Skip to main content
. 2024 Aug 2;24(15):5016. doi: 10.3390/s24155016

Table 5.

Comparison of accuracy performance with existing studies.

Author
(Year)
Np Ns Nb Radar Hardware Best Model Accuracy
Zhou, et al. [56] 3 8 0 FMCW radar system CNN w/Inception-Residual module 87.2%
Piriyajitakonkij, et al. [40] 38 4 0 Xethru X4M03 SleepPoseNet: a Deep CNN w/MW Learning 73.7 ± 0.8%
Islam and Lubecke [57] 20 3 0 Dual-frequency monostatic CW radar Decision Tree Dual: 98.4%
Adhikari and Sur [58] 8 5 0 Texas Instrument IWR1443 Rest Network, a customized Deep Convolutional Neural Network 95.6%
Lai, et al. [44] 30 4 1 Xethru X4M03 Swin Transformer 80.8%
This study 70 4 3 Xethru X4M03 MWCNN w/DenseNet121 80.9%

CNN: convolutional neural network; MW: Multiview; Nb: Number of blanket conditions; Np: Number of participants; Ns: Number of sleep postures to be classified; w/: with.