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Abstract: To non-destructively and rapidly monitor the chlorophyll content of winter wheat leaves
under CO2 microleakage stress, and to establish the quantitative relationship between chlorophyll
content and sensitive bands in the winter wheat growing season from 2023 to 2024, the leakage rate
was set to 1 L/min, 3 L/min, 5 L/min, and 0 L/min through field experiments. The dimensional
reduction was realized, fractional differential processing of a wheat canopy spectrum was carried
out, a multiple linear regression (MLR) and partial least squares regression (PLSR) estimation model
was constructed using a SPA selection band, and the model’s accuracy was evaluated. The optimal
model for hyperspectral estimation of wheat SPAD under CO2 microleakage stress was screened. The
results show that the spectral curves of winter wheat leaves under CO2 microleakage stress showed a
“red shift” of the green peak and a “blue shift” of the red edge. Compared with 1 L/min and 3 L/min,
wheat leaves were more affected by CO2 at 5 L/min. Evaluation of the accuracy of the MLR and
PLSR models shows that the MLR model is better, where the MLR estimation model based on 1.1, 1.8,
0.4, and 1.7 differential SPAD is the best for leakage rates of 1 L/min, 3 L/min, 5 L/min, and 0 L/min,
with validation set R2 of 0.832, 0.760, 0.928, and 0.773, which are 11.528, 14.2, 17.048, and 37.3% higher
than the raw spectra, respectively. This method can be used to estimate the chlorophyll content of
winter wheat leaves under CO2 trace-leakage stress and to dynamically monitor CO2 trace-leakage
stress in crops.

Keywords: microleakage; SPAD; wheat; fractional order differentiation; multiple linear regression

1. Introduction

With the acceleration of industrialization and increasing energy demand, CO2 emis-
sions have become a global concern [1–3]. CO2 geological storage has become an indis-
pensable technological pathway to achieve the goal of a dual-carbon strategy because it
can control CO2 emissions while considering socioeconomic development [4]. However,
in the geological storage of CO2, there is a risk of leakage or seepage of the stored CO2
outside the storage area, which may have serious impacts on the environment, as well
as the surrounding organisms [5]. In agricultural production, CO2 microleakage occurs
because of facility-based agriculture and improper disposal of industrial waste, and its
potential stress on crop growth may occur [6].

Wheat is one of the most widely grown food crops worldwide [7,8], but its growth
and yield are influenced by a variety of environmental factors. In recent years, it has
been shown that changes in CO2 concentration can significantly affect the physiological
characteristics of wheat, including photosynthetic efficiency and chlorophyll content [9].
Among them, chlorophyll content (SPAD), an important indicator of plant photosynthetic
capacity and growth, is crucial for the yield and quality of wheat [10]. Therefore, it is of
great theoretical and practical significance to study changes in the chlorophyll content of
wheat under CO2 microleakage stress and its monitoring methods.
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With the rapid development of remote sensing technology, the quantitative monitoring
of CO2 stress over large areas will become possible. Remote sensing technology plays a
significant role in monitoring crop growth and development in large-scale farmlands [11].
Hyperspectral remote sensing technology has the advantages of high spectral resolution,
strong band continuity, and broad information, which can obtain data on fine changes in
the physiochemistry of crop leaves [12], and the monitoring has the characteristics of being
non-destructive, continuous, and fast. Rapid, non-destructive, and accurate quantitative
monitoring of CO2 microleakage using hyperspectral technology is one of the most impor-
tant methods for CO2 stress diagnosis. Currently, remote sensing spectral monitoring of
plant physiological parameters has been extensively employed in the domains of biotic
and abiotic stresses. Xu et al. [13] investigated the hyperspectral traits of cotton leaves
under waterlogging stress and the estimation model of chlorophyll content, and acquired
the estimation model of chlorophyll content of cotton leaves under waterlogging stress.
Xia et al. [14] probed into the spectral sensitive interval of corn leaves under heavy metal
copper stress and proposed a novel vegetation index based on sensitive bands for heavy
metal copper stress, which is conducive to the future monitoring research of heavy metal
copper in corn leaves. Goswami et al. [15] carried out hyperspectral research on rice under
N, CO2, and temperature stresses and discovered that the red edge position in the spec-
tral characteristic parameters is an excellent indicator for crop stress monitoring. When
plants are under stress, the red edge position shifts towards the short-wave direction in
an extremely sensitive manner, which is also in line with the current spectral research
findings of plant stress. Noomen and Skidmore’s [16] research specifically points out that
CO2 exposure significantly alters the distance between the red edge position (REP) and the
yellow edge position (YEP) of plant leaves, which is a direct manifestation of the impaired
photosynthetic capacity of plants. The research by Lakkaraju et al. [17] further confirmed
the efficacy of hyperspectral remote sensing in monitoring and evaluating the impact of
environmental stresses on plants by analyzing the relationship between various vegeta-
tion indices and soil CO2 concentration. These vegetation indices, such as the Structure
Insensitive Pigment Index (SIPI) and Chlorophyll Normalized Difference Vegetation Index
(Chl NDI), all exhibit high sensitivity in identifying stresses related to elevated CO2. To
conclude, although remote sensing spectral technology has explored numerous biotic and
abiotic stresses, spectral research on CO2 stress is relatively infrequent, particularly for
spectral research on CO2 stress of crops.

The estimation of crop chlorophyll content is a hot research topic at home and abroad,
mostly based on the correlation between original spectra [18,19], spectral index construc-
tion [20–22] and integer-order spectral transformation [19], and chlorophyll content, and
it is difficult to dig the information implied by the hyperspectral data by relying only on
these parameters. Fractional order discretization can improve the utilization rate of spectral
information and enhance the sensitivity of spectral information to crop physicochemical
parameters [23,24]. Li et al. [25] carried out fractional order discretization of unmanned
aerial vehicle (UAV) hyperspectral data, which successfully discretized the local informa-
tion, effectively reduced the influence of environmental background factors, improved
the correlation with the chlorophyll content of potato of different fertility stages, and ac-
curately estimated the chlorophyll content of potato of different fertility stages based on
machine learning. Liu et al. [26] found that the optimal fractional order differential spectra
corresponding to potato biomass at different fertility periods appeared at different orders,
and the correlation was significantly improved compared with the integer order, which
greatly improved the estimation accuracy of potato above-ground biomass. Comparison
of previous studies revealed that, on the one hand, there have been more studies on the
construction of chlorophyll content estimation models using hyperspectral technology, but
fewer studies on the hyperspectral modelling of chlorophyll content estimation under CO2
microleakage stress; on the other hand, the screening of representative spectral bands is
the basis for the construction of a hyperspectral estimation model, in which SPA has been
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proven by more researchers to be able to efficiently extract the characteristic spectral bands
and improve the accuracy of the estimation model [27,28].

In this study, we obtained winter wheat canopy hyperspectral reflectance data and
SPAD under four CO2 leakage rate levels in winter wheat through field experiments. First,
we processed the raw spectra using fractional-order differential processing, introduced
the SPA to select the sensitive feature bands, and then used the MLR and PLSR models to
make a hyperspectral estimation of SPAD of wheat under microleakage stress to assist in
the determination of CO2 microleakage information.

2. Materials and Methods
2.1. Overview of the Research Area

The study area is located in Dong ying District, Dong ying City, Shandong Province
(118◦7′ E, 32◦2′ N), as shown in Figure 1. The basic climatic characteristics of the study
area are cold winters and hot summers, four distinct seasons with a multi-year average
temperature of 12.8 ◦C, and an average annual precipitation of 555.9 mm, which is mostly
concentrated in the summer months and accounts for 65% of the annual precipitation, with
large inter-annual variations in precipitation. The experiment was carried out in 2023, with
winter wheat sown in November and harvested in June of the following year, and the
experimental area was divided into 30 field plots, each with an area of 4 m × 4 m. The
experiment was set up with four leakage rates as shown in Figures 2 and 3, which were
0 L/min (control group), 1 L/min, 3 L/min, and 5 L/min, respectively. Other management
measures followed local winter wheat field management standards.
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2.2. Experimental Field Design

In the experimental plot, in order to safely and effectively transport CO2, corrosion-
resistant copper pipes were adopted as the gas transmission medium in the initial stage.
As the pipeline approached the plot area, in order to adapt to the plot environment and
reduce costs, lightweight and durable PVC pipes were used instead. The PVC pipe starts
from the northern edge of the plot, with an inclined posture forming a 30◦ with the vertical
line, and penetrates about 60 cm deep into the centre of the plot to achieve precise gas
distribution. At the end of the PVC pipe, eight evenly distributed small holes are carefully
designed, and these holes face in different directions, aiming to ensure that CO2 can form
a uniform concentration distribution when leaked and avoid local accumulation. At the
same time, to prevent soil particles from entering and blocking these small holes, a layer
of fine gauze is specially covered at each small hole, which plays a good protective role.
To precisely control the leakage rate of CO2, a programmable logic controller (PLC) was
introduced as the core for remote monitoring and adjustment. Through this advanced
system, the leakage speed of CO2 was precisely set at 1 L/min, 3 L/min, and 5 L/min,
and all-weather uninterrupted automatic control was achieved. Since the start of the
experiment, this stable and continuous leakage process continued until the experiment was
successfully completed.

In the experimental design, in order to ensure the accuracy of the experimental results,
both the control group and the stress group followed a strict and identical management
process, covering key links such as watering, weeding, fertilization, and pest control,
aiming to provide a unified environment conducive to plant growth. The only significant
difference between the two is that the experimental group plot introduced the specific
variable of CO2 injection, while the control group did not carry out this operation in order
to explore the specific impact of CO2 on plant growth.

2.3. Data Acquisition

As shown in Figure 4a, canopy spectra were measured using an SVC HR-1024i spec-
trometer (Spectra Vista Corporation, Poughkeepsie, NK, USA) [29] to detect canopy spectral
reflectance in the wavelength range of 350–2500 nm with a fibre optic field of view of 25◦.
Five sampling points were deployed in each experimental area, and the spectral reflectance
measurements were performed on clear, windless, and cloudless days between 10:00 and
14:00 to minimize errors resulting from variations in illumination conditions [30]. Spectral
data have different resolutions depending on the range of bands, specifically ≤3.3 nm
in the interval 300–1000 nm, ≤9.5 nm in the interval 1000–1890 nm, and ≤6.5 nm in the
interval 1890–2500 nm. In order to unify the analytical standards, the spectral resolution
was resampled to 1 nm using the SVC professional software 7.1, and the optical fibre was
accurately aligned with the canopy during the measurement process, maintaining a dis-
tance of about 1 m. The distance was maintained at approximately 1 m, with a single scan
lasting approximately 3 s. Data were collected at five different sampling points for each plot
to ensure that the results were comprehensive and representative. To eliminate the effect of
noise in the spectral data, the study selected hyperspectral reflectance data in the range
of 350–1350 nm for analysis and modelling. Winter wheat leaf chlorophyll was obtained
using a SPAD-502 handheld chlorophyll meter (Minolta Corporation, Tokyo, Japan), and
the mid-leaf part of each leaf sample was measured separately during the measurement
process as shown in Figure 4b, and the average instrumental measurement from SPAD was
used as the chlorophyll content of leaf samples. Canopy spectral reflectance was collected
by randomly selecting 5 leaf samples at the canopy top of each field and taking the average
value as the measured value of each sample point.
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2.4. Methods of Data Processing
2.4.1. Data Preprocessing

When measuring spectral data in the field, due to the influence of uncontrollable
factors (such as light, wind, observation angle, etc.), spectral data may produce distortion
or error, which affects the accurate reflection of actual feature and subsequent data analysis
and modelling. Therefore, strict quality control of data measured using spectrometers
such as the SVC HR-1024i is essential. This includes the removal of invalid bands, the
exclusion of invalid samples, and the exclusion of pathological samples (samples with
missing bands or obviously abnormal jumps). These quality control measures ensure
the representativeness and accuracy of the spectral data, and provide a reliable basis for
subsequent analyses.

Spectral data often contain “burr” noise due to the differences in energy responses,
which reduce the signal-to-noise ratio and affect the analysis. In order to obtain a smooth
spectral curve, it is necessary to carry out smoothing to eliminate noise and retain useful
information. In this paper, the five-point weighted moving average smoothing method is
adopted to achieve spectral smoothing while retaining the details through differentiated
weight allocation.

2.4.2. Fractional Order Differentiation

Fractional order differentiation is a fundamental mathematical operation with a wide
range of applications in fields such as image enhancement processing and signal analy-
sis [31]. Fractional order differentiation extends the concept of integer order differentiation,
which is an area dedicated to the study of the mathematical properties and applications of
arbitrary order differentiation [32,33]. The traditional integer order differentiation ignores
some information related to the chlorophyll content, which affects the model accuracy. The
fractional order differentiation can refine the local information of the hyperspectral data,
and it can also effectively denoise and obtain the fine detail information. The mathematical
order differentiation operation is mainly based on Grunwald–Letnikov (G-L) fractional
order differentiation one-dimensional function difference expression to achieve, in order to
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mine the hyperspectral finer gradient information as well as to reduce the noise and inter-
ference that inevitably arises in the sampling process, the wheat leaf hyperspectral curves
under different treatments, which are transformed with a fractional order differentiation
between 0 and 2 with a step size of 0.1. A total of 21 fractional order differential transforms
were obtained, and specific algorithmic procedures for the calculation of fractional order
differentiation were implemented using Maltalb2019b.

2.4.3. Successive Projections Algorithm

The successive projections algorithm (SPA) is programmed to screen out the feature
bands from the sensitive region. SPA is an emerging dimensionality reduction method,
which achieves substantial spectral dimensionality reduction and at the same time ensures
that the covariance between the feature bands is minimized, and in recent years, it has been
widely used in the research of crop hyperspectral information [34].

2.5. Methods of Modelling

In this study, multivariate linear regression (MLR) and Partial Least Squares Regression
(PLSR) were used as a modelling method to construct the estimation model and validate it.
MLR is an important method in multivariate statistical analysis, which is widely used due
to its wide range of applications, ease of operation, and other characteristics [35]. PLSR
is a linear regression method that combines multiple linear regression, typical correlation
analysis, and principal component analysis, which can effectively overcome the difficulties
that cannot be solved by general least squares regression analysis methods, and has obvious
advantages for continuous spectral analysis, and is usually used to construct predictive
models. The stability and predictive ability of the model is mainly evaluated using the
highest Coefficient of determination (R2), Root mean square error (RMSE). The calculation
formula is as follows:

R2 =
∑n

i=1(ŷi − yi)
2

∑n
i=1(yi − y)2 (1)

RMSE =

√
1
n∑n

i=1(ŷi − yi)
2 (2)

In the formula, ŷi is the predicted value; yi is the observed value; y is the mean of the
sample observations; n is the total number of samples; and i is the sample number.

3. Results
3.1. Effect of Different Concentrations of CO2 on SPAD in Wheat

The maximum (max), minimum (min), mean, and standard deviation (SD) values
of wheat SPAD at different CO2 concentrations were calculated (Table 1). The maximum,
minimum, and mean values of wheat SPAD under ventilated CO2 were lower than those
of the control, and the highest value of SPAD of wheat leaves in the control group was
65.5. Among the three types of CO2 concentration ventilation, the minimum value of wheat
SPAD under 1 L/min CO2 concentration was 10.2, and the maximum value of wheat SPAD
was 62.0. The smallest SD value was obtained in the case of ventilated wheat SPAD under
1 L/min; it can be seen in Figure 5 that the wheat leaves in the control group had the
highest value of 65.5, while those in the control group had the lowest value of 51.1. The
SPAD of wheat leaves in the control group was the highest, indicating the best growth of
wheat in the natural ambient air. The 5 L/min treatment had the lowest SPAD, which was
obvious from the results that, with the increase in the input CO2 concentration, there was a
significant gradient decrease in the SPAD of wheat leaves, control > 1 L/min > 3 L/min
> 5 L/min, indicating that with the increase in CO2 concentration, wheat leaves were
increasingly affected by CO2, and wheat leaves were increasingly damaged, leading to a
decrease in chlorophyll content.
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Table 1. Wheat leaf SPAD statistics.

Indicators Stress Group 1 L Stress Group 3 L Stress Group 5 L Control Group

min 10.2 5.5 7.0 51.1
max 62.0 60.1 60.2 65.5

mean 42.9 36.6 35.3 59.5
SD 15.6 17.7 18.3 3.7
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Figure 5. SPAD of wheat under different CO2 concentration gradients. Different lowercase letters
indicate significant (p < 0.05) differences among the four stress rate levels under different treatments.

3.2. Effects of Different Concentrations of CO2 on the Raw Hyperspectral Features of Wheat

As can be seen in Figure 6, the hyperspectral reflectance curves of wheat leaves
treated with different CO2 concentrations have similar basic characteristics, as follows: the
reflectance increases around 550 nm in the green band, forming a peak—‘green peak’. In
the red band, the emissivity decreases around 680 nm, forming a valley—‘red valley’. The
reflectance of wheat leaves increased sharply in the band 700–750 nm, and the position
with the largest growth rate formed a hyperspectral feature—‘red edge’—which was
maintained at a high level thereafter. The height of the green peak (around 550 nm)
was ranked as follows: control < 1 L/min < 3 L/min < 5 L/min. It was found that the
height of the green peak was related to the gradient of CO2 concentration, and it was easy
to distinguish between the spectral reflectance curves of SPAD wheats at different CO2
concentrations. Compared with the CO2 concentration in the natural environment, the
elevation of hyperspectral reflectance of wheat leaves under the 5 L/min treatment was
significantly higher than that of other treatments, indicating that wheat under 5 L/min
treatment was subjected to the greatest CO2 stress.
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In our experiments, we observed significant changes in the spectral characteristics
of the wheat canopy at different CO2 leakage rates. These changes may be attributed to
the physiological adaptation mechanisms of wheat plants in response to different CO2
concentrations. Specifically, an increase in the concentration of CO2, which is the main raw
material for photosynthesis, may promote the rate of photosynthesis and lead to changes
in chlorophyll content and photosynthetic pigment distribution, which in turn affects
the spectral reflectance characteristics [16]. These changes are particularly pronounced
in the red and near-infrared regions, as chlorophyll absorption and reflection in these
bands are important indicators of photosynthetic efficiency [36]. Furthermore, high CO2
concentrations may also indirectly alter the spectral characteristics of leaves by affecting
physiological processes such as stomatal conductance and transpiration. The combined
effect of these physiological mechanisms enables us to monitor and assess the growth status
and stress response of wheat under different CO2 concentrations using spectral analysis.

3.3. SPAD-Sensitive Wavelength Selection Analysis

The results of SPA band selection are shown in Figure 7. We selected a total of 10 SPAD-
sensitive bands as independent variables for the subsequent model. The distributions of the
10 bands are shown in Figure 7a–d. The x-axis denotes the wavelengths of 400–1350 nm,
the y-axis denotes the reflectance of the original wavelengths, and the distributions of
the ten bands are labelled by the red squares. It is worth noting that the first three bands
marked with red squares correspond to the peaks and troughs of the reflectance curve.
These bands were chosen based on their sensitivity to changes in chlorophyll content to
capture the spectral signature of chlorophyll at specific wavelengths. Overall, these ten
bands are evenly distributed across the spectrum.
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As a flexible mathematical tool, the fractional order derivative shows unique advan-
tages in spectral analysis. Compared with the traditional integer order derivative, the
fractional order derivative can describe the local features and trends in the spectral curves
more finely [37]. In this study, by adjusting the order of the fractional order derivative, we
were able to effectively extract spectral features highly correlated with the SPAD values of
wheat, which may not be obvious or difficult to identify directly in the original spectra [38].
The introduction of the fractional order derivative not only improves the processing flexibil-
ity and information extraction ability of the spectral data, but also enhances the sensitivity
of the model to subtle changes in the spectra, thus improving the accuracy and stability of
the SPAD estimation model. In addition, the fractional order derivative can also suppress
the interference of spectral noise to a certain extent, making the model more robust. The
wavelengths selected from the fractional order differential spectra using the SPA method
are shown in Figure 8. Under CO2 carbon stress, in the fractional order differential spectra,
the wavelengths selected using the SPA method showed that the 0.1–0.2 order wavelengths
around 400 nm were less selected, which may imply that the characteristics of these bands
are less important for prediction under stress experimental conditions, and the rest of the
wavelengths were in the near-infrared band. In Figure 8a–c, the wavelengths selected
using the SPA method are distributed in the region after 600 nm, mainly in the regions
of 600–800 nm and 900–1000 nm, and there are wavelengths within the first order of se-
lection distributed in the region of 1100–1200 nm for all four treatment levels, which may
be important for distinguishing the important information for predicting experimental
results. These regions are usually associated with the water content of plant tissues, their
cellular structure, and the indirect effects of pigments such as chlorophyll. Under CO2
stress conditions, changes in chlorophyll content may be reflected in spectral features in
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the near-infrared (NIR) band by affecting the water status and cellular structure of the
plant [16]. In the control group, there were a small number of wavelengths between 700 and
800 nm at order 0.5–1.6, and all other wavelengths were after 900 nm (Figure 8d). Overall,
the SPAD-sensitive wavelengths are rarely in the visible band, and most of them are in the
NIR band except for the 0.1–0.4 order band; the SPAD-sensitive wavelengths are mainly
after 900 nm, and most of the SPAD-sensitive wavelengths selected using the SPA method
are in the NIR band as the fractional order increases. Increasing CO2 concentrations can
affect the photosynthetic efficiency of plants, which in turn affects the rate of chlorophyll
synthesis and degradation. At high CO2 concentrations, plants may increase their fixation
of carbon, leading to changes in chlorophyll content or activity [16]. Such changes may
be reflected by alterations in spectral characteristics, especially in the near-infrared (NIR)
band, which is more sensitive to changes in the internal structure and water status of the
plant [36]. The sensitive wavelengths selected in the NIR band using the SPA method
may precisely capture these subtle spectral changes induced by CO2 stress, and thus serve
as a key indicator for distinguishing the physiological status of plants under different
stress conditions.
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3.4. Modelling of SPAD Estimation in Wheat under CO2 Stress

The SPAD-sensitive wavelength was selected using the SPA method to establish the
SPAD estimation model under CO2 stress. Based on the characteristic wavelengths selected
from Figure 7 to Figure 8 as the independent variables of modelling parameters, the
estimation model of SPAD content under CO2 stress was constructed using the measured
values of SPAD in wheat leaves under different treatments as the dependent variable. The
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results are presented in Figure 9. The overall R2 of the test data set indicates that the PLSR
model is inferior to the MLR model, while the RMSE indicates that the PLSR model is
greater than the MLR model. For the 1 L/min, the PLSR model’s R2 is merely 0.058 higher
than the MLR model at order 0.5, and the RMSE is lower than that of the MLR model at
order 0, 0.1, 0.7, 1.2, and 1.6, and for other orders, the MLR model is better than the PLSR
model. For the 3 L/min, the PLSR model surpassed the MLR model at steps 0.3, 0.4, 0.5,
0.6, and 1.2. For the 5 L/min, the MLR model performed better than the PLSR model at
steps 0–0.6, and the PLSR model was mostly superior at subsequent steps. For the control
group, the PLSR model outperformed the MLR model only at orders 1.2 and 1.8. The
results demonstrate that the MLR model possesses high accuracy and stability, and the
inverse values can fit the measurement results well.
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Figure 10 shows the fractional order difference in each fraction of R2 and RMSE for the
SPAD-estimated MLR model under stress and control, where plots Figure 10a–d represent
the metrics of the validation set accuracy test at different stress levels, respectively. The
1 L/min stress modelling results are shown in Figure 10a, from which it can be seen that the
model accuracies after the 1.7 order all decreased; from the validation set of the accuracy
indexes, it can be seen that the highest validation accuracy is the 1.1-order model, with an
R2 of 0.832, which is 11.528% higher than that of the 0-order, and the RMSE is the lowest in
the validation set, with an R2 of 6.321, which is 18.732% lower than that of the 0-order. The
3 L/min model results are shown in Figure 10b, which are similar to the 1 L/min model
results, with a decrease in the 2.0-order accuracy; in the validation set, the 1.8-order model
results are superior, with an R2 of 0.760, which is 14.2% higher than the 0-order, and an
RMSE of 2.211, which is 25.9% lower than the 0-order.
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group 3 L, (c) stress group 5 L, (d) control group.

The 5 L/min model results are shown in Figure 10c. The overall accuracy of the
validation set is better, and the validation set is relatively better in order 0.1 to 0.4; in the
validation set, the model is optimal in order 0.4, with an R2 of 0.92, which improves by
17.048% compared with the 0th order, and an RMSE of 5.106, which reduces by 34.997%
compared with the 0th order. The results of the control group are shown in Figure 10d,
where the accuracy of each fractional order model is improved compared to the 0th-order
model. In the validation set, the 1.7-order is the optimal model with an R2 of 0.773, which
is improved by 37.3% compared to the 0th-order.

Based on the comprehensive analysis results of the validation set results under each
stress concentration, the optimal fractional order differential model under stress was
selected, in which 1 L/min was the optimal estimation model with 1.1 order, 3 L/min was
the optimal model with 1.8 order, 5 L/min was the optimal model with 0.4 order, and the
control group was the optimal model with 1.7 order. Based on the results of each stress,
the optimal fractional order differential estimation was used. The results of the model
validation set were plotted as scatter plots of measured and predicted SPAD values of wheat
leaves, with the solid line representing the fitted line and the dashed line representing the
1:1 line, and the results are shown in Figure 11.
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group measured and estimated SPAD values in stressed wheat.

As shown in Figure 11, the fitted lines of the scatter plots were observed to be closer
to the dotted line under each concentration of CO2 stress, indicating a certain degree
of accuracy in the estimation models. The scatter plots for 1 L/min and 5 L/min were
relatively evenly distributed on both sides of the dotted line, while most of the scatter plots
for 3 L/min and the control group were situated above the dotted line. This suggests that
the predicted values of the estimation models for 1 L/min and the control group were
relatively larger compared to the measured values, resulting in a relatively poor validation
accuracy of them in the four models. Upon comparison between 1 L/min and 5 L/min, it is
evident that their validation accuracies are comparable with R2 values above 0.75, placing
them in a higher grade among all four models.

Fractional differentiation can disclose diverse levels of detailed information in spectral
data. Lower fractional orders (e.g., 0.1–0.4) might preserve more of the smoothing char-
acteristics of the original spectrum while highlighting minute alterations in the spectrum,
which could be more susceptible to certain specific stress responses. Nevertheless, higher
fractional orders (such as those exceeding 1.7) might introduce excessive noise or overly
parse spectral information, leading to a reduction in model accuracy.

As depicted in Figure 11, the fractional order of the optimal model varies under
different stress levels. This implies that the spectral characteristics of plant leaves under
different stress conditions are specific, and it is necessary to select an appropriate fractional
order to capture these variations. Hence, the selection of the fractional order should
be adjusted in accordance with the specific stress conditions during model construction.
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Firstly, in this study, we employed SPA for feature selection to extract the bands that
are most sensitive to chlorophyll content from hyperspectral data. The distinct band
combinations selected using SPA (e.g., 1.1, 1.8, 0.4, and 1.7 differential) exhibit dissimilar
model performances at different CO2 leakage rates. This indicates that the feature selection
method can effectively reduce data redundancy and enhance the prediction accuracy of the
model. However, the performance disparities among the different feature combinations
might reflect subtle changes in the spectral properties of wheat leaves at different CO2
leakage rates, which might affect the sensitivity and accuracy of the model regarding
chlorophyll content. Secondly, we constructed both MLR and PLSR models and discovered
that the MLR model performed better in most cases. This might be because the MLR
model is more efficient when dealing with data sets featuring linear relationships, and
our data sets might be more linear after fractional differentiation processing. In contrast,
PLSR, although capable of handling the relationship between multiple independent and
dependent variables concurrently, might not be as flexible or accurate as MLR models
in certain circumstances. Therefore, the choice of model type and the matching of data
characteristics are crucial factors influencing the performance of the model. As the CO2
leakage rate increases (particularly from 1 L/min to 5 L/min), wheat leaves are more
significantly influenced and model performance improves (e.g., the validation set R² value
increases). This could be attributed to more pronounced changes in the spectral properties
of wheat leaves at higher CO2 leakage rates, and these changes provide the model with
more information to accurately predict chlorophyll content. However, it might also signify
that the generalization ability of the model requires further validation under extreme
environmental conditions.

4. Discussion

The SPAD of plant leaves reflects the growth level of the plant, determines its pro-
ductivity, and is a good indicator of plant growth status [39]. Different levels of CO2
concentration have different effects on wheat leaves and reflect different physiological and
ecological characteristics. In this study, wheat grown at 1 L/min was already persecuted by
CO2, and as the CO2 concentration increased, the SPAD of wheat leaves was subsequently
reduced. Until the CO2 concentration was increased to 5 L/min, the intensity of persecution
of wheat by high CO2 concentration increased. Previous studies have shown that elevated
CO2 concentration has different effects on the chlorophyll content of wheat at different
CO2 concentrations. Zhou Ning et al. [40] used an on-farm T-FACE system to monitor
the chlorophyll content of rice grown in a 550 µmoL·mol−1 environment, and found that
in the early stage of the rice season, the chlorophyll content significantly increased, and
then in the later stage, the chlorophyll content reduced rapidly. It was found that the
chlorophyll content was significantly increased in the early stage of rice, and then rapidly
decreased in the later stage, resulting in the phenomenon of ‘early senescence’. Using the
OTC system, Wang Peiling et al. [41] found that the chlorophyll content of winter wheat
leaves decreased after doubling the CO2 concentration, but the decrease varied according
to the fertility stage. The increase in soil CO2 concentration inhibits plant growth more
than any atmospheric greenhouse effect [42,43]. Previous studies have shown that high soil
CO2 concentrations inhibit photosynthesis in plants such as forage, alfalfa, and soybeans,
resulting in shorter plant heights, thinner stems, lower biomass, and lower chlorophyll
content [44,45]. From Figure 3, it can be clearly seen that the middle wheat obviously
turned yellow under 5 L/min leakage rate, but the maximum concentration and time that
plants can tolerate CO2 persecution are not yet conclusive, and further research can be
conducted in this area in the future.

Compared to the near-infrared band interval, chlorophyll absorbs visible light in the
short-wave interval and mainly absorbs blue and red light, so it will form a red valley,
and because chlorophyll does not absorb as much green light as other colours, the leaf is
green and the spectral curve shows green peaks [46]. The hyperspectral features of wheat
leaves changed under CO2 stress, and with the increase in the concentration of CO2, the
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hyperspectral features of wheat leaves changed more obviously, as shown in Figure 6.
From the original spectral curves, it can be learnt that the higher the CO2 concentration,
the higher the green peak. The green peak corresponds to the reflectance of the green
light band reflected from the inside of the wheat leaf. The higher the reflectance, the less
chlorophyll content inside the wheat leaf, the lower the absorption rate, and the less healthy
the wheat leaf is [47]. The more CO2-infested wheat leaves, the more reflections in the
green band and the higher green peaks than under other treatments. This indicates that
the stress on wheat increased with the increase in CO2 concentration, which is consistent
with previous findings. Keith et al. [48] showed that the reflectance of alfalfa changed
significantly at 650–750 nm under soil CO2 stress. Chen [49] et al. demonstrated that the
reflectance of sugar beet leaves under CO2 leakage stress was decreased at 550 nm and
increased at 680 nm.

For the final SPAD estimation model of stressed wheat, the results show that the
fractional order differential transform improved the accuracy of the SPAD estimation
model (Figure 11) with better results. The implementation of the method was simple
and efficient, and an accuracy of more than 0.90 for SPAD estimation in stressed wheat
could be obtained using only ten wavelengths (Figure 8c). Comparing the independent
variable composition and stability of the MLR estimation model at four CO2 concentration
levels, elevated CO2 concentration did not affect the construction of the SPAD estimation
model for winter wheat leaves. By comparing the estimation models at different CO2
leakage rates, we found that all of them had good estimation accuracy, but the accuracy
and stability of the 5 L/min model were better than those of the other leakage rates and
the control model, and the R2 of the estimation model could reach 0.928. Although the
estimation model of SPAD in winter wheat in the present study achieved good results, the
applicability of the model remains to be demonstrated in the future due to the number of
years of the experiments and the relatively small number of samples. However, due to the
small number of years and samples in the experiment, the applicability of the model needs
to be verified. In conclusion, the present study shows the feasibility of the MLR model for
estimating the SPAD of winter wheat under CO2 microleakage.

In practice, the specific impact of CO2 microleakage on wheat growth can be assessed
by comparing the changes in the spectral curves of wheat leaves (e.g., the ‘redshift’ phe-
nomenon of the green peak and the ‘blueshift’ phenomenon of the red margins) at different
CO2 leakage rates. This helps farmers and agricultural managers to identify environmental
stresses in time and take appropriate management measures. Based on the chlorophyll
content results predicted using the MLR model, farmers can develop more precise irriga-
tion and fertilization strategies to meet crop growth needs at different CO2 leakage rates.
For example, at higher CO2 leakage rates, the amount of nitrogen fertilizer applied can
be increased appropriately to mitigate the adverse effects of stress on crop growth. By
monitoring the growth performance of different wheat varieties under CO2 microleakage
conditions over a long period of time, combined with data on changes in chlorophyll
content, it is possible to screen out crop varieties that are more resilient and better able to
adapt to future climate change. This could help to improve the stability and sustainability
of agricultural production.

5. Conclusions

In this study, wheat canopy hyperspectral reflectance data were effectively processed
and analyzed by combining the fractional order differentiation method and SPA feature
selection technique, aiming to improve the estimation accuracy of SPAD values in CO2-
stressed wheat. The main conclusions are as follows:

(1) Successful pre-processing of hyperspectral data using fractional order differentiation
significantly improved the ability of the MLR model to estimate the SPAD values
of wheat under different CO2 leakage rates (1 L/min, 3 L/min, 5 L/min, 0 L/min).
The best models were based on 1.1, 1.8, 0.4 and 1.7 orders of differentiation, which
improved the R² values over the original spectral model on the validation set by
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11.528%, 14.2%, 17.048%, and 37.3%, respectively, indicating that appropriate spectral
transformations can effectively improve the model’s performance.

(2) The SPA method was used to accurately screen the feature wavelengths that were
highly sensitive to wheat SPAD from the huge amount of spectral information, and
these feature wavelengths played a key role in MLR modelling, further demonstrating
the importance of feature selection for improving model efficiency and accuracy.

In this study, the feature selection technique was integrated into hyperspectral technol-
ogy for the first time to achieve the accurate estimation of wheat’s SPAD value under a CO2
microleakage environment, which provides a solid theoretical foundation and technical
support for monitoring vegetation stress information and locating CO2 leakage points
using hyperspectral remote sensing. More advanced spectral processing methods and
feature selection algorithms will be explored in the future to further improve the model’s
accuracy and generalization ability. We will expand the experimental scope to study the
spectral response characteristics under different crop species, growing conditions, and
CO2 leakage concentration. We will combine these with remote sensing platforms, such as
drones and satellites, to achieve large-scale high temporal and spatial resolution monitoring
of vegetation stress and CO2 leakage.
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