Skip to main content
. 2024 Jul 24;24(15):4791. doi: 10.3390/s24154791
Algorithm 1: Crow Search Algorithm
1. Initialize the positions of N crows (anchor nodes) randomly in the group.
2. Assess the crows′ positions.
3. Initialize each crow′s (anchor nodes) memory.
4. While K < K_max:
   a. For
   i = 1 to N (for all N crows in the group):
   i. Choose a crow (anchor nodes) at random to follow (for instance, Crow j).
   ii. Define an awareness probability.
   iii. If a_j > AP_(j, t), then:
       x_(i, k + 1) = x_(i, k) + r_i × fl_(i, k) × (m_(j, k) − x_(i, k))
    Else:
   x_(j, k + 1) = Taking random position in space.
   b. Verify the feasibility of new positions.
   c. Evaluate the new position of the crows.
   d. Update the memory of the crows.
   5. End while.