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Abstract: Due to the limitations on the depth of field of high-resolution fluorescence microscope, it is
difficult to obtain an image with all objects in focus. The existing image fusion methods suffer from
blocking effects or out-of-focus fluorescence. The proposed multi-focus image fusion method based
on local maximum luminosity, intensity variance and the information filling method can reconstruct
the all-in-focus image. Moreover, the depth of tissue’s surface can be estimated to reconstruct the 3D
surface model.
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1. Introduction

Obtaining an all-in-focus image is very important for the automation of fluorescence
image collection. However, due to the limited depth of field of high-resolution fluorescence
microscope, it is hard to capture an image with all objects in focus, especially for thick
tissue slices [1,2].

The confocal microscope was proposed and built to adjust the stage or illumination
spot to find a focus position for every pixel. These pixels can then be combined to obtain an
image with all parts in focus [3–5]. Depth information can also be used to reconstruct the
3D model of the visible area [6–8]. However, it is too time-consuming to use this technique
for obtaining high-resolution images.

On the other side, a simpler type of fluorescence microscope called epifluorescence
microscope can obtain one image at a time, but many parts of tissue may be out of focus.
So, it is reasonable to obtain images at different depths and combine those images together
to obtain an all-in-focus image [9].

Normal image fusion methods have been proposed by many people. Wang et al.
proposed the complex shearlet features-motivated generative adversarial network. With of
help of the generative adversarial network, the whole procedure of multi-focus fusion is
modeled to be the process of adversarial learning [10]. Dong et al. proposed a new image
fusion framework by utilizing area-based standard deviation in the dual tree contourlet
transform domain [11]. De et al. proposed a method based on wavelet transformation and
maximum sharpness [12]. Li et al. proposed a method based on guided filter [13]. Guo et al.
proposed a method based on self-similarity and defocus information provided by a method
given by Zhuo and Sim [14,15]. The latter two methods both assign a weighted average
of pixels from different source images to the corresponding pixel in the fused image. The
final images fused by these methods are not clear in some cases and it is hard to obtain the
depth of tissue for every pixel as in a confocal microscope.

Actually, it is reasonable to make use of the property of fluorescence images that
the luminosity intensity and clarity have a strong correlation due to the architecture of
fluorescence microscopes [16]. This property has also been utilized to determine the
depth of a pixel in confocal fluorescent microscopes. So, we introduce the local maximum
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luminosity into the sharpness evaluation function. In our method, we combine it with the
variance of intensity that is usually used to measure the sharpness of common images to
form a new sharpness evaluation function suitable for fluorescence images [17,18].

However, unlike a confocal microscope, which has a pinhole at the detector to block
out-of-focus fluorescence, epifluorescence microscopes will receive out-of-focus fluores-
cence which will contaminate other portions of collected images. This kind of contamination
also interferes with the methods using weighted averages in the works of Li et al. and Guo
et al. [13,14].

As a result of out-of-focus fluorescence, the method used for confocal microscopes
does not work well for images collected using epifluorescence microscopes [19]. In order to
prevent out-of-focus fluorescence, we divide the whole visible area into different rectangular
blocks and use the new sharpness evaluation function we propose as a criterion of clarity.
Additionally, the depth of tissue’s surface in each block can be estimated according to the
criterion. Meanwhile, in order to alleviate the blocking effects introduced during block
segmentation, we propose an information filling method.

According to the aforementioned ideas, a block-based image fusion method for multi-
focus fluorescence microscopic images is proposed. The depth information of the tissue’s
surface for each pixel can be used to reconstruct the 3D surface of observed objects when
we know the stride of the image collection and parameters of the fluorescence microscope.
Our contributions are presented as follows:

• A block-based image fusion method for multi-focus fluorescent imaging is proposed,
and it is based on the local maximum luminosity, variance of intensity, and an infor-
mation filling method. This method benefits from the architecture of fluorescence
microscopy.

• A method of information filling for neighboring blocks is proposed to deal with the
blocking effect introduced by the common block-based method.

• The depth information of each pixel can be obtained, and it can be used to reconstruct
the 3D surface of these objects within source images.

The paper is organized as follows: Our methods are introduced in detail in
Section 2. The comparison of images obtained by the proposed method and other meth-
ods is presented in Section 3. The discussion and conclusion are separately shown in
Sections 4 and 5.

2. Our Method

The proposed method is a block-based image fusion method which is mainly based on
local maximum luminosity, variance of intensity within blocks, and the information filling
method. The proposed method gives an explicit index per pixel which contains the depth
information, allowing the feasible reconstruction of a 3D surface of the observed objects.
The framework of our method can be viewed in Figure 1.

Figure 1 shows that in the first step, we collect images of the same visible area at differ-
ent focal planes. Then, the whole visible area is divided into nonoverlapping rectangular
blocks for block segmentation. After that, the depth can be estimated for every block, and a
confidence map can be established. Confidence maps are used to adjust the depth map to
further prevent the contamination of out-of-focus fluorescence. In the information filling
step, an information filling method is used to alleviate blocking effects. Next, smoothing is
applied to the block edges in depth space and the fused image. If the objects in the visible
area are not separable, this fused image will be the final result. Otherwise, we will detect
the objects and determine the segmentation block sizes according to the scale of objects.
For every segmentation block size, we re-divide the whole visible area into blocks and fuse
the source images again to form a new fused image. On the other side, we use the results of
object detection to form masks to extract the objects from the corresponding fused images.
Finally, we combine the results of different objects to obtain the final fused image.
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Figure 1. Framework of our proposed method.

Next, we will give more detailed information about the five key steps in our proposed
method including image collection and block segmentation, the rough construction of the
depth map according to the proposed sharpness estimation function and the construction of
confidence map, depth adjustment according to the confidence map, pixel refinement using
the information filling algorithm, and an optional step to decide the block size according to
an object’s scale.

2.1. Image Collection and Block Segmentation

The first step is to collect source images at different focal planes and divide the whole
visible area into nonoverlapping blocks. We use an automatic fluorescence scanner devel-
oped by Powerscin when collecting the data.When the stage does not move horizontally,
the area we can see in the microscope is called the visible area for the sake of simplicity.
In order to make sure every part of the visible area is clear in at least one source image,
the range within which we collect images is between the focal planes of the deepest and
shallowest part of a tissue slice in the visible area. Images are collected at different focal
planes with a step size less than the microscope’s depth of field. Here, we assume N
source fluorescence images are obtained, and these images are denoted by Ii. The whole
visible area is divided into nonoverlapping rectangular blocks with size m× n (denoted
by Bj,k). The set of pixels in an image Ii within a block Bj,k is called a patch in this paper
(denoted by pi,j,k).

Here, we decide to first estimate the depth of every block and then obtain the depth
and value of every pixel within this block rather than trying to obtain the value of every
pixel directly. The reason is that we assume the depth of the tissue’s surface does not change
seriously within a block in most cases if the block size is not large, and actually estimating
sharpness for a block is much faster than estimating the sharpness for every pixel in the
block with a receptive field of the same size. If we want to estimate sharpness for every pixel
faster and take a smaller receptive field size, out-of-focus fluorescence from other parts of
the tissue will probably interfere with the sharpness estimation of parts that themselves are
not luminous.
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2.2. Rough Construction of Depth Map

The second step gives a rough estimation of depth for every block Bj,k and builds up a
confidence map Cj,k. In this subsection, we first introduce how to establish the depth map
and show why we choose the multiplication of local maximum luminosity and variance of
intensity as our sharpness evaluation function in this step. Then, we will explain how the
confidence map is established.

In this step, we use the sharpness evaluation function to estimate the sharpness of
every patch pi,j,k, and the sharpness value is si,j,k respectively. Rather than estimating the
depth for every block Bj,k directly, we can first determine in which image block Bj,k is the
clearest. Because we can know the object distances at which these images are taken, it is
easy to convert the index of image to the depth. The index of image in which the block Bj,k
is the clearest can be represented by

indexj,k = arg max
i

si,j,k (1)

Meanwhile, the depth information of every block Bj,k can be inferred from indexj,k.
Because of the architecture of fluorescence microscopes, the luminosity intensity and

clarity have a strong correlation, and in order to make use of this property, we introduce
the local maximum luminosity into the sharpness estimation function. On the other side,
the variance of intensity in a block itself can be a criterion to estimate sharpness and has
good performance [17,18]. So, to take both luminosity and unevenness into consideration,
we choose the multiplication of local maximum luminosity and variance of intensity as the
sharpness estimation function, and it can be represented by

si,j,k = mi,j,k × vari,j,k (2)

where mi,j,k is the maximum pixel value in patch pi,j,k and

vari,j,k =
1

mn ∑
vr,s∈pi,j,k

(
vr,s − µi,j,k

)2
(3)

Here, µi,j,k is the average flux for every patch pi,j,k, and vr,s is the pixel value in the
corresponding patch pi,j,k. This criterion is better than other current sharpness evaluation
functions for fluorescent images. This is better than the method which selects the maximum
pixel value for every pixel which is used for confocal microscopes.

In order to show the performance, we compare our proposed sharpness evaluation
function with other sharpness evaluation functions. The visible area is divided into blocks
with size 20 × 20. For every sharpness evaluation function, we select a patch patchj,k for
every block Bj,k and

patchj,k = pindexj,k ,j,k (4)

Then, we stitch patches together to obtain a fused image for each sharpness evaluation
function. Additionally, we show the result of the method used for confocal microscopes
which selects the maximum pixel value for every pixel. We show the comparison in
Figure 2. The images in the left column of Figure 2 show the whole fused images, and the
images in the center and right columns of Figure 2 show two typical regions extracted from
the whole visible area.

Figure 2a–c give the performance of maximum total luminosity method to extract
the brightest values for every pixel, and the method is used in confocal microscopes [3,4].
We can see the texture contaminated by the out-of-focus fluorescence. The following
images are reconstructed by selecting the patches patchj,k for the corresponding sharpness
evaluation functions.

Figure 2d–f use the Laplacian measure which is used by Zhuo and Sim as the criterion
of clarity. The textures are not clear due to the contamination [15].
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Figure 2. Performance of maximum total luminosity method and the results of different sharpness
estimation functions: (a–c) maximum total luminosity method [3,4]. (d–f) the Laplacian measure
which is used by Zhuo and Sim [15]. (g–i) a method using the variance measure as a typical criterion of
clarity [17,18]. (j–l) a method using the normalized-variance measure as the criterion of clarity [17,18].
(m–o) a method using local maximum luminosity as the criterion of clarity. (p–r) our method.
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Figure 2g–i use the variance measure as a typical criterion of clarity [17,18]. This
method has good performance for the most part, but it is not robust and the reconstructed
image lacks continuity.

Figure 2j–l use the normalized-variance measure as the criterion of clarity [17,18]. It is
even less robust than the variance measure.

Figure 2m–o use local maximum luminosity as the criterion of clarity. It obtains good
performance for the most part and is robust. It also shows maximum continuity and good
performance, but the textures in some parts are less clear than those of the variance measure.

Figure 2p–r use the proposed multiplication of the local maximum luminosity and
intensity variance in the block as the criterion of clarity. It shows good performance and is
very robust.

It is obvious that the performance of the multiplication of local maximum luminosity
and variance of intensity is the best sharpness evaluation function for fluorescent images.
The method used for the confocal microscope fails because of contamination of out-of-focus
fluorescence. The Laplacian kernel is applied in the method proposed by Li et al., and it
does not give good performance [13]. Compared with variance and normalized variance,
it improves the robustness and continuity. Compared with local maximum luminosity, it
is more likely to find the patch with a clearer texture. So, the multiplication of the local
maximum luminosity and variance of intensity is selected as the sharpness evaluation for
the second step of our method.

After that, we can establish the confidence map. The fluorescent substance will emit
more light when it is in focus than when it is not. The depth estimation of the tissue parts
that are luminous enough when in focus is less vulnerable to out-of-focus fluorescence
from other parts. Based on this assumption, the confidence map has the following form:

Cj,k =

{
0 mj,k ≤ threshold0

1 mj,k > threshold0
(5)

where threshold0 here is a parameter that can be adjusted, and mj,k is the maximum pixel
value among patchj,k.

2.3. Depth Adjustment

In the third step, in order to prevent the contamination of out-of-focus fluorescence
in the void regions, information in the confidence map Cj,k is used to adjust the depth for
each block. Because the surface of the tissue is continuous, the estimated depths of adjacent
blocks should not differ a lot in most cases. During this step, if the depth of a block has a
large difference from those of the surrounding blocks, the depth will be adjusted according
to Algorithm 1. In this manner, lots of contaminated parts will be recovered.

For every block Bj,k, we adjust the indexj,k with the following Algorithm 1.
Here, the kernel, threshold1, ratio, and threshold2 are independent parameters which

can be adjusted. After that, for every block where Cj,k = 0 and there is a neighboring block
that is confident, we set it to the average of indexsj,sk where (sj, sk) near (j, k) and Csj,sk = 1.

2.4. Information Filling

The blocking effects introduced by block segmentation can be obvious with the as-
sumption that the depths of pixels within a block that are similar are invalid.The boundaries
of objects are typical examples, and in this situation, the depths of some pixels within the
block may be far away from the estimated depth of the block but close to the estimated
depths of adjacent blocks. Therefore, in the fourth step, a method of information filling is
used to alleviate the blocking effects and assign a depth to every pixel. After this step, every
pixel has its own depth, and this information is useful for the 3D modeling of objects in
the visible area. First, we initialize the index for every pixel pixindexpj,pk = indexj,k where
pixel pixpj,pk belongs to Bj,k. The part of this algorithm is given in Algorithm 2 for any two
adjacent block Bj1,k1, Bj2,k2 where at least one of their confidence values is 1.
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Algorithm 1 Adjust indexj,k

1: vote_num← 0
2: pos_vote← 0
3: for sj = j− kernel : j + kernel do
4: for sk = k− kernel : k + kernel do
5: if csj,sk == 1 then
6: vote_num← vote_num + 1
7: if |indexj,k − indexsj,sk| > threshold1 then
8: pos_vote← pos_vote + 1
9: end if

10: end if
11: end for
12: end for
13: if pos_vote > ratio× vote_num AND vote_num > threshold2 then
14: indexj,k ← Averagesj,sk indexsj,sk
15: end if

Algorithm 2 Information filling.

1: if |indexj1,k1 − indexj2,k2| > threshold3 then
2: for every pixel pixpj,pk belongs to Bj1,k1 or Bj2,k2 do
3: The corresponding pixel value in every source image is vi,pj,pk
4: if ppj,pk belongs to Bj1,k1 then
5: d = pixindexpj,pk; x = indexj2,k2
6: if vd,pj,pk < threshold4 AND vd,pj,pk < vx,pj,pk then
7: pixindexpj,pk = x
8: end if
9: else

10: d = pixindexpj,pk; x = indexj1,k1
11: if vd,pj,pk < threshold4 AND vd,pj,pk < vx,pj,pk then
12: pixindexpj,pk = x
13: end if
14: end if
15: end for
16: end if

Here, threshold3 and threshold4 are two independent parameters which can be ad-
justed. After that, the smoothing is applied to the edge of each block in depth space and
fused image. After this step, we can obtain a useful depth map.

2.5. Optional Step

Optional steps can be applied for objects that can be separated (an example can be
seen in Figure 3); after, segmentation methods like DBSCAN or group finding methods like
FoF can be applied to separate different objects [20,21].

To take suitable segmentation block sizes for different objects, the block sizes used to
re-divide the visible area will be adjusted according to the scale of these objects. Objects of
the same block size can be merged into a class to be processed together, and this will take
less time. Then, pixels that do not belong to any class are assigned to the nearest classes,
but one pixel that has been assigned to one class will not be assigned to other classes. The
domains occupied by one class can be treated as a mask (the pixel of source images will
be treated as 0 if the pixel is outside of this mask) when processing this class. The steps
aforementioned will be used to fuse the images for every class.

After all the classes of objects are fused in the manner of algorithms mentioned before,
they can be combined together to obtain the final fused image. The depth maps obtained
for different classes of objects will be combined with the help of these masks. The flow
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chart can also be seen in Figure 1. This step has no effect on tissue that is not separable, so
for this kind of tissue, we do not need to take this step.

Figure 3. Images fused by different methods: (a) a method proposed by De and Chanda [12]. (b) GFF
proposed by Li et al. [13]. (c) SSS proposed by Guo et al. [14] (d) SSSDI proposed by Guo et al. [14].
(e) Our proposed method without an optional step. (f) Our proposed method with an optional step.

3. Experiments

The source images are obtained using the fluorescence microscope at different object
distances. All experiments are run on a laptop with 4 Cores, 2.6 GHz CPU, and 16 GB
RAM. Here, the proposed method is compared with a method proposed by De et al., GFF
(guided filtering-based fusion method), SSS (shared self-similarity) and SSSDI (shared
self-similarity and depth information) [12–14].

The method proposed by De et al. makes use of the wavelet transformation [12].
In their method, they first use a nonlinear wavelet to decompose the source images into
multi-resolution signals. Then, fusion happens at different resolutions to pursue maximum
sharpness. Finally, they reconstruct the fused image through composition. GFF decomposes
images into base layers and detail layers and uses a weighted average method for fusion
separately for base layers and detail layers [13]. The weight maps are constructed with the
help of guided filtering. The final fused image is obtained by combining the fused base
layer and detail layer. SSS and SSSDI were both proposed by Guo et al., and they are very



Sensors 2024, 24, 4909 9 of 14

similar [14]. SSS is also a weighted average method. It makes use of shared self-similarity
to generate adaptive regions and choose SML (some-of-modified-Laplacian) as a clarity
metric. The fusion weights depend on this clarity metric. Different from SSS, SSSDI divides
the clarity metric used by SSS by the square of the defocus scale to form a new clarity
metric [14]. The defocus scale can be estimated by

σ(x, y) =
1√

R(x, y)2 − 1
σ0 (6)

where σ0 is a given fixed value, and R(x, y) can be represented by

R(x, y) =
|∇i(x, y)|
|∇i1(x, y)| (7)

Here, ∇i(x, y) is the gradient of the original image at pixel (x, y) and ∇i1(x, y) is the
gradient of the image at pixel (x, y) after reblurring with a Gaussian kernel [13]. However,
for the void region where pixel values are 0,∇i(x, y) and∇i1(x, y) are both 0, and it is hard
to define R(x, y) and σ(x, y). So, SSSDI is invalid for some regions with no fluorescence in
the source images.

The method proposed by De can fuse any number of source images. However, this
method cannot make sure the lower bound of pixel value is greater than or equal to 0. The
two methods are tested: (1) rescaling values for every pixel according to the lower bound
and upper bound of the fused image, and (2) putting all the values below 0 to 0. The second
method produces better fused images, and the images processed by the second method are
selected for comparison. Meanwhile, the code provided by Li et al. for GFF and Guo et al.
for SSS and SSSDI can fuse two source images at a time. In order to fuse N source images,
images of an odd index are fused with the following images with an even index. If the last
image has an odd index, it remains to the next round of fusion, and we iterate this process
until the final fused image is obtained. For the proposed method, the multiplication of local
maximum luminosity and variance of intensity is chosen as the si,j,k.

3.1. Fusion Performance

The performance of different methods on one set of source images is shown in
Figure 3. This set of source images includes 81 fluorescence images of one kind of pollen.
The parameters for GFF, SSS and SSSDI are the default parameters in their code. The
parameters for our method are set as threshold0 = 60, kernel = 2, threshold1 = 40,
threshold2 = 4, ratio = 0.5, threshold3 = 10, threshold4 = 80, and the tentative block size
is 15× 15.

It can be seen that the method proposed by De and Chanda is not vulnerable to con-
tamination of out-of-focus fluorescence, but it suffers from artifact-like blocking effects [14].
Additionally, it cannot make sure the lower bound is zero, and this is another problem
of this method. The result of GFF suffers from out-of-focus fluorescence because of the
weighted average method [13]. The texture of the pollen grains in the image fused by
GFF is not as clear as that in ours, especially the top left and the bottom. SSS and SSSDI
methods seem more vulnerable to this interference, and SSSDI performs no better than SSS
in this situation [14]. We can see that the texture of the top left pollen grain is dramatically
contaminated by the out-of-focus fluorescence.

The proposed method is less vulnerable to out-of-focus fluorescence and obtains better
performance. But the stability of our method in the object’s boundary is not as good as that
within the boundary because the third step cannot work very well in this situation, as it is
hard to obtain enough positive votes. As we can see, the proposed method has obtained
state-of-the-art performance and has better performance on some parts of the pollen grains.

In order to show the generality of the proposed method, the results of different
methods on another set of source images are shown in Figure 4. This set of images contains
60 fluorescence images of a spinach stem. The parameters for our method are set as
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threshold0 = 150, kernel = 2, threshold1 = 40, threshold2 = 4, ratio = 0.5, threshold3 = 10,
and threshold4 = 80, and the tentative block size is 20× 20.

Figure 4. Images fused by different method: (a) a method proposed by De and Chanda [12]. (b) GFF
proposed by Li et al. [13]. (c) SSS proposed by Guo et al. [14]. (d) SSSDI method proposed by Guo
et al. [14]. (e) Our proposed method without an optional step.

Even though most textures in the image fused by the method proposed by De are
clear, it still suffers from the blocking effect [12]. SSS and SSSDI methods are still affected
by the contamination of out-of-focus fluorescence if we focus on the bottom right part [14].
The fused image using the GFF method is much better than SSS and SSSDI but not as
clear as that of our method [13]. What is more, our method is even faster than the other
three methods in this situation [12–14]. We do not show the image fused by our proposed
method with this optional step because this tissue should be treated as a whole, and the
result will be almost the same.

3.2. Computation Time

The computational times of all the methods spent on the different sets of source images
are shown in Table 1.
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Table 1. Computational time for different methods (in minutes).

De GFF SSS SSSDI Ours Ours (with Optional Step)

Set 1 (1920× 1200) 3.48 4.38 254.67 2212.07 1.51 17.17
Set 2 (1920× 1200) 2.97 3.12 111.67 1555.05 0.89 -

As can be seen, the proposed method without the optional step is the fastest, and the
proposed with the optional step will be much slower. However, the optional step is not
necessary in many situations. The method proposed by De and Chanda and the method
proposed by Li et al. are fast but not as fast as the proposed one without the optional
step [12,13]. The SSSDI method proposed by Guo et al. is the slowest [14]. SSSDI is claimed
to take about five times as long as SSS in their paper [14]. Actually, SSSDI takes more than
eight times as long as SSS in our experiments, and this is because the laptop runs out of
memory RAM, and it needs to make use of the disk.

3.3. Depth Map

As aforementioned, the proposed method can obtain a determined depth map which
can be used to reconstruct the 3D surface of observed objects if the parameters of the
fluorescent are known. Here, an example of a depth map and point cloud of one pollen
grain’s surface are shown in Figure 5. Figure 5a is the fused image of the first set of
fluorescence images. Figure 5b is the depth map constructed in our algorithms, and the
depth is set to 0 for the void region. Figure 5c is the point cloud of one pollen, which
is marked by a red rectangle in Figure 5a. Better reconstruction of the 3D surface of the
observed area may be achievable using the depth information obtained by our method, but
it is out of the range of this paper.

Figure 5. Example of depth map obtained from our method and the point cloud of one pollen: (a) the
fused image of the first set of fluorescence images. (b) the depth map constructed in our algorithms.
(c) the point cloud of one pollen.
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4. Discussion

From the result of the experiment aforementioned, it can be seen that, first, our
infusion method for fluorescence imaging can achieve start-of-art performance. Second,
the computation time for the proposed method is on an average level, and for inseparable
tissue, it is faster than the other three methods because the optional part is not necessary
and the computation time will decrease. Third, the blocking effects are obviously alleviated
by our information filling method. Moreover, the depth for every pixel can be obtained
from the proposed method.

The proposed method can make use of the properties of epifluorescence microscopes
to finish the work of a confocal microscope such as obtaining clear images and obtaining
the depth information of every pixel. This information can be used to reconstruct the 3D
model of the visible area similar to a confocal microscope. Compared to using other devices
like a light field microscope for high-quality microscopic imaging, our method has lower
equipment costs and higher algorithm efficiency. Additionally, the speed of obtaining a
clear image will increase prominently. However, due to equipment limitations, we did not
collect ground-truth images to conduct quantitative analysis of our algorithm. Moreover,
whether our multi-depth fusion algorithm based on the sharpness evaluation function can
be applied to more scenarios still requires further experiments and verification.

5. Conclusions

In this paper, a fluorescence image fusion method based on local maximum lu-
minosity, variance of intensity within blocks, and the information filling method has
been proposed and compared with a state-of-the-art image fusion method. In order to
estimate clarity, the relationship of luminosity and clarity has been used, and a new
sharpness measure has been proposed. Additionally, the performance of it has been
compared with other sharpness measures. The information filling method has been
proposed to alleviate blocking effects. In the experiment, it shows that we have ob-
tained state-of-the-art performance in fusing fluorescent images, and our method is faster
than the other three methods when the optional step is not necessary. What is more,
the estimation of the depth can also be obtained to reconstruct the 3D model of the
visible area.
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