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Abstract: Assessing sleep posture, a critical component in sleep tests, is crucial for understanding
an individual’s sleep quality and identifying potential sleep disorders. However, monitoring sleep
posture has traditionally posed significant challenges due to factors such as low light conditions and
obstructions like blankets. The use of radar technolsogy could be a potential solution. The objective
of this study is to identify the optimal quantity and placement of radar sensors to achieve accurate
sleep posture estimation. We invited 70 participants to assume nine different sleep postures under
blankets of varying thicknesses. This was conducted in a setting equipped with a baseline of eight
radars—three positioned at the headboard and five along the side. We proposed a novel technique for
generating radar maps, Spatial Radio Echo Map (SREM), designed specifically for data fusion across
multiple radars. Sleep posture estimation was conducted using a Multiview Convolutional Neural
Network (MVCNN), which serves as the overarching framework for the comparative evaluation of
various deep feature extractors, including ResNet-50, EfficientNet-50, DenseNet-121, PHResNet-50,
Attention-50, and Swin Transformer. Among these, DenseNet-121 achieved the highest accuracy,
scoring 0.534 and 0.804 for nine-class coarse- and four-class fine-grained classification, respectively.
This led to further analysis on the optimal ensemble of radars. For the radars positioned at the head,
a single left-located radar proved both essential and sufficient, achieving an accuracy of 0.809. When
only one central head radar was used, omitting the central side radar and retaining only the three
upper-body radars resulted in accuracies of 0.779 and 0.753, respectively. This study established the
foundation for determining the optimal sensor configuration in this application, while also exploring
the trade-offs between accuracy and the use of fewer sensors.

Keywords: radar; sleep posture; sleep apnea; sleep medicine; polysomnography; ubiquitous health

1. Introduction

Sleep posture is one of the essential components in sleep tests and sleep monitoring
systems that provide valuable insights into sleep patterns and sleep-related health [1,2].
Various health conditions and their treatments have been found to correlate with sleep
positions or sleep postures [3,4]. Sleep posture is related to the biomechanics of the airway
and spine, implicating sleep-related breathing and musculoskeletal disorders [5]. For
instance, adopting a lateral sleep posture can alleviate the symptoms of sleep apnea [3],
while a supine posture may provide relief for individuals suffering from lower back and
neck pain [4]. Sleep posture also serves as an indicator for sleep quality and sleep er-
gonomics [6,7]. It has been observed that individuals with a poor sleep quality frequently
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change postures and prefer the supine position [6]. In other words, sleep posture serves as
a critical link in the complex relationship between sleep health, quality, and ergonomics [8].
Comprehensive overnight sleep studies require objective and efficient sleep posture mea-
surements to inform personalized sleep recommendations and interventions. However,
traditional sleep studies (i.e., polysomnography) rely on manual observation to identify
sleep postures, which is labor-intensive and may be prone to errors [2]. To address this
challenge, specialized sensors and artificial intelligence for sleep posture measurement and
estimation have become increasingly prevalent. These technologies enable the automatic
and accurate acquisition of sleep posture, thus enhancing the precision and efficiency of
sleep studies.

Contact and non-contact sensors are two major categories in sleep posture recognition
technologies. Numerous studies have applied pressure sensors and wearable devices to
estimate sleep posture. Pressure mapping technologies, which integrate sensitive con-
ductive sheets into mattresses or bedsheets, can identify different sleep postures based
on changes in the body’s interfacial pressure patterns [9,10]. However, they might be
costly, have limited availability, be influenced by specific mattresses [11,12], and require
regular maintenance and cleaning. Furthermore, wearable sleep technologies, also known
as actigraphy, incorporate various sensors to measure both biophysical signals and sleep
postures [13–15], in addition to sleep stage classification. They can also be readily usable at
home [16,17]. Accelerometers within these wearable devices can be attached to the body to
identify sleep postures and track posture changes [18–20]. Nevertheless, despite the lack
of clear evidence on this issue [21], it is believed that some users, especially older people
or those with emotion problems, may find actigraphy uncomfortable to wear and difficult
to comply with [22]. On the other hand, machine learning and deep learning models,
particularly support vector machines (SVMs) and convolutional neural networks (CNNs),
have been applied to facilitate sleep posture estimation with these devices [2,23].

Non-contact methods utilize optical sensors, particularly video cameras and computer
vision systems, to estimate sleep posture [14,15,24]. It is becoming increasingly common to
independently utilize depth or infrared cameras or use them to complement traditional
video cameras for sleep posture estimation. Their strength lies in the ability to function
in night-time conditions and protect privacy [25–30], and they are also used to monitor
bed-exiting events [31,32]. Another significant advantage of depth cameras is their ability
to estimate sleep posture under-blanket by assessing the depths of the images, which
optical cameras cannot perform [27–29,33]. These techniques are often combined with
machine or deep learning models, such as CNNs and SVMs [27–29], to automate the
process. In particular, Tam et al. [28] proposed an intraclass mix-up technique to generalize
blanket conditions, and efforts have been made to estimate the joint coordinates in sleep
postures [28,34].

Radar technology presents another alternative non-contact method for sleep posture
estimation. It combines the advantages of depth cameras and requires even less exposure
and visuals for accurate estimation [35]. Several studies have explored the potential of
radar technology for sleep posture recognition along with machine or deep learning models.
Higashi, et al. [36] achieved an accuracy of 88% using 24 GHz Doppler radar data and
machine learning for sleep posture recognition. BodyCompass, a system developed by
Yue, et al. [37], integrates FMCW radar with a sweeping frequency ranging from 5.4 GHz
to 7.2 GHz to determine patient posture, achieving an accuracy of up to 94%. Kiriazi,
et al. [38] investigated sleep posture estimation using a dual-frequency Doppler radar
emitting 2.4 GHz and 5.8 GHz waves mounted on the ceiling above the bed to monitor
torso reflections and movement. However, the use of continuous wave radar for indoor
sleep monitoring might be limited due to potential multipath interference [39]. To address
this challenge, Piriyajitakonkij, et al. [40] proposed a method that utilizes data from both
temporal and spectral domains, enhancing IR-UWB signal detection for the recognition of
four sleep transitional postures.
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Sleep posture recognition can be considered a fine-grained classification problem,
which can be effectively addressed using multimodal data fusion or multiview data fusion
approaches. These methods integrate diverse data sources or multiple views of the same
data to enhance the discriminative power of classification models. For example, Khaire,
Imran, and Kumar [41] demonstrated that fusing RGB-D and skeletal data to improve
human activities classification by providing complementary information enhanced feature
representation. Similarly, Zhu and Liu [42] employed multiview attention to combine
visual and optical flow data for fine-grained action recognition, achieving a superior
accuracy compared to single-modality approaches. XIE et al. [43] utilized co-located
IR-UWB radar and depth sensors for fine-grained activity recognition and tracking in a
domestic setting. These advancements highlight the potential of data fusion approaches to
tackle the challenges associated with fine-grained classification by leveraging the strengths
of multiple data modalities.

The number and placement of sensors are important factors in the performance of sleep
posture estimation. While intuitively increasing the number of sensors and diversifying
their positions could enhance performance, this would introduce additional costs and
complexities into the experimental setup. Moreover, it could potentially burden the model
for posture estimation, since it would need more computing resources to process more
sensor data.

The research gap lies in the insufficient understanding of the minimal sensor con-
figuration and placement strategy required to achieve accurate results. Existing studies
often presume placing the radar in the center as a rule of thumb and focus on optimizing
predictions based on this configuration. Our research question involves determining the
minimum number of radar sensors and their positions to achieve the best performance
in sleep posture estimation. Our previous studies have explored multiple radar config-
urations, including dual (examining single-radar settings and dual-radar settings) and
triple settings (examining the influence of top, head, and side radar placement combina-
tions) [44,45]. In this study, we aim to evaluate the performance of sleep posture estimation
using different arrangements and combinations of eight radar sensors. Another innovation
of this study is the proposal of a data fusion technique for the multiple radar configuration.
This technique is designed to facilitate more efficient processing by deep learning models
and to improve the effectiveness of sleep posture estimation. We first applied deep learning
models, including ResNet, EfficientNet, DenseNet, PHResNet, Residual attention network
(attention-56), and Swin Transformer, to the data of all radar sensors. Subsequently, we
experimented with different arrangements and combinations of the radar sensors for the
model that demonstrated the best performance. The main contributions of this study
include, as follows:

• Incorporating a Multiview Convolutional Neural Network (MVCNN) architecture to
leverage deep feature extractors for precise sleep posture estimation.

• Introducing Spatial Radar Echo Maps (SREMs) to enhance radar-based sleep pos-
ture prediction.

• Identifying the optimal radar sensor configuration for an improved posture estima-
tion accuracy.

2. Materials and Methods
2.1. System Setup

This study employed the Impulse-radio ultra-wideband (IR-UWB) radar. IR-UWB
radars transmit short-duration impulse signals using a transmitter. When the emitted radar
pulse encounters an object, the transmitted pulse partially penetrates the object, while the
remainder is reflected back by the receiver. The Time of Arrival (TOA) of the reflected pulse
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is measured to determine the distance between the target and the radar. Mathematically,
the received signal can be expressed as the formula in Equation (1).

y(t) =
P

∑
i=1

Aiδ(t − τi) + n(t) (1)

where P is the number of multipaths, Ai is the amplitudes associated with the multipaths,
τi is the time delay of the multipath components, and n(t) represents the noise captured
from random variations and disturbances in the channel.

We utilized eight IR-UWB radar sensors, which are integrated system-on-chips (Xethru
X4M03 v5 from Novelda, Oslo, Norway) operating at a center frequency of 7.29 GHz and a
bandwidth of 1.4 GHz. They comprise two key components: a programmable controller
and an antenna. On the receiving end, the system boasts a high sampling rate of 23.328 GS/s
and a total radar frame length of 9.87 m. This represents a distance resolution of 0.00643 m
between each data point received by the radar. Additionally, the receiver maintains a
sufficient gain of 14.1 dB and a low noise figure of 6.7 dB. Both the elevation and azimuth
angles of the radars spanned a wide range from −65◦ to +65◦. Table 1 shows the parameters
used in this study. Notably, the detection range of the radars was set to encompass the area
of interest (RoI) of our study.

Table 1. Parameters of the IR-UWB radar sensors [46].

Parameters Values

Transmitter Frequency (Tx) 7.29 GHz
Transmitter Bandwidth 1.4 GHz

Pulse Repetition Frequency 15.188 MHz
Sampling Frequency 23.328 GHz

Range of Elevation angle −65◦ to +65◦

Range of Azimuth angle −65◦ to +65◦

Bin Length 0.00643 m
Detection Range 0.0–2.0 m
Bin Resolution 312 bins per radar frame

Frame Rate 20 frames per second
Transmission Power 6.3 dbm

2.2. Radar Placement

The radars were positioned around a bed of 196 cm × 90 cm × 60 cm (length, width,
and height). Five radars were positioned on the side of the bed, 78 cm from the ground,
shooting on the body, torso, and limbs at 15 cm interval spacings. They are abbreviated as
S1, S2, S3, S4, and S5, from cranial to caudal. Three radars were placed at the headboard
side of the bed, 108 cm from the ground, spanning over the shoulders and the head, which
were positioned higher than the side radars to avoid blockage of the headboard. They are
abbreviated as HL, HC, and HR, corresponding to left, central, and right, respectively. To
ensure compatibility with scenarios where participants might extend their limbs beyond
the edges of the bed and accidentally hit the radars, all radars were positioned 20 cm from
the edges with the aforementioned height parameters for practicality. We first assessed
the impact of the head radars. Subsequently, we decided to maintain the use of the central
radar due to its extensive coverage and alignment with our existing study. Following this,
we evaluated the influence of the side radars. The configuration of the sensor placements,
along with their labels, is illustrated in Figure 1.
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years, ranging from 18 to 67). Their average height was 168.2 cm (standard deviation: 8.32 
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cessories (e.g., belts), shoes, and outerwear. They were instructed to start in the supine 
position on a bed with a pillow. Then, they were asked to position themselves in nine 
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(2) Left lateral side lying with both legs extended (L. Log); 
(3) Left lateral side lying at a half-stomach position (L. Sto), bottom leg extended and top 

leg flexed; 

Figure 1. Radar placement around the bed. S1–S5 denote radar sensors arranged from cranial
(S1) to caudal direction. HL, HC, and HR denote radar positions at the left, center, and right of
the headboard.

2.3. Experiment Protocol and Data Collection

A total of 70 adults (39 males and 31 females) were recruited from a university to
participate in this experiment. The inclusion criteria were adults aged over 18. The
exclusion criteria were people with the absence of any limbs or pregnancy. People who
had difficulty staying in or positioned in a specific position in bed were also excluded. The
study was approved by the Institutional Review Board of The Hong Kong Polytechnic
University (Reference Number: HSEARS20210127007). Before the experiment began, all
participants received a thorough explanation of the procedures, both orally and in writing.
Informed consent was obtained from all subjects involved in the study.

The average age of the enrolled participants was 26.3 years (standard deviation:
11.3 years, ranging from 18 to 67). Their average height was 168.2 cm (standard deviation:
8.32 cm, ranging from 150 cm to 186 cm) and their average weight was 64.0 kg (standard
deviation: 12.3 kg, ranging from 43 kg to 108 kg). The average BMI was 22.6 (standard
deviation: 4.03, ranging from 16.3 to 43.8)

During the experiment, the participants removed all metal-containing clothing or
accessories (e.g., belts), shoes, and outerwear. They were instructed to start in the supine
position on a bed with a pillow. Then, they were asked to position themselves in nine
sleeping postures sequentially, as shown in Figure 2.

(1) Supine (S);
(2) Left lateral side lying with both legs extended (L. Log);
(3) Left lateral side lying at a half-stomach position (L. Sto), bottom leg extended and top

leg flexed;
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(4) Left lateral side lying at a fetal position (L. Fet), both legs flexed;
(5) Right lateral side lying (R. Log);
(6) Right lateral side lying at a half-stomach position (R. Sto), bottom leg extended and

top leg flexed;
(7) Right lateral side lying at a fetal position (R. Fet.), both legs flexed;
(8) Prone position with head turned left (L. Pr.);
(9) Prone position with head turned right (R. Pr.).
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Figure 2. Illustration of the nine sleep postures with three blanket conditions (thick, medium, and
thin). The postures are: supine (S); left lateral side lying with both legs extended (L. Log); left lateral
side lying at a half-stomach position (L. Sto); left lateral side lying at a fetal position (L. Fet); right
lateral side lying (R. Log); right lateral side lying at a half-stomach position (R. Sto); right lateral side
lying at a fetal position (R. Fet.); prone position with head turned left (L. Pr.); and prone position with
head turned right (R. Pr.). The no-blanket condition is displayed for illustration and not included in
the dataset.

When the participants were instructed to perform a specific posture, they could decide
to position their limbs and bodies in a manner they found comfortable, as long as it adhered
to the defined instructions for the postures. Once the participants confirmed their posture,
they were required to remain stationary. The researchers then proceeded to sequentially
drape blankets over the participants, ranging from thick to thin. After each blanket was
positioned, the researchers paused for five seconds to allow for ambient recording time.
After all blanket conditions were tested, a bell signaled the transition to the next posture,
and this cycle continued until all nine postures were tested in the three blanket conditions
(note: the null blanket condition was not included in our analysis. Figure 2 is just for
illustration). The entire process was repeated three times, resulting in three repeated trials.
In total, the experiment yielded 5670 data samples (70 participants × 9 postures × 3 blanket
conditions × 3 trials) that were manually labeled.

2.4. Spatial Radar Echo Map (SREM)

A typical IR-UWB radar data frame is a 2D matrix where each row corresponds to
a different radar pulse, capturing the temporal evolution of the scene over time, and
each column corresponds to a sample point within a single radar pulse, capturing high-
resolution distance information. For each radar sensor, we extracted a data frame at a
specific time instance and performed noise cancellation using clutter suppression, achieved
through a mean subtraction method as illustrated in Equation (2) [40]:

X′[n, m] = X[n, m]− 1
N

N−1

∑
i=0

X[n, i] (2)

where X is the radar frame with the radar bin n and time m, and N denotes the total number
of radar bins.

For each radar frame, the Radar Echo Map Generation algorithm (Algorithm 1) com-
puted the distance from the radar location to every grid point within the predetermined
map limits. We then initialized a 2D grid base on the size of the bed. Using the calculated
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distances, the algorithm identified the nearest radar bins for each grid point and employed
interpolation techniques to estimate the radar reflectivity intensity at the specific location.

Algorithm 1. Radar Echo Map Generation

Input: Radar Ri defined as arrays of intensity of all radar bins
Output: Two dimensional intensity Map Q distributed on the bed

Initialisation:
1: x0y0 = (0, 0 )
2: xNyN = (90, 196 )
3: maximum detection range = 9.87m
4: maximum number o f radar bias = 1536

5:
d = 9.87 ∗ 100 / 1536
(Where d is the distance between each radar bin)

6: N = int(90/0.643)
7: M = int(196/0.643)

LOOP Process:
8: for i in Radar frames Ri do
9: for n in x0, . . . , xN do
10: for m in y0, . . . , yM do
11: D[n][m] =

√
(Xn − xr)

2 +
√
(yn − yr)

2

12: bsmall = f loor(D[n][m]/d)
13: blarge = ceil(D[n][m]/d)
14: Q[n][m] = Q[n][m] +Ri[bsmall ](D[n][m] mod d)/d+Ri

[
blarge

]
(d − D[n][m]mod d)/d

15: end for
16: end for
17: end for
18: return Q[n][m]

d: the distance between each radar bin; N: the number of xbins mapped to short edge of bed; M:
the number of ybins mapped to long edge of bed; b: radar bin number.

The objective of interpolation is to facilitate the spatial distribution of radar reflectivity
values, contingent upon their proximity to the radar source. Upon iterating over all grid
points within the defined map boundaries, the radar data can be registered and mapped
for a spatial representation. Figure 3 shows the Spatial Radar Echo Maps (SREMs) which
were generated from the eight radar sensors, each disclosing a sector-shaped coverage area.
This sector shape emerges due to the effective azimuth angle of the radar, spanning from
−65 to +65 degrees. It is presumed that the radar signals significantly diminished beyond
this azimuth range.
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Figure 3. An illustration of Spatial Radar Echo Maps (SREMs) in all radars.

Upon initialization, the algorithm A1 established the map’s boundaries (start and end
positions in centimeters), the distance represented by each data bin from the radar, and the
number of bins in both the horizontal and vertical directions. It then created stacks of 2D
arrays, where each element corresponded to a specific location within the map.
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2.5. Model Training

We utilized the Multiview Convolutional Neural Network (MVCNN) approach, which
was originally used to project a 3D object into multiple 2D images captured from various
perspectives [47]. It involved a deep feature extractor on the radar generation maps from
each radar, followed by a view pooling operation across all views, and then through fully
connected layers for a final classification, as illustrated in Figure 4. In this study, we
evaluated the use of ResNet-50 [48], EfficientNet-B0 [49], DenseNet-121 [50], PHResNet-
50 [51], residual attention network (Attention-56) [52], and Swin Transformer [53] as the
deep feature extractors. PHResNet-50 (Parametrized-Hypercomplex ResNet) is one of
the cutting-edge models that facilitates hypercomplex learning for multiview data. The
hyperparameters remained at their default values.
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The data were split into training and testing set at a 55:15 ratio. Specifically, data
from 55 randomly selected participants were used for the model training, while the data
of the remaining 15 participants were used for the model testing. Cross-entropy, which
acts as the loss function of the model, guides the network to adjust its internal weights to
minimize classification errors. We adopted the AdamW, a variant of the Adam optimizer
that accounts for the decoupled weight decay regularization. The learning rate was set to
0.001. The betas parameter was a tuple of two values (0.9, 0.999).

2.6. Evaluation and Analysis

The performances of the models were evaluated using the accuracy measure, which
is defined as the ratio of correct predictions to the number of cases in the testing set. In
addition to the full analysis (i.e., 9-class classification), we also evaluated 4-class coarse-
grained classification to provide more insights on the performances of the models. This
involved categorizing the nine original classes into four coarse categories: supine, left,
right, and prone. The four-class classification model was then trained and evaluated
independently. The categorization of the nine classes was as follows:

(1) Supine: S;



Sensors 2024, 24, 5016 9 of 15

(2) Left: L. Log, L. Sto, L. Fet;
(3) Right: R. Log, R. Sto, R. Fet;
(4) Prone: L. Pr, R. Pr.

Once the optimal model was identified, we retrained and retested it using data from
various numbers and placements of radar sensors. However, it is important to note that we
did not explore all possible combinations of radar sensor numbers and placements. Instead,
we pre-planned several combinations and quantities based on specific premises, which are
detailed in Section 3. In total, we experimented with 22 different settings involving various
numbers and combinations of radar sensors. We decided to use 4-class classification scheme
for the radar configurations’ evaluation, since this approach offers a more interpretable
means to understand which radar configurations contributed more significantly to the
model performance.

3. Results
3.1. Performance of Deep Learning Models

As shown in Table 2, DenseNet-121 consistently outperformed the others with accura-
cies of 0.534, 0.714, and 0.804, for the nine-class and four-class classifications, respectively.
EfficientNet-B0 also demonstrated a competitive performance, achieving an accuracy of
0.775 for the four-class classification. Attention-56 managed to achieve an accuracy of
0.469 in the coarse-grained classification, but it failed to converge in the fine-grained clas-
sification. Unfortunately, the Swin Transformer model did not converge in any of the
classification tasks.

Table 2. Accuracy of different deep learning models as deep feature extractor in 9-class and 4-class
sleep posture classification, and the number of parameters of each model.

Model Nine-Class
Fine-Grained

Four-Class
Coarse-Grained

Number of
Parameters

ResNet-50 0.496 0.721 2.05B
EfficientNet-B0 0.454 0.775 42.55M
DenseNet-121 0.534 0.804 64.02M
PHResNet-50 0.468 0.723 2.08B
Attention-56 NC 0.469 4.62B

Swin Transformer NC NC 11.06B
NC: model did not converge.

3.2. Performance of Different Radar Arrangements and Placements

DenseNet-121, ResNet-50, EfficientNet-B0, and PHResNet-50 were selected for further
analysis of the radar arrangements and placements. Table 3 shows the impacts of varying
radar configurations on the accuracy of the four-class posture classification. The baseline
configuration (#1) on all eight radars achieved an accuracy of 0.804. This performance did
not weaken much when removing one and two radars (#2 to #7), showing accuracies of 0.794
and 0.771 for DenseNet-121, respectively. When only six radars were retained (#5 to #7), the
placement of the radars played an important role. Interestingly, the performance of a specific
configuration (#5) surpassed the baseline with an accuracy of 0.809 for DenseNet-121, while
that of #7 was very near to the baseline with an accuracy of 0.803. This finding showed that
the HL radar played an important role in the model performance. The variations in this
performance became greater when the number of radars were further reduced.

Table 4 compares the average accuracies across the various models with different
numbers of radars. When only six radars were used, DenseNet-121 revealed an average
performance of 0.799, which is comparable to the baseline configuration with eight radars.
Although ResNet-50 generally outperformed DenseNet-121 across the other radar con-
figurations, DenseNet-121 consistently showed an optimal performance, indicating its
suitability for adoption.
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Table 3. Four-class coarse-grained classification accuracy of different radar configurations using
DenseNet121, ResNet-50, EfficientNet-B0, and PHResNet-50.

Conf N S1 S2 S3 S4 S5 HL HC HR DenseNet121 ResNet-50 EfficientNet-
B0

PHResNet-
50 Implications

#1 8 × × × × × × × × 0.804 0.721 0.775 0.723 Baseline

#2 7 × × × × × × × 0.703 0.774 0.688 0.738
Head radar

removal#3 7 × × × × × × × 0.794 0.787 0.758 0.729

#4 7 × × × × × × × 0.771 0.771 0.662 0.728

#5 6 × × × × × × 0.809 0.781 0.702 0.750
Retain single
head radar#6 6 × × × × × × 0.785 0.760 0.684 0.735

#7 6 × × × × × × 0.803 0.760 0.641 0.722

#8 5 × × × × × 0.675 0.758 0.652 0.698

Side radar
removal with
central head

radar retained

#9 5 × × × × × 0.674 0.755 0.662 0.707

#10 5 × × × × × 0.779 0.720 0.735 0.698

#11 5 × × × × × 0.750 0.728 0.715 0.708

#12 5 × × × × × 0.770 0.744 0.725 0.691

#13 5 × × × × × 0.661 0.708 0.736 0.707 No head radar

#14 4 × × × × 0.592 0.721 0.698 0.662 2 head and side
radars

#15 4 × × × × 0.612 0.712 0.709 0.687

3 side radars
with central
head radar

retained

#16 4 × × × × 0.728 0.676 0.684 0.653

#17 4 × × × × 0.735 0.724 0.696 0.669

#18 4 × × × × 0.753 0.722 0.725 0.690

#19 4 × × × × 0.702 0.668 0.678 0.625

#20 4 × × × × 0.748 0.707 0.709 0.691

#21 3 × × × 0.550 0.672 0.678 0.656 Settings of our
previous study

[44,45]#22 2 × × 0.594 0.649 0.633 0.613

N: number of radar sensors. S1–5 denote radar sensors arranged from cranial (S1) to caudal direction. HL,C,R denote
radar positions at the left, center, and right of the headboard. #1–#22 denote configuration number 1–number 22.
× indicates the radar to retain.

Table 4. Average accuracy of different number of radars used across DenseNet-121, ResNet-50,
EfficientNet-B0, and PHResNet-50.

N DenseNet-121 ResNet-50 EfficientNet-B0 PHResNet-50

8 0.804 0.721 0.775 0.723
7 0.756 0.777 0.703 0.732
6 0.799 0.767 0.676 0.736
5 0.718 0.736 0.704 0.702
4 0.696 0.704 0.700 0.668
3 0.550 0.672 0.678 0.656
2 0.594 0.649 0.633 0.613

N: number of radar sensors.

4. Discussion

The objective of this study was to determine the ideal quantity and positioning of radar
sensors for sleep posture estimation, thereby laying the groundwork for the optimal sensor
configuration in this application. We incorporated eight radars into the baseline setup, with
three positioned at the headboard and five along the side. In order to accommodate the
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multiple radar sensors, we introduced an innovative data fusion method for generating
radar maps, the Spatial Radar Echo Map (SREM), and ingeniously utilized the Multi-View
Convolutional Neural Network (MVCNN).

Multimodal data fusion has attracted significant attention in recent studies. The
integration of diverse data sources may enhance the predictive accuracy and robustness in
various applications, specifically for situations where time series data are the major sensory
data type [54,55]. We employed a data fusion approach in this study, since our study
utilized multiple IR-UWB radars as the primary devices for sleep posture recognition.

Moreover, we employed sensor removal to isolate the influences of individual radars
within the chosen model. We opted to focus on the best-performing model (DenseNet-121),
since this enables a more precise attribution of performance variations to the removed
sensors.

In regard to sensor placement, for the head radars, positioning a single one on the
left was both crucial and adequate. A lack of all head radars led to a significant decrease
in prediction accuracy. However, adding more radars could potentially diminish this
accuracy slightly. This could be attributed to the possibility that extra radars at the shoul-
der may not provide informative data, but rather contribute to noise. Nevertheless, we
decided to maintain the central radar because of its better exposure and alignment with
our existing study.

Increasing the number of side radars generally improved the prediction accuracy. This
could be attributed to the fact that all radars were essential for identifying the fine-grained
features in postures, such as limb placement, which helps to distinguish between postures
like the log, fetal, and half-stomach positions. If we aim to limit the number of side radars
to four or three, the optimal configuration involves removing the central radars for the
head edge and retaining those focused on the upper-body regions for the side edge. It
appears that radars targeting the upper-body region are more effective in estimating sleep
postures in general. We initially hypothesized that the baseline configuration would yield
the highest accuracy. However, configurations (#6) and (#8) demonstrated comparable
accuracies, despite the removal of two head radars. This finding suggests that there could
be the presence of a ceiling effect when an adequate number of side radars are employed.
In our setup, all side radars were placed equidistantly to ensure uniform exposure, which
may have contributed to this ceiling effect. Future research should explore not only the
number of radars used, but also the interval of their placement.

We compared the performance of our system to that of existing studies (Table 5).
Zhou et al. [56] utilized an FMCW radar system with a CNN incorporating an Inception-
Residual module across eight sleep postures, with overall accuracy of 87.2%. Piriyajitakonkij
et al. [40] employed the Xethru X4M03 radar and SleepPoseNet, achieving an accuracy
of 73.7 ± 0.8% across four sleep postures. Islam and Lubecke [57] used a dual-frequency
monostatic CW radar with multiple classifiers (KNN, SVM, and Decision Tree) and re-
ported an accuracy of 98.4% for this dual frequency. Adhikari [58] used a Texas Instrument
IWR1443 radar with the Rest Network, a customized CNN, achieving an 80.8% accuracy
across five postures without blankets. Our previous study [44] utilized the spatial–temporal
features of continuous radar frames, employing various models, including the Swin Trans-
former with the Xethru X4M03 radar, and achieving up to an 80.8% accuracy for four sleep
postures with blankets. In this study, we decided to utilize the spatial features of single
radar frame, which could enable real-time application. Using the Xethru X4M03 radar
and DenseNet121 model, we classified four sleep postures with three blanket conditions,
achieving the highest accuracy of 80.9%. This indicates that our approach is comparable to
or slightly better than previous results, despite the additional complexity of three blankets.

There were some limitations in this study. While our proposed data fusion technique
using a radar generation map reinforced the presentation of spatial information, temporal
information might also be useful in estimating sleep postures by their reasonable transitions.
The quasi-periodic oscillations in radar signals contributed by vital signs might facilitate
attention to the torso region and improve the performance of posture estimation [44]. The
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constraint of data size was another limitation. Deep learning models generally require
substantial amounts of data to achieve the optimal performance and model convergence,
especially those using complicated models.

Table 5. Comparison of accuracy performance with existing studies.

Author
(Year) Np Ns Nb Radar Hardware Best Model Accuracy

Zhou, et al. [56] 3 8 0 FMCW radar system
CNN

w/Inception-Residual
module

87.2%

Piriyajitakonkij, et al.
[40] 38 4 0 Xethru X4M03 SleepPoseNet: a Deep

CNN w/MW Learning 73.7 ± 0.8%

Islam and Lubecke
[57] 20 3 0 Dual-frequency

monostatic CW radar Decision Tree Dual: 98.4%

Adhikari and Sur
[58] 8 5 0 Texas Instrument

IWR1443

Rest Network, a
customized Deep

Convolutional Neural
Network

95.6%

Lai, et al. [44] 30 4 1 Xethru X4M03 Swin Transformer 80.8%

This study 70 4 3 Xethru X4M03 MWCNN
w/DenseNet121 80.9%

CNN: convolutional neural network; MW: Multiview; Nb: Number of blanket conditions; Np: Number of
participants; Ns: Number of sleep postures to be classified; w/: with.

In our study, we observed that the Swin Transformer did not converge in both the fine-
grained and coarse-grained classifications, while Attention-56 did not converge in the fine-
grained classification and underperformed in the coarse-grained classification. Both models
belong to the class of attention-based models, which are fundamentally different from
convolutional networks. Convolutional networks primarily focus on local surrounding
spatial features through filters. However, implementing the attention mechanism also
comes with a trade-off: a significant increase in the number of parameters (Table 2). This,
in turn, necessitates training with more data, especially data rich in latent information,
for the attention module to effectively capture these subtle relationships. However, if the
dataset lacks sufficient non-local features or contains repetitive long-range features, the
Transformer model may fail to converge. In our study, the signature of the feature in the
radar spatial map was localized, indicating a lack of non-local relationships. This could
be a potential reason for the non-convergence of the models. Furthermore, our radar map
represents a single instant without any time features. This means we could not track the
movements of individuals over time to facilitate the attention mechanism. If there was a
time domain, it might introduce some non-local time features that could potentially aid the
convergence of Transformer class models.

Prior research on sleep posture recognition has often prioritized the expansion of
recognized postures, in addition to the presence of blankets. However, the orientation
and covering style of these blankets are important, yet frequently neglected, factors that
might influence accurate classification. Our study prioritizes real-world applicability by
acknowledging the variability in self-covering behaviors during sleep. To address this,
we will incorporate scenarios with diverse blanket orientations and covering methods
as part of our external testing procedures. We posit that this inclusion will enhance the
generalizability of our proposed sleep posture recognition model.

5. Conclusions

This study identified the optimal combination of radar quantity and placement, start-
ing with eight radar sensors, three at the headboard and five along the side. The left head
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radar was found to be essential for achieving accurate posture estimation, while the perfor-
mance generally improved with an increase in the number of side radars. A cost-effective
compromise could be achieved by either omitting the central side radar or retaining the
three radars focused on the upper body. A novel data fusion strategy, termed Spatial Radar
Echo Map (SREM), was introduced in conjunction with the Multi-View Convolutional
Neural Network (MVCNN). Using DenseNet-121 in MVCNN and retaining one central
head radar, the accuracy of the four-class coarse-grained posture estimation was 0.809 when
we retained all side radars, 0.779 when we removed the central side radar, and 0.753 when
we retained the three side radars at the upper body. Future research directions can consider
different orientations and blanket covering styles to enhance the model’s generalizability.
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38. Kiriazi, J.E.; Islam, S.M.M.; Borić-Lubecke, O.; Lubecke, V.M. Sleep Posture Recognition With a Dual-Frequency Cardiopulmonary
Doppler Radar. IEEE Access 2021, 9, 36181–36194. [CrossRef]

39. Wang, D.; Yoo, S.; Cho, S.H. Experimental Comparison of IR-UWB Radar and FMCW Radar for Vital Signs. Sensors 2020, 20, 6695.
[CrossRef] [PubMed]

40. Piriyajitakonkij, M.; Warin, P.; Lakhan, P.; Leelaarporn, P.; Kumchaiseemak, N.; Suwajanakorn, S.; Pianpanit, T.; Niparnan, N.;
Mukhopadhyay, S.C.; Wilaiprasitporn, T. SleepPoseNet: Multi-View Learning for Sleep Postural Transition Recognition Using
UWB. IEEE J. Biomed. Health Inform. 2021, 25, 1305–1314. [CrossRef] [PubMed]

41. Khaire, P.; Imran, J.; Kumar, P. Human Activity Recognition by Fusion of RGB, Depth, and Skeletal Data; Springer Singapore: Singapore,
2018; pp. 409–421.

42. Zhu, Y.; Liu, G. Fine-grained action recognition using multi-view attentions. Vis. Comput. 2020, 36, 1771–1781. [CrossRef]
43. Xie, Z.; Zhou, B.; Cheng, X.; Schoenfeld, E.; Ye, F. Passive and Context-Aware In-Home Vital Signs Monitoring Using Co-Located

UWB-Depth Sensor Fusion. ACM Trans. Comput. Healthc. 2022, 3, 45. [CrossRef]
44. Lai, D.K.-H.; Yu, Z.-H.; Leung, T.Y.-N.; Lim, H.-J.; Tam, A.Y.-C.; So, B.P.-H.; Mao, Y.-J.; Cheung, D.S.K.; Wong, D.W.-C.; Cheung,

J.C.-W. Vision Transformers (ViT) for Blanket-Penetrating Sleep Posture Recognition Using a Triple Ultra-Wideband (UWB) Radar
System. Sensors 2023, 23, 2475. [CrossRef]

45. Lai, D.K.-H.; Zha, L.-W.; Leung, T.Y.-N.; Tam, A.Y.-C.; So, B.P.-H.; Lim, H.-J.; Cheung, D.S.K.; Wong, D.W.-C.; Cheung, J.C.-W.
Dual ultra-wideband (UWB) radar-based sleep posture recognition system: Towards ubiquitous sleep monitoring. Eng. Regen.
2023, 4, 36–43. [CrossRef]

46. Novelda, A.S. Ultra Wideband Impulse Radar Transceiver SoC X4—Datasheet. Available online: https://novelda.com/
technology/datasheets (accessed on 26 July 2024).

47. Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view convolutional neural networks for 3D shape recognition. In
Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 945–953.

48. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

49. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

50. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

51. Grassucci, E.; Zhang, A.; Comminiello, D. PHNNs: Lightweight neural networks via parameterized hypercomplex convolutions.
IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 8293–8305. [CrossRef]

52. Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual attention network for image classification.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 3156–3164.

53. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October
2021; pp. 10012–10022.

54. Jiang, W.; Zhang, Y.; Han, H.; Huang, Z.; Li, Q.; Mu, J. Mobile Traffic Prediction in Consumer Applications: A Multimodal Deep
Learning Approach. IEEE Trans. Consum. Electron. 2024, 70, 3425–3435. [CrossRef]

55. An, P.; Yuan, Z.; Zhao, J.; Jiang, X.; Du, B. An effective multi-model fusion method for EEG-based sleep stage classification.
Knowl.-Based Syst. 2021, 219, 106890. [CrossRef]

56. Zhou, T.; Xia, Z.; Wang, X.; Xu, F. Human Sleep Posture Recognition Based on Millimeter-Wave Radar. In Proceedings of the 2021
Signal Processing Symposium (SPSympo), Lodz, Poland, 20–23 September 2021; pp. 316–321.

57. Islam, S.M.M.; Lubecke, V.M. Sleep Posture Recognition with a Dual-Frequency Microwave Doppler Radar and Machine Learning
Classifiers. IEEE Sens. Lett. 2022, 6, 3500404. [CrossRef]

58. Adhikari, A.; Sur, S. MiSleep: Human Sleep Posture Identification from Deep Learning Augmented Millimeter-wave Wireless
Systems. ACM Trans. Internet Things 2024, 5, 9. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/3397311
https://doi.org/10.1109/ACCESS.2021.3062385
https://doi.org/10.3390/s20226695
https://www.ncbi.nlm.nih.gov/pubmed/33238557
https://doi.org/10.1109/JBHI.2020.3025900
https://www.ncbi.nlm.nih.gov/pubmed/32960771
https://doi.org/10.1007/s00371-019-01770-y
https://doi.org/10.1145/3549941
https://doi.org/10.3390/s23052475
https://doi.org/10.1016/j.engreg.2022.11.003
https://novelda.com/technology/datasheets
https://novelda.com/technology/datasheets
https://doi.org/10.1109/TNNLS.2022.3226772
https://doi.org/10.1109/TCE.2024.3361037
https://doi.org/10.1016/j.knosys.2021.106890
https://doi.org/10.1109/LSENS.2022.3148378
https://doi.org/10.1145/3643866

	Introduction 
	Materials and Methods 
	System Setup 
	Radar Placement 
	Experiment Protocol and Data Collection 
	Spatial Radar Echo Map (SREM) 
	Model Training 
	Evaluation and Analysis 

	Results 
	Performance of Deep Learning Models 
	Performance of Different Radar Arrangements and Placements 

	Discussion 
	Conclusions 
	References

