation Trust, London, UK
jDepartment of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy

Summary
Background The search for factors beyond the radiotherapy dose that could identify patients more at risk of devel-
oping radio-induced toxicity is essential to establish personalised treatment protocols for improving the quality-of-life
of survivors. To investigate the role of the intestinal microbiota in the development of radiotherapy-induced
gastrointestinal toxicity, the MicroLearner observational cohort study characterised the intestinal microbiota of 136
(discovery) and 79 (validation) consecutive prostate cancer patients at baseline radiotherapy.

Methods Gastrointestinal toxicity was assessed weekly during RT using CTCAE. An average grade >1.3 over time
points was used to identify patients suffering from persistent acute toxicity (endpoint). The microbiota of patients was
quantified from the baseline faecal samples using 16S rRNA gene sequencing technology and the Ion Reporter
metagenomic pipeline. Statistical techniques and computational and machine learning tools were used to extract,
functionally characterise, and predict core features of the bacterial communities of patients who developed acute
gastrointestinal toxicity.

Findings Analysis of the core bacterial composition in the discovery cohort revealed a cluster of patients significantly
enriched for toxicity, displaying a toxicity rate of 60%. Based on selected high-risk microbiota compositional features,
we developed a clinical decision tree that could effectively predict the risk of toxicity based on the relative abundance
of genera Faecalibacterium, Bacteroides, Parabacteroides, Alistipes, Prevotella and Phascolarctobacterium both in internal
and external validation cohorts.

Interpretation We provide evidence showing that intestinal bacteria profiling from baseline faecal samples can be
effectively used in the clinic to improve the pre-radiotherapy assessment of gastrointestinal toxicity risk in prostate
cancer patients.
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Research in context

Evidence before this study
From a search in PubMed for articles including in their title or
abstract the words (“radiotherapy” OR “radiation therapy”)
AND “microbiota” AND “toxicity” AND “prostate cancer” we
found 9 articles published between 2019 and January 2024
including 3 reviews.
Evidence from studies conducted over the last decade
suggests that the microbiota composition of the
gastrointestinal tract could play a role in the development of
radiotherapy-induced gastrointestinal toxicity.
These studies have shown that patients displaying symptoms
of gastrointestinal toxicity following radiotherapy have faecal
microbiota profiles exhibiting a lower species diversity and
distinguishable compositional features compared to those
without. Processes including dysbiosis-induced inflammation
and reduction in short-chain fatty acids production are
believed to link radiation-induced toxicity and an altered
host–microbiota equilibrium. Despite the evidence, no
microbial signature predictive of toxicity has been identified
and established by previous studies.

Added value of this study
Here we identified a set of commensal bacterial genera
characteristic of the intestinal microbiota that are predictive
of the development of acute gastrointestinal toxicity in
prostate cancer patients during radiotherapy. To characterise
the microbiome, we used 16S rRNA sequencing technology,
which offers taxonomic resolution up to the scale of bacterial
genera and is cost effective.

Implications of all the available evidence
The study opens up concrete prospects for the use of baseline
faecal samples in the clinical practice to improve pre-
radiotherapy toxicity risk assessment, and it is the starting
point for any research looking for ways to act directly on the
intestinal microbiome of prostate cancer patients, for
example by use of probiotics or faecal transplant to reduce
treatment side effects. Analysis of the bacterial communities
of patients with higher rates of toxicity pointed to a selection
for genera more adapted for coping with oxidative stress and
phosphate scarcity, suggesting that the microbiota
composition reflects a host environment characterised by
increased levels of reactive oxygen species that, in turn,
predispose to toxicity from radiation oxidative effects.
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Introduction
Radiotherapy (RT) is often used as a curative treatment
for prostate cancer (PCa) either definitively or as adju-
vant/salvage (post-prostatectomy) treatment with excel-
lent efficacy outcomes. However, many patients
experience significant early and/or long-term gastroin-
testinal (GI) side effects due to the unavoidable irradi-
ation of healthy gut tissues surrounding the tumour
target. About 10–50% of treated patients suffer from
moderate to severe acute GI side effects (manifesting
within 90 days after the end of RT), including proctitis,
diarrhoea, rectal bleeding and abdominal pain.1 The
onset of acute side effects during RT is particularly
relevant, as late intestinal side effects (manifesting more
than 90 days after the end of RT) show a sequential
behaviour, and patients with more severe and particu-
larly long-lasting non-healing acute toxicity are at
increased risk of long-term toxicity.2,3

The incidence of radio-induced GI toxicity can be
reduced through radiation dose-volume constraints that
limit the volume of intestinal/rectal tissue irradiated to
significant dose levels.4 However, the heterogeneity of
toxicity levels observed after treatment is challenging to
model only based on the dose distribution in organs at
risk. The dose-toxicity relationship is modulated by many
patient-specific factors that affect the tissue response to
radiation, such as genetic background and expression
patterns, premorbid conditions and use of drugs, as well
as the intestinal microenvironment.5 In addition,
different causes can contribute to the same symptom,
e.g., diarrhoea can be caused by epithelial injury, small
bowel bacterial overgrowth or bile acid malabsorption.4

The intestinal microbiota plays an essential role in
maintaining intestinal homeostasis and is affected by
radiotherapy in the pelvic district. Specific patterns of
bacterial communities in the gut are associated with
developing various intestinal disorders, including Crohn’s
disease, ulcerative colitis and pseudomembranous colitis.
These conditions result in symptoms that are often similar
to those observed in radio-induced GI toxicity.5

Small cohort studies (n < 12) observed a peculiar in-
testinal microbiota composition and, more specifically, a
significantly lower microbial diversity before RT in cancer
patients who developed diarrhoea during pelvic RT.6–8

The most compelling evidence that the intestinal
microbiota might be predictive of the development of
RT-induced GI toxicity in PCa patients came from the
MARS study.9 MARS investigated the associations of the
intestinal microbiota with both acute and late radiation-
induced toxicity. In a cohort representative of early acute
toxicity (n = 32), where sequential faecal samples were
obtained longitudinally over early time points to identify
patterns and dynamics of the microbiome, the authors
observed that a microbiota characterised by a compara-
tively reduced bacterial diversity over-time was associ-
ated with a significantly higher incidence of acute GI
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toxicity. These changes were mirrored in two other co-
horts (n = 103) evaluated for late GI toxicity. In addition,
an association of higher relative abundance of some
short-chain fatty acid (SCFA) producers with both acute
and late toxicity was found. With the patients having
received homogeneous treatment and no cytotoxic sys-
temic therapies, and reporting on the largest cohorts at
the time, MARS was a cornerstone in the demonstration
that alterations in the intestinal microbiota associated
with both early and late radiation enteropathy.

These studies suggest that the intestinal microbiome
presents opportunities for predicting and treating radio-
induced GI toxicity. However, further research is
needed to understand whether the information on the
microbiome can be used in clinical practice to assess the
risk of toxicity development, allowing clinicians to
modulate treatment or use other intervention strategies
to mitigate that risk.10

We herein report the results of the MicroLearner
PCa study, where we obtained pre-RT intestinal micro-
biome data from faecal samples of 215 PCa patients and
applied machine learning techniques to elucidate
whether the intestinal microbiome can predict the risk
of development of acute GI toxicity.
Methods
Ethics
The MicroLearner observational cohort study was
approved by the local Ethical Committee (ID: INT
11/17) and prospectively registered on ClinicalTrials.gov
(ID: NCT03294122). It enrolled 244 PCa patients who
provided written Informed Consent and agreed that
incidental findings would not be disclosed to them or
any clinician.

Participants and setting
All patients were treated with high-dose RT (curative
intent, exclusive RT or post-prostatectomy RT) at the
Fondazione IRCCS Istituto Nazionale dei Tumori di
Milano. All patients underwent RT over 5 (hypofractio-
nation) or 7–8 (conventional fractionation) weeks ac-
cording to the standard of practice at Fondazione IRCCS
Istituto Nazionale dei Tumori di Milano. Detailed in-
formation on patient- and treatment-related features
were prospectively registered using standardised Case
Report Forms. Details on participation criteria can be
found on ClinicalTrials.gov: https://clinicaltrials.gov/
study/NCT03294122.

Study design
According to the study design, PCa patients were
divided into two consecutive cohorts, namely Micro-
Learner discovery and MicroLearner validation. The size
of the MicroLearner study was designed to have suffi-
cient statistical power to detect the effect of risk factors
with OR ≥2.5 (the protocol is available on
www.thelancet.com Vol 106 August, 2024
ClinicalTrials.gov: https://cdn.clinicaltrials.gov/large-
docs/22/NCT03294122/Prot_SAP_000.pdf). Therefore,
differences in toxicity rates associated with smaller ORs
cannot be statistically significant. Faecal samples were
collected before RT initiation to profile the baseline in-
testinal microbiota of the patients using 16S rRNA
amplicon sequencing. Clinical data were available for all
the patients, and data on the use of antibiotics and pro-
biotics were also recorded, along with data on diet and
physical activity. Blood samples were collected before RT
initiation from a fraction of patients in the discovery
cohort to investigate the level of serum pro-inflammatory
cytokines CCL2, PDGF-BB, TGF-β1, TNF-α and TNFR1,
previously reported to directly associate with the devel-
opment of radio-induced GI toxicity.11

Information on radio-induced side-effects was pro-
spectively collected before, during treatment (once a
week) and every 6 months till five-year follow-up by using
health professionals’ assessment Common Terminology
Criteria for Adverse Events (CTCAE) v4.0. Patient-
reported questionnaires (Expanded Prostate Cancer In-
dex Composite-26, International Prostatic Symptom
Score, International Consultation on Continence Ques-
tionnaire, International Index of Erectile Function-5,
EORTC Core Quality of Life Questionnaire) were
collected before RT, at RT end and every 6 months in five-
year follow-up. Data on coping with cancer (Mini-Mental
Adjustment to Cancer) and with anxiety (Memorial
Anxiety Scale—Prostate Cancer) are at baseline.

Before RT, patients also completed a questionnaire
on lifestyle with information on diet habits and physical
activity. The diet and physical activity questionnaire
template, including the food frequency questionnaire
(FFQ) section, is reported in Supplementary Table S3.

Toxicity endpoint definition
For every GI symptom included in the CTCAE, we
calculated the average grade across all the early time
points (≤8 weeks from RT initiation). Patients with at
least one symptom with average grade >1.3 were
defined as having developed a persistent form of acute
GI toxicity (hereafter termed ‘with toxicity’ or ‘in the
toxicity group’) which was the primary endpoint. This
threshold allowed the capture of sustained forms of
early acute toxicity for which at least one grade 2 is
observed in one week and an average grade >1 is
measured across the remaining weeks.

Collection and processing of biological samples
Faecal sample collection and processing
Faecal specimens were collected using the OMNIge-
ne•GUT stool devices (DNA Genotek Inc. Ottawa, ON,
Canada) consisting of a tube with a preservation buffer
to stabilise microbial DNA and a bearing steel bead.
Patients were instructed to collect the faeces into the
tube, avoid contaminations, and homogenise the sample
by shaking. The samples were stored at room
3
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temperature and delivered to the centralised laboratory
for metagenomics analyses.

Upon arrival, after mechanical lysis with silica
beads, DNA was extracted by QIAsymphony DSP Vi-
rus/Pathogen Midi kit (Qiagen) on an automated
QIAsymphony station (Qiagen). Microbial DNA was
quantified using a Qubit fluorometer (ThermoFisher),
and quality was assessed using a 4200 TapeStation
(Agilent). Samples reaching good quality (DNA
integrity number >7) were used for metagenomics
profiling.

The NGS libraries were prepared using 16S Meta-
genomics kit (ThermoFisher) following the manufac-
turer’s instructions. The 16S region was amplified with
primer sets recognising V2, V4, V8 and V3, V6-7, and
V9 hypervariable regions in 2 separate PCR reactions.
Fifty nanograms of amplicons were combined and
processed for library prep using the Ion Plus Fragment
Library Kit and Ion Xpress Barcodes Adapters (Ther-
moFisher). After PCR amplification (1 cycle of 95 ◦C for
5 min; 5 cycles of 95 ◦C for 15 sec, 58 ◦C for 15 s, 70 ◦C
for 1 min) and purification using 1.4 volumes of
Agencourt AMPure beads (Beckman Coulter), libraries
were eluted and their size and quantity were assessed
with TapeStation.

16S rRNA sequencing and bioinformatic analysis
Sequencing was performed for 16S libraries by Ion S5
XL, whereas base calling and demultiplexing was per-
formed by Torrent Suite (ThermoFisher). The Ther-
moFisher Ion Reporter Software metagenomics 16S
analysis pipeline was used to generate operational
taxonomic unit abundances from the 16S rRNA reads
and to assign taxonomy at the genus level by clustering
sequences at a 97% similarity threshold.

Cytokines measurement
Ten millilitres of EDTA blood samples (BD Vacu-
tainer™ K2 EDTA-367525) were obtained at baseline.
Samples were kept at 4 ◦C for a maximum of 1 h after
sampling and then centrifuged for 20 min at 2200g at
4 ◦C. Plasma was collected (∼4 mL) and centrifugated
for 10 min at 2200g at 4 ◦C. Supernatant was immedi-
ately stored at ≤−80 ◦C until analysis (stored in Nalgene
CryoBox-50260909).

All analyses were carried out blind to patient and
therapy factors. The concentrations of CCL2, PDGF-BB,
TGF-β1, TNF-α and TNFR1 were determined using
commercially available ELISA kits (Quantikine®ELISA
R&D Systems Inc., Minneapolis, MN, USA), according
to manufacturer’s protocols: Quantikine®ELISA Hu-
man TGF-β1 cod. DB100B R&D System, Quantiki-
ne®ELISA Human CCL2/MCP-1 cod. DCP00 R&D
System, Quantikine®ELISA Human PDGF-BB cod.
DBB00 R&D System, Quantikine®ELISA Human TNF-
α cod. DTA00C R&D System and Quantikine®ELISA
Human TNF RI cod. DRT100 R&D System.
MARS external data
MARS microbiome data9 and clinical data from the early
cohort (n = 32), were used as external validation data. To
homogenise the endpoint between the studies at best,
we employed a robust GI toxicity endpoint for MARS
patients defined as the consensus of grade ≤2 toxicity
between patient-reported outcomes and clinician-
reported outcomes. We used the data from the MARS
early cohort and the MARS late cohort (n = 87) to assess
microbiome-based predictors of toxicity (Supplementary
Fig. S15).

Statistics
The computational methodology developed in this paper
aimed to construct a model for assessing the risk of
toxicity based on the profiled intestinal microbiota from
baseline faecal samples. The analysis of the microbiota
of the patients in the discovery cohort resulted in the
identification of risk classes for the development of
acute GI toxicity. Machine learning was used to develop
a decision tree that could accurately predict patients at
high risk of developing toxicity. The decision tree was
trained on the discovery cohort and validated both on
the validation cohort and on external data from the
MARS study.9

Analysis of microbiota diversity
We measured the alpha diversity from the samples ac-
cording to the Shannon’s index and to the inverse
Simpson’s index12(hereafter termed ‘Simpson’s index’ for
simplicity) because they showed no correlation with the
total number of mapped reads (Supplementary Fig. S6).

Microbiota-based clustering of patients
We performed hierarchical clustering using the
Euclidean distance and the Ward linkage method on the
core centre-log ratio (clr) of the abundance profiles
standardised across the discovery population (z-scores).

The core included all genera having relative abun-
dance ≥2% in ≥10% of the discovery patients, and the
count data of the core sub-composition were clr-
transformed after imputation of zeros via Geometric
Bayesian Multiplicative replacement method previous to
clustering.

We defined the optimal number of clusters as the
one maximising the Jaccard similarity index between
the partition of toxicity events obtained by using core
bacterial genera and the one obtained by using core
bacterial families, defined as the families having relative
abundance ≥2% in ≥10% of the discovery patients
(Supplementary Figs. S8 and S9).

A microbiota risk class for acute GI toxicity (high
risk/moderate risk/low risk) was assigned to each
microbiota-based cluster of patients based on a Fisher’s
exact test on the toxicity rate observed inside that cluster
(‘Acute GI toxicity’ enrichment/‘No acute GI toxicity’
enrichment).
www.thelancet.com Vol 106 August, 2024
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Polycytokinic risk score
We developed a logistic stepwise backward regression
model to predict the classes of ‘Acute GI toxicity’ (pos-
itive cases) and ‘No acute GI toxicity’ (negative cases)
using as predictors the log-transformed values of con-
centration of the plasma cytokines measured. We used
the stepAIC function from the R package MASS version
7.3–5713 to identify the best predictors. The logit model
based on the selected predictors was used to obtain a
risk probability for each patient, and the polycytokinic
risk score was defined by standardising the probabilities
across the patient population.

Statistical analysis
Continuous variables, including age, BMI, the log-
transformed concentrations of the plasma cytokines,
doses, alpha diversity indices, and discrete variables
(such as the number of genera) were tested for their
statistical association with the toxicity endpoint using
Wilcoxon’s rank test.

Categorical variables, including comorbidities, pro-
biotic use, drug use, surgeries previous to RT, diet-
related groups and physical activity class, were tested
for enrichment in the toxicity or no toxicity groups using
Fisher’s exact test.

Differential abundance analysis of genera between
toxicity groups was performed using the Wilcoxon’s
rank test. To account for the compositional nature of the
data,14 count data were transformed using the centred
log-ratio transformation (clr) after imputation of zeros
via Geometric Bayesian Multiplicative replacement
method using R package zCompositions version 1.4.0.15

p values were adjusted using Benjamini–Hochberg
method to control the false discovery rate at the level
of 5%. Microbiota-based clusters of patients were tested
for enrichment in toxicity and other categorical factors
using Fisher’s exact test. Statistical differences in the
polycytokinic risk score, mean rectal dose, alpha di-
versity indices, number of core genera, age and BMI
between microbiota-based risk classes were performed
using Wilcoxon’s rank test.

Multivariable logistic regression models of acute GI toxicity
We developed logistic multivariable regression models
using the function lrm from the R package rms.16 We
considered different combinations of predictors among
the set including the level of pro-inflammatory cytokines
CCL2, PDGF-BB, TGF-β1, TNF-α and TNFR1, BMI, age,
mean rectal dose and the Shannon’s index measured on
the core microbiota.

Machine learning methods for clinical decision tree
construction
We developed the clinical decision tree to categorise
patients in the high-risk/moderate-risk/low-risk micro-
biota classes by using R package rpart version 4.1.1617

while aiming at reducing the sensitivity of the
www.thelancet.com Vol 106 August, 2024
prediction to potential factors specific to the training
data set, including the geography of the cohort and the
sequencing platform.

Accordingly, we developed the tree algorithm with
the following requirements:

1. base the decision on the relative abundance of
genera profiled from a single sample;

2. having final predictors that allowed external testing
on the MARS cohort data;

3. obtaining after training a reduced depth of the
branches for clinical interpretability.

As a feature pre-selection process before the training,
we considered the logarithm of the relative abundances
of the core genera that were significantly differentially
abundant (package limma version 3.50.0,18 adjusted
p < 0.05, |logFC|>1.5) in the high-risk microbiota cluster
compared to any other cluster in the discovery cohort
(Supplementary Table S13).

We then filtered out the pre-selected genera that
were not profiled in the MARS early cohort, resulting in
retaining the relative abundance of six genera, namely
Faecalibacterium, Bacteroides, Parabacteroides, Alistipes,
Prevotella, Phascolarctobacterium. The count distribution
of these genera is shown in Supplementary Fig. S15 for
the MicroLearner discovery and validation cohorts and
for the MARS early and late cohorts.

To improve prediction robustness, we trained the
decision tree model using the relative abundances of the
retained genera rounded to the closest per cent point to
predict the microbiota risk class of patients in the dis-
covery cohort. To limit the complexity of the tree, we
pruned it at the minimum number of nodes and splits
necessary to reach 80% prediction accuracy on the high-
risk class. This process kept all six retained core genera in
use as effective predictors in the final tree model.

The model was tested by assigning a predicted
microbiota risk class to patients in our validation cohort
(n = 79) and the MARS early cohort (n = 32) and
measuring the toxicity rate within the predicted classes.
The tree model training and validation details are re-
ported in Supplementary Tables S14 and S15.

Functional imputed metagenomics
We performed the functional imputed metagenomic
analysis of the core microbiota profiles of the patients in
the discovery cohort using PICRUSt version 1.1.4.19 We
referenced the core metagenome profiles to the most
updated reference collection of OTUs from Greengenes
(gg_13_5_otus).20 Because the taxonomy assignment by
Ion Reporter is based on ThermoFisher-curated
Greengenes references, this choice maximised the
coherence between inferred functional profiles and
taxonomic abundance profiles.

Profiles were normalised by the known or predicted
16S copy number abundance, and a final metagenome
5

http://www.thelancet.com


Articles

6

was predicted and mapped to KEGG Orthologs (KOs).
Inferred KEGG Orthologs (KO) IDs annotations based
on the Integrated Microbial Genomes and Micro-
biomes21 were manually verified and curated against the
most recent version of KEGG (v.104, 2022/10) and of
the Transport Classification database22 and annotated by
KEGG modules or Brites.

We checked the quality of the inferred meta-
genome by calculating the average Nearest Sequenced
Taxon Index (NSTI)19 across samples, which quantifies
the average over the samples of the average sub-
stitutions per site separating each OTU from the
reference bacterial genome. We obtained
NSTI = 0.071+−0.028, consistent with values expected
from faecal samples.19

Functional analysis of microbiota risk classes
We identified a first set of KOs of interest by selecting
KO terms with average standardised relative abundance
>1.5, in absolute value, across the high-risk microbiota
patients.

A second set of KOs of interest was identified by
selecting KO terms significantly different in terms of
log-transformed relative abundance between the low-
risk microbiota patients and the high-risk microbiota
patients, by using R package limma version 3.50.018 with
significance threshold given by |log(FC)|>1.5 and
adjusted p < 0.05 (Supplementary Table S12).

Functional profiles (KOs relative abundances) were
clustered using hierarchical clustering with Euclidean
distance and Ward’s linkage method. The relative
contribution of individual genera to the abundance of
the KO of interest was also extracted using PICRUSt
function metagenome_contributions.py (Supplementary
Figs. S13 and S14).

Role of funders
The funders had no role in the study design, data
collection and analysis, decision to publish, or prepara-
tion of the manuscript.
Results
Patient population, RT treatment and acute
toxicity rates
Of 244 PCa patients enrolled, 9 dropped before
completing RT, 4 lacked toxicity data, and 16 had sam-
ples with low DNA integrity number and were not
profiled. Information from a patient-compiled diet and
lifestyle survey was available for 135 patients in the
discovery cohort, and the levels of serum pro-
inflammatory cytokines were measured in 99 patients
of the discovery cohort.

To investigate the association between the intestinal
microbiota and the development of GI toxicity during
the RT treatment, we analysed faecal samples from
n = 136 MicroLearner discovery patients and n = 79
MicroLearner validation patients whose characteristics
are reported in Supplementary Table S1.

All patients received Volumetric Modulated Arc RT
(VMAT). One hundred and forty-five patients received
conventionally fractionated RT. Fifty-seven were post-
prostatectomy patients (adjuvant setting 11 patients,
salvage 46 patients) treated with a prescribed dose of
70–72 Gy. Eighty-eight radical patients had a prescribed
dose of 74–78 Gy. Seventy radical patients received
moderately hypofractionated RT (2.6 Gy/day) with a
prescribed dose of 65–67.6 Gy. One hundred and
seventy-two patients received whole-pelvis RT (50 Gy)
and 142 irradiation of seminal vesicles (66–70 Gy).
Treatment details are reported in Supplementary
Table S2.

Twenty-four patients were scored with an average
grade >1.3 for acute GI toxicity, of which 16 were in the
discovery cohort (12% of the cohort), and 8 were in the
validation cohort (10% of the cohort).

Association of acute GI toxicity with dosimetric
and patient-specific features
The mean dose to the rectum stratified by toxicity group
and RT intention is shown across the pooled cohort in
Fig. 1a. We did not find statistically significant associa-
tions with acute GI toxicity. No significant dose-toxicity
association was found in the populations who received
whole-pelvis or prostate-only RT (Supplementary
Fig. S2).

To explore the possible influence of the inflamma-
tory environment in modulating the response to radia-
tion, we assigned to each patient a measure of
inflammatory-driven radio-sensitivity, the polycytokinic
risk score, based on the plasma concentration of CCL2,
TNFR1 and TNF-α. In Fig. 1b the distributions of the
score in toxicity (red) and no toxicity (blue) patients are
shown (overall distribution in grey). Despite an Odds
Ratio (OR) of 2.04 (95% CI = 1.29–2.79, p = 0.02) for a 1-
point increase in the polycytokinic risk score, and a 5%
toxicity rate among patients with score ≤0 compared to
25% in patients with score >0 (Fisher’s exact test
p = 0.005; Supplementary Table S8), the score distri-
butions overlapped significantly (Welch’s t-test
p = 0.075), denoting a limited discrimination power of
the cytokines (details of the polycytokinic risk model are
reported in Supplementary Table S8).

No significant associations between BMI or age and
acute GI toxicity were found (Supplementary Fig. S7a
and b). We developed a multivariable logistic model to
check whether the interplay of these two factors with
cytokines and mean rectal dose could reveal any pre-
dictive potential for toxicity when used in combination
as predictors and found that no regression coefficient
was significantly different from zero (see
Supplementary Table S16).

For what concerns diet and lifestyle, specific food
classes from the FFQ were aggregated to analyse the diet
www.thelancet.com Vol 106 August, 2024
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Fig. 1: Analysis of the risk factors for the development of early acute GI toxicity. (a) Values of the mean rectal dose across the patient
population, stratified by RT intent (n = 215) and by toxicity group. (b) Density plots of the risk score associated with RT-related pro-
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composition (Supplementary Fig. S1). Patient categories
related to diet and physical activity were defined ac-
cording to the criteria reported in Supplementary
Table S5. Supplementary Table S4 reports the statis-
tics of these categories in the patient population. We
compared potential risk/beneficial factors for GI toxicity
(Fig. 1c) that were represented in ≥3% of the patients
(n ≥ 7). Specifically, smoking history, physical activity,
vegetarian diet, plant proteins and fibres-rich diet, ani-
mal fats and protein-rich diet, previous prostatectomy,
previous appendectomy, diabetes and diverticulitis, and
found no statistically significant differences
(Supplementary Table S7). However, a trend was
observed for physical activity (protective factor, 6.3%
toxicity rate in active patients vs 13.7% in sedentary
patients, p = 0.1), diabetes (risk factor, 20.8% toxicity
rate in patients with diabetes vs 9.9% in patients
without, p = 0.11), and a diet rich in animal fats and
proteins (risk factor, 19% toxicity rate in patients
declaring high intake of animal fats and proteins vs
9.6% for patients with low intake of animal fats and
proteins, p = 0.18) (Fig. 1c and Supplementary
Table S7). Also, we observed the sub-group of patients
taking statins as regular medication to have a signifi-
cantly lower risk of toxicity (rate 3.4% vs 14% for pa-
tients not taking statins, p = 0.019) and a trend for ACE
inhibitors to be beneficial (4.7% vs 12.8%, p = 0.1)
(details in Supplementary Table S7).

Association of acute GI toxicity with intestinal
microbiota diversity
We analysed the average relative abundance of the
bacterial genera and their occurrence (Supplementary
Figs. S3 and S4). The core microbiota composition at
the genus level (Fig. 1d) included 17 out of 115 genera
sequenced in both cohorts of validation and discovery
(∼15%).

When we measured the alpha-diversity of micro-
biota at the genus level (Shannon’s index Fig. 1e,
Simpson’s index Fig. 1f) we observed that a lower
community diversity before the radiotherapy was
significantly associated with acute GI toxicity develop-
ment (Wilcoxon’s rank test; Shannon’s index:
p = 0.0048; Simpson’s index: p = 0.0099). The presence
of a lower number of core genera at baseline was also
associated with acute GI toxicity (p = 0.0059; Fig. 1g).
Interestingly, the significance held when remeasuring
the alpha-diversity on the restricted core microbiota
inflammatory cytokines (polycytokinic risk) across the overall population (
protective and risk factors measured within the toxicity groups. (d) Stati
baseline faecal samples of the patient population with a relative abundan
abundance in at least 10% of the sample population define the core int
number of core genera measured from the microbiota profiles (genus lev
dots to improve visualisation).
sub-composition (Supplementary Fig. S7c and d),
suggesting that the core microbiota can capture alone
the observed gap in alpha-diversity between groups
(Shannon’s index: p = 0.0028; Simpson’s index:
p = 0.0083).

When we included the Shannon’s index of alpha
diversity measured on the core microbiota among the
predictors of multivariable logistic models of acute GI
toxicity including combinations of clinical risk factors
(BMI, age and mean rectal dose) and cytokines, we
found that the microbiota diversity was the only feature
with a coefficient significantly different from zero (see
Supplementary Tables S17–S19).

Microbiota-based clustering of patients
On univariate analysis, no core genus differed signifi-
cantly in abundance between patients with/without
acute GI toxicity in the discovery cohort. Among non-
core genera, Flavonifractor tested significantly differen-
tially abundant in the discovery cohort (Wilcoxon’s rank
test adjusted p = 0.042) but was not significantly
different in the validation cohort (Supplementary
Table S9, Supplementary Fig. S5).

To further test whether microbial clusters rather
than individual features predicted GI toxicity, we per-
formed a multivariate analysis of the core microbiota
composition via hierarchically clustering the abundance
core profiles in the discovery cohort (n = 136). We found
8 clusters of patients (Fig. 2a) with toxicity rates ranging
from 0% to 60% (Fig. 2b). The cluster with the highest
toxicity rate (60%, termed high-risk microbiota class)
included 10 patients (7% of the cohort, 38% of patients
with toxicity) with significantly higher toxicity rates
(Fisher’s exact test p = 0.00016). A separate cluster with
26 patients had a 0% toxicity rate and significantly less
toxicity than other clusters (Fisher’s exact test p = 0.027);
we termed it low-risk microbiota class. Other clusters
were not significantly different in terms of toxicity rates
range (3%–25%) and were grouped to define a moderate-
risk microbiota class.

Stratification of alpha-diversity scores by microbiota
risk class (Fig. 2c) showed statistically significant gaps in
the average diversity passing from low-to moderate-to
high-risk, while age, BMI, mean rectal dose and poly-
cytokinic risk score did not differ significantly on
average between the low-risk class and the high-risk
class, indicating that other risk factors did not
confound the microbiota risk classes.
grey) and in the toxicity groups (blue, red). (c) Frequency of potential
stic of the intestinal microbiota bacterial genera detected in the RT-
ce of at least 2%; bacterial genera measured with at least 2% relative
estinal microbiota. (e) Shannon’s index, (f) Simpson’s index and (g)
el) and stratified by toxicity group (a small vertical jitter is applied to
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Functional imputed metagenomics and functional
analysis
Patients in the high-risk microbiota class showed an
unbalanced core microbiota, with genus abundances
deviating from the average cohort levels significantly
more than in the low-risk microbiota class (Wilcoxon’s
rank test on the L1-norm of the profiles, high-risk vs
low-risk, p = 0.000059, Supplementary Fig. S10a). Also,
the average within-cluster unbalance showed a positive
trend with increased toxicity rate (R2 = 0.64, p = 0.085;
Supplementary Fig. S10b).

We thus investigated functional traits characteristic
of the core microbiota of the patients at higher risk of
toxicity by performing a functional imputation analysis.
Fig. 2d shows the relative abundance of 13 selected
KEGG Orthologs (KOs) imputed from the core genera
abundance profiles of the discovery cohort.

The functional pattern characteristic of the high-risk
microbiota class can be visualised by re-clustering pa-
tients using functional profiles into three functional
groups. This pattern clustered together 7 of the 10 pa-
tients with a high-risk microbiota (5/7, 71%, with
observed toxicity), suggesting that combining functional
information with data on the community composition
might capture the risk of developing toxicity more
accurately.

Several identified genes were either related to
transport or to defence mechanisms. TlyC (over-repre-
sented in the high-risk microbiota) is associated with the
efflux of intracellular magnesium and cobalt in Proteo-
bacteria and Firmicutes. YjbB and feoB (both under-
represented in the high-risk microbiota) are involved
in phosphate and iron uptake, respectively. The enzyme
8-oxo-dGTP diphosphatase (under-represented in the
high-risk microbiota) prevents the incorporation of oxi-
dised purine nucleoside triphosphates into DNA, in a
reaction catalysed by magnesium that produces
hydrogen diphosphate. The enzyme ahpF (over-repre-
sented in the high-risk microbiota) has a defensive
function and protects the cell against DNA damage by
alkyl peroxide.

To investigate whether some peculiar intestinal
microbiota composition protects from radiation-induced
effects, we performed a differential abundance analysis
cohort (columns); core genera were defined as those genera found in at
clustering was used to discover 8 clusters of patients (black vertical lines
class for the risk for developing acute GI toxicity during RT. (b) Bar plot s
cluster size in unit of population percentage (cluster sequence same as i
toxicity (60% toxicity rate, high microbiota risk) while cluster five was si
risk); other clusters show toxicity rate in the range 3–25% (moderate mic
visualised by microbiota risk class. (d) Heatmap showing the microbiot
selected KEGG Orthologs (KOs, rows) imputed from the core microbiota
cohort (columns); KOs selected have an average within-group absolute z
erarchical clustering was used to define 3 clusters of patients (yellow ve
microbiota composition at high-risk for toxicity.
of the inferred core metagenomes between low-risk and
high-risk microbiota groups. We found 29 significantly
different KOs (Supplementary Table S12) related to
different aspects of metabolism, including carbon
metabolism and biosynthesis and transport of amino
acids (Supplementary Fig. S13).

Hierarchical clustering of the functional profiles into
three groups (Supplementary Fig. S11a) identified pat-
terns associated with high-risk and low-risk microbiota
patients and, in turn, identified three biological path-
ways containing metagenes consistently over-
represented (butanoate metabolism, biosynthesis of co-
factors) or under-represented (histidine metabolism) in the
low-risk pattern (Supplementary Fig. S11b).

A cross-comparison of the functional clusters ob-
tained with the sets of 13 KOs and 29 KOs
(Supplementary Fig. S12) revealed an overlap of 100%
between the high-risk functional pattern groups and
79% overlap between the low-risk functional pattern
groups, indicating that the sets of features are both
characteristic of the high-risk microbiota and that the set
of 29 KOs is more distinctive with respect to the low-risk
microbiota.

Development of a microbiota-based clinical
decision tree to predict the risk of acute GI toxicity
We built an interpretable machine learning model that
could assess the microbiota-related risk of the individual
patient to develop toxicity during treatment starting
from his baseline faecal sample.

In Fig. 3a, the distribution of the selected features
evaluated by the clinical decision tree (the MICLIDE
Tree, MIcrobiota-based CLInical DEcision Tree) is
shown across the discovery cohort, stratified by clusters
of microbiota composition. They include the relative
abundance of the core genera Faecalibacterium, Bacter-
oides, Parabacteroides, Alistipes, Prevotella and Phasco-
larctobacterium. Fig. 3b gives an overview of the set of
logical rules used by the clinical decision tree to assess
the microbiota-associated risk of an individual micro-
biota profile. Fig. 3c reports the measures used to eval-
uate the model performance, including the rates of
acute GI toxicity evaluated in the cohorts used to train
(discovery cohort) and test the model (validation
least 10% of the cohort with relative abundance ≥2%; hierarchical
) with similar core compositions to which we assigned a microbiota
howing the toxicity rate observed in each cluster of patients and the
n the heatmap); cluster number three was significantly enriched for
gnificantly enriched for no toxicity (0% toxicity rate, low microbiota
robiota risk). (c) Statistic of normalised indices of toxicity risk factors
a functional profiles (standardised relative abundance values) of 13
abundance profiles of the patients in the MicroLearner PCa discovery
-score abundance value >1 in the high-risk microbiota patients; hi-
rtical lines) and to reveal the functional pattern associated with the
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cohorts), the prevalence of patients at high risk for
toxicity as determined by microbiota classes that were
measured in the discovery cohort (established via un-
supervised clustering) and predicted (by the decision
tree model) in the validation cohorts, and the rate of
acute GI toxicity in the subgroup of patients found
(discovery cohort) or predicted (validation cohorts) to
have high-risk microbiota.

In the MicroLearner validation cohort, the model
predicted 5 patients with high-risk microbiota (6% of the
population), with a 60% toxicity rate (3/5), consistent
with the incidence and characteristic toxicity rate
observed in high-risk microbiota patients of the dis-
covery cohort (Supplementary Tables S14 and S15).

In the MARS cohort, a higher rate of toxicity in the
high-risk class predicted by the model was also
observed, with the model separating high-risk (toxicity
rate: 33%) and moderate-risk (23%) classes, with no
patients in the low-risk class (Supplementary Table S15).

Additionally, when we stratified the mean rectal dose
received by patients in the MicroLearner validation
cohort by predicted microbiota risk class and by toxicity
group (Fig. 3d), we observed that a significantly lower
dose was associated with high-risk microbiota patients
that did not develop toxicity compared to high-risk pa-
tients that did develop acute GI toxicity and to patients
in other microbiota risk classes (Anova, p = 0.0016).
Discussion
To our knowledge, we report the most extensive study
investigating whether the intestinal microbiome at RT
starts associates with the development of acute GI
toxicity in a clinical setting, with data from 215
consecutive PCa patients enrolled between 2017 and
2019 who received high-dose exclusive or post-
prostatectomy RT.

We show that a low diversity of the intestinal
microbiota is a clinical risk indicator of the onset of GI
side effects induced by RT during treatment. Bacterial
diversity is a high-level measure of a healthy microbiota,
and reduced diversity is associated with multiple con-
ditions, including inflammatory bowel diseases, dia-
betes and obesity, and is often associated with radio-
induced GI toxicity in cohort studies.5

We also found that a lower alpha-diversity of the core
intestinal microbiota (made of 18 genera having a rela-
tive abundance ≥2% in ≥10% of the discovery cohort)
was significantly associated with toxicity, suggesting that
diversity can be robustly estimated from a subset of the
microbiome and this measure can then be used for
prediction purposes. This observation also suggested
that core microbiota composition may predict a patient-
specific risk of radiation-induced intestinal side effects.
We did not find, however, a specific bacterial genus in
the core associated with toxicity. This is consistent with
previous studies and illustrates the functional
redundancy of many bacteria, suggesting that the
microbiome function is at least as relevant as taxonomy
for prediction.9

An unsupervised clustering analysis of the core
microbiota composition identified a subset of patients
with higher toxicity rates. The functional characterisa-
tion of the bacterial communities of these high-risk
patients pointed to a selection of species that are more
adapted for coping with oxidative stress and phosphate
scarcity. Specifically, we found a higher relative abun-
dance of Bacteroides and Sutterella (enhanced ahpF and
phosphate-deficiency induced ATPase PhoH2) and,
conversely, under-abundance of oxygen-sensitive Rose-
buria and phosphate-metabolising Faecalibacterium.

This suggests that the microbiota composition might
reflect a host environment characterised by increased
reactive oxygen species (ROS) levels. Such an environ-
ment can be expected to predispose to more severe
damage of the intestinal epithelium and prolonged pro-
inflammatory responses following radiation oxidative
effects23,24 and, consequently, to radiation-induced GI
toxicity.

Bacterial communities might also directly contribute
to altered levels of ROS and oxygen gradients in the
intestinal environment through the exchange of cations,
such as Mg2+, Fe2+ and Na+, and the release of sig-
nalling bacterial metabolites, including short-chain fatty
acids. Short-chain fatty acids (SCFAs), including buty-
rate (butanoate), are bacterial-produced metabolites
essential for intestinal homeostasis and have been sug-
gested to protect against radiation-induced GI toxicity by
consolidating the mucus layer and acting as molecular
triggers for the recruitment of enterocytes and mucosal
Treg cells.24,25 Moreover, butyrate utilisation by enter-
ocytes increases the consumption of oxygen and acti-
vates hypoxia-inducible factors, contributing to the basal
hypoxic tone of the intestine.23 Roseburia and Faecali-
bacterium showed the highest contribution to butanoate
metabolism (Supplementary Fig. S13) and were more
abundant in the low-risk compared to the high-risk
class, consistent with the fact that R. intestinalis and
F. prausnitzii are the most abundant butyrate-producing
bacteria found in human faeces.

Consistently, our analysis highlighted the benefit of
butyrate synthesis, which was found to be enhanced in
the intestinal microbiota of patients at low risk for
toxicity. Interestingly, Guo et al., reporting on the
radioprotective role of SCFAs, observed that butyrate-
and propionate-treated mice presented significantly
reduced levels of intracellular ROS in bone marrow
stem cells after whole-body irradiation.26

Besides, these characteristic microbiota traits asso-
ciated with the risk of developing toxicity share simi-
larities with dysbiosis observed in pro-inflammatory
intestinal states in general. For example, a higher
abundance of bacteria capable of withstanding a highly
oxidative environment27 is also associated with intestinal
www.thelancet.com Vol 106 August, 2024
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inflammation in Crohn’s disease, and a profoundly
decreased abundance of butyrate-producing genera was
observed in patients following conditioning chemo-
therapy.28 Interestingly, the monotypic genus Flavoni-
fractor, which we found significantly overabundant in
the toxicity patients among non-core genera, was re-
ported to associate with colorectal cancer in an Indian
cohort with a potential explanation in its ability to
degrade beneficial anticarcinogenic flavonoids, such as
quercetin, that could function as antioxidant
molecules.29

We detected an influence of the inflammatory envi-
ronment in modulating the response to radiation, with
an OR of 2 for a one-point increase in the polycitokinic
risk score based on the plasma concentration of CCL2,
TNFR1 and TNF-α. Despite this association, the poly-
citokinic score distributions for patients with and
without toxicity overlapped significantly, and the poly-
citokinic risk score had limited discrimination power.

We also investigated the association between GI
toxicity and dosimetric/patient-specific risk factors. We
did not find statistically significant associations between
rectal doses and acute GI morbidity. The mean dose to
the rectum was already optimised in the planning phase
following guidelines (maximum mean rectal dose
55.7 Gy; interquartile range [38–45] Gy), and the limited
variation of this parameter intrinsically limits its po-
tential as a toxicity predictor. We found no statistically
significant association between toxicity and patient fac-
tors (age, BMI, comorbidities, diet, smoking), even after
including them in a multivariable logistic regression
together with Shannon’s index for the alpha diversity of
the patients’ core microbiota. We observed trends for
physical activity (6.2% vs 13.7% toxicity rate in active
and sedentary patients, respectively, p = 0.1), diabetes
(20.8% vs 9.9% in diabetic and non-diabetic patients,
p = 0.11), and consumption of animal fats and proteins
(19% vs 9.6% toxicity rate in patients with high vs low
intake). Plant-based diets are associated with healthy
and diverse intestinal microbiota,23 while diabetes is
known to increase the risk of RT-induced side effects,
likely due to microvasculature dysfunction and impair-
ment in tissue repair mechanisms.30,31 Our study was
limited by design in the possibility of investigating how
dietary habits could modulate the response to radiation
and how the microbiota composition of high-risk pa-
tients could be associated with dietary features. Indeed,
much longer times are required to enrol patients on
diverse non-prevalent diets, such as vegetarian or vegan
diets.

When considering drugs, patients taking statins
regularly exhibited a significantly lower risk of toxicity
(3.4% vs 14% for statin and non-statin users, p = 0.019),
consistent with previously reported protective effects of
this class of drugs.32

We delineated a methodology to construct a clinical
model predicting a microbiota-based risk of developing
www.thelancet.com Vol 106 August, 2024
toxicity for single patients. After using unsupervised
clustering to discover patterns within the microbiota
composition, we computed the toxicity rate in each
cluster to distinguish clusters in those with a signifi-
cantly higher toxicity rate (high risk), those with a
significantly lower toxicity rate (low risk) and those with
intermediate non-significantly different toxicity rates
(moderate or intermediate risk). Clustering is more
effective than building signatures using multivariable
regression when the feature set is highly dimensional
and when the endpoint of interest is associated with
anomaly detection (patients with radio-induced toxicity
in well-optimised radiotherapy plans can be considered
anomalies/outliers). Accordingly, we used machine
learning to develop a decision tree (the MICLIDE Tree)
to categorise patients in the high-/moderate-/low-risk
classes, and we tested the model on the independent
populations by checking that patients classified as high-
risk still exhibited a significantly higher toxicity rate.

Our clinical decision tree algorithm was imple-
mented and validated using microbiota data from the
MicroLearner/Italy (Thermofisher sequencing) and the
MARS/UK cohorts (Illumina sequencing). Despite the
limitations due to the mono-institutional nature of the
MicroLearner study, the results in external validation
show that the predictive features identified, consisting
of the relative abundance of the genera Faecalibacterium,
Bacteroides, Parabacteroides, Alistipes, Prevotella and
Phascolarctobacterium, appear to generalise prediction
beyond sequencing technology and platforms and
minimise biases associated with geographic origin of
patients. In the MicroLearner validation cohort, the
model predictions were consistent with the incidence
and characteristic toxicity rate observed in high-risk
microbiota patients of the discovery cohort. In the
MARS cohort, a higher rate of acute side effects was
expected compared to the other cohorts because all pa-
tients received whole pelvis RT, rather than mixed whole
pelvis and prostate-only RT. Also, different criteria to
score toxicity (see methods) might have contributed to
capturing more punctual, less-sustained forms of acute
GI toxicity. Despite these differences, a higher toxicity
rate in the high-risk class predicted by the model was
also observed, with the model separating high-risk
(toxicity rate: 33%) and moderate-risk (23%) classes,
with no patients in the low-risk class. We acknowledge
potential biases of 16S rRNA marker gene sequencing
for bacterial community profiling due to uneven PCR
amplification of gene regions. However, in terms of
costs and time, it remains the fastest and most afford-
able way to implement large-scale microbiota profiling
of patients in the clinics.

The MICLIDE Tree can be straightforwardly trans-
lated into clinical practice to assess pre-radiotherapy
toxicity risk and optimise radiotherapy planning by, for
example, tightening radiation dose constraints in pa-
tients at higher risk of toxicity or using rectum spacers
13

http://www.thelancet.com


Articles

14
selectively in patients at higher risk of GI side effects. It
may also aid the design of interventional measures to
manipulate bacterial composition to improve early and
late side effects, particularly by selecting patients more
likely to benefit from those interventions. Given that
68% of the MicroLearner patient population received
irradiation to the whole pelvis, the analytical approach
and methodology developed here and the clinical deci-
sion tree model obtained might have broader applica-
bility to other types of cancer whose treatment is also
based on the irradiation of the abdomen or pelvis.

Interestingly, there exists a consequential behaviour
between acute and late toxicity, with patients developing
acute gastrointestinal toxicity having higher chances of
developing also late gastrointestinal side effects. This
known clinical implication also indirectly makes the
results presented in this manuscript relevant for un-
derstanding late toxicity in the context of prostate cancer
radiotherapy.

Our findings are based on statistical associations and
patterns discovered by the use of machine learning
techniques. To better elucidate the consequences that an
altered community functionality might have on the host
and open to interventional bacteriotherapy in patients at
high risk for toxicity, we envisage that future research by
means of different omics technologies, including
shotgun metagenomics and metabolomics, will be the
optimal strategy.
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