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Abstract: Cyber-security challenges are growing globally and are specifically targeting critical
infrastructure. Conventional countermeasure practices are insufficient to provide proactive threat
hunting. In this study, random forest (RF), support vector machine (SVM), multi-layer perceptron
(MLP), AdaBoost, and hybrid models were applied for proactive threat hunting. By automating
detection, the hybrid machine learning-based method improves threat hunting and frees up time
to concentrate on high-risk warnings. These models are implemented on approach devices, access,
and principal servers. The efficacy of several models, including hybrid approaches, is assessed. The
findings of these studies are that the AdaBoost model provides the highest efficiency, with a 0.98 ROC
area and 95.7% accuracy, detecting 146 threats with 29 false positives. Similarly, the random forest
model achieved a 0.98 area under the ROC curve and a 95% overall accuracy, accurately identifying
132 threats and reducing false positives to 31. The hybrid model exhibited promise with a 0.89 ROC
area and 94.9% accuracy, though it requires further refinement to lower its false positive rate. This
research emphasizes the role of machine learning in improving cyber-security, particularly for critical
infrastructure. Advanced ML techniques enhance threat detection and response times, and their
continuous learning ability ensures adaptability to new threats.

Keywords: cyber-attacks; threats; machine learning; cyber-security

1. Introduction

In the modern world, sharing of information and other professional operations like
business, commerce, bank transactions, advertising and services are becoming more preva-
lent owing to cyber-civilization [1]. However, cybercriminal activities have also increased
exponentially in cycle with the exponential growth in the usage of cyberspace [2]. The
primary cause of this rise is the widespread overuse of Web apps in practically every aspect
of daily life. These Web apps have some design flaws, which cybercriminals take advantage
of to obtain unauthorized access to the networks [3]. Traditional security solutions only
respond to known dangers, and they are ill equipped to successfully tackle emerging and
unpredictable cyber-threats. These solutions ignore insider threats and sophisticated at-
tacks, so relying on them is insufficient to safeguard enterprises handling sensitive data [4,5].
Modern digital ecosystems thus necessitate a break from traditional security concepts and
incorporation of cutting-edge techniques and technology [6]. Therefore, cyber-security
research area has become an important concern for researchers and practitioners. In order
to combat untraceable software attacks, the threat hunters’ assistance is very crucial in this
situation [7]. Therefore, hunting is performed with the aim of protecting the organization
prior to the occurrence of an attack. There are two types of threat hunting: proactive
and reactive. In proactive, threat hunting eliminates all potential avenues of attack while
simultaneously looking for possibly harmful activity, whereas reactive hunting responds to
potentially malevolent behavior in attack hypotheses [8,9]. Machine learning is an effective
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proactive approach, used to analyze large datasets in real-time and spot unusual patterns
and behaviors [10]. By innovations of these technologies, cyber-defense gains a proactive
component, replacing reactive tactics that find it difficult to keep up with the constantly
shifting threat landscape [11]. To combat diverse security breaches, a variety of research
initiatives have been performed in distinct cyber-sectors, each with unique features and
characteristics. To facilitate infrastructure security, this research attempts to implement a
proactive strategy using machine learning. Assessments were conducted on the effective-
ness of many sophisticated machine learning models, including random forest, support
vector machine, hybrid machine learning, AdaBoost, and multi-layer perception models.
To find the optimal model for threat hunting, comparisons between various models were
also made. Furthermore, these models continuously learn from new incoming threats,
improving the model accuracy and performance with respect to time.

Research Gap

It is evident from previous studies that a significant amount of study has been con-
ducted in the fields of cyber-security. Methodological mapping investigations of SLRs
have also been carried out. However, most of the mapping studies that are now available
are about cyber-attack mitigation through different mathematical techniques. There is no
systematic mapping research that compiles information on proactive cyber-security attack
measurements through hybrid machine learning. This mapping project is being carried out
to close the gap by giving researchers a general understanding of the current cyber-security
vulnerabilities and methods for detection and mitigation. To fill these research gaps, this
study focused on the following research questions:

RQ1: How well do the machine learning models handle real-time data from critical
infrastructure sources?

RQ2: How successful are the individual machine learning algorithms (RF, SVM, MLP,
AdaBoost) in identifying and mitigating threats in CI protection?

RQ3: How accurate and effective is the hybrid ML model at detecting threats compared
to individual models?

RQ4: How do models adapt to new and evolving threats when processing real-time
data for threat hunting?

RQ5: Which model is found to be the best optimized in terms of testing and valida-
tion strategies?

These research questions aim to critically explore the multifaceted aspects of imple-
menting machine learning models as a proactive approach for threat hunting in critical
infrastructure protection. The main contributions of this study are as follows:

• Comprehensive analysis of the role of various techniques including proactive, mathe-
matical, machine learning, and hybrid strategies for threat detection.

• Development of machine learning models (RF, SVM, MLP, AdaBoost, and hybrid) to
increase the attack detection accuracy and robustness in critical infrastructure.

• Comparison of the effectiveness of all models using ROC, precision, recall, accuracy,
F1-score, and learning curves. Development of the most optimized models that deal
with real-world scenarios to detect cyber-attacks with reduced false situations.

The rest of the paper includes Section 2, which comprises a brief literature review
regarding cyber-security, mathematics, machine learning, and hybrid solutions as proactive
approaches for intrusion detection. Section 3 describes the general methodology considered
in this work. Section 4 includes the results, discussion, and comparative analysis, followed
by concluding remarks.

2. Literature Review
2.1. Cyber-Security

“Cyber-security defined as the protection against unwanted attacks, harm, or transfor-
mation of data in a system and also the safety of systems themselves” [12]. It is concerned
with the security and privacy of digital assets, including networks, computers, and data that
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are processed, stored, and transferred via Internet-based information systems, according
to ISACA. The Worldwide Telecommunications Union defines cyber-security as the set
of methods, guidelines, protocols, best practices, and procedures used to safeguard users’
online assets and organizations [13]. Cyber-security, according to the Merriam-Webster
definition, is the defense of computer systems against intrusions and illegal access [14,15].
Cyber-security comprises the techniques and equipment used to defend computer net-
works and devices from assaults and illegal access over the Internet. Cyber-security is the
defense against unauthorized access to an organization’s non-physical and physical com-
ponents. Diverse definitions among scholars indicate how they define cyber-security [16].
The current definitions concentrate on several facets of cyber-security. Several definitions,
for instance, emphasize privacy and protection, while others emphasize the necessity of
establishing guidelines and procedures for availability, confidentiality, and information
integrity. Cyber-security may be viewed as a defense against unwanted access to the assets
of people and organizations. The significance of the cyber-ecosystem and its preservation
is further emphasized by these concepts [17].

2.2. Cyber-Security Terminologies

There are certain terminologies that are required to follow the main ideas associated
with the field of study.

• Cyberspace: The use of the digital and electromagnetic fields to create, update, store,
share, and exploit details with the aid of interrelated and reliant networks using the
most recent information and communication methods is the distinctive feature of
cyberspace, a global domain inside the information world [18,19].

• Vulnerabilities: These are the weaknesses in a system’s architecture that provide an
attacker with the ability to carry out malicious instructions, gain unauthorized access
to data, and/or launch different types of denial-of-service assaults [17,20].

• Threats: These are the kinds of things done to take advantage of security weaknesses
in an infrastructure and make it worse [21].

• Attacks: These are the steps taken to use different tools and techniques to attack
vulnerabilities in a system to harm it or interfere with its regular operations. Attack-
ers carry out these attacks to fulfill their malevolent objectives, which may include
monetary gain or self-gratification [22].

A multitude of security flaws have been covered in the literature. The following is
a description of several typical cyber-security vulnerabilities to help the readers better
understand them:

• Denial-of-service (DoS): The goal of this kind of attack is to prevent authorized users
from accessing a computer or network resource [23]. Any incident that reduces or
removes a network’s ability to carry out its intended function is the root cause of
it. Most computer devices on the Internet of Things (IoT) ecosystem are susceptible
to asset enervation attacks because of their tiny memory capacities and constrained
computational resources [24]. Potential attackers make use of the fact that different
businesses employ similar technologies, which is one of the reasons why denial-of-
service attacks occur [25].

• Malware: In this attack, the attacker takes advantage of security flaws in computer
systems to install malicious software and obtain unauthorized access. A significant
financial or political payoff is the driving force behind malware, encouraging attack-
ers to infiltrate as many network devices as they can to further their malevolent
objectives [26].

• Phishing: This is a criminal activity that gathers private information from Internet
users by using social engineering and technology. Phishing strategies use a variety
of communication channels, including pop-up windows, instant chats, email, and
websites [27,28].
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• SQL injection attack: To alter or manipulate an SQL query to the attacker’s benefit,
an input string is introduced through the application in this attack. The database
is harmed by this assault in several ways, including sensitive data exposure and
unauthorized access and modification [29]. This assault is dangerous since it has
the potential to disrupt functionality and secrecy through data loss or unauthorized
organizations misusing the data. Moreover, this type of assault also executes orders at
the system level, which prevents authorized users from gaining access to the necessary
data [30].

2.3. Proactive Approach

Modern computer systems often contain information that is highly valuable to com-
petitors, foreign governments, or criminal entities. As these systems increasingly inter-
connect, the likelihood of attacks by these adversaries also escalates. As a result, many
enterprise networks currently find themselves under cyber-attack or have been attacked in
the past [31,32]. This has led to a significant growth in the security tools market, aimed at
defending systems and identifying attacks. Nonetheless, many of these tools operate on
specific, predefined logic, such as monitoring certain gateways for threats, which limits
their scope [33]. In this context, the security functions within organizations focus on detect-
ing active threats, a method typically referred to as a “Reactive Approach”. This strategy
centers on recognizing and addressing actions that adversaries have initiated or are in the
process of executing [34]. Some of the important proactive techniques used in literature are
given in Table 1.

Table 1. Proactive techniques used.

Problem Methodology Used Findings Reference

Risk mitigations and
proactive threats Reactive defense measured Highlights threats and risk

mitigations solutions [35]

Cyber-attacks Early response/proactive
response

Changes active to proactive
security system

Both AI and ML
used in future [36]

Data breaches in
business industries IoT used Recommend legacy system [37]

Cyber-attacks Artificial Intelligence based Enhanced decision support system [38]

Cyber-attacks Bayesian long-short
term memory

Holistic approach covering 42 attacks
across 36 countries. [39]

Distributed reflection denial
of service (DRDoS)

Proposed proactive feature
selection model (PFS)

PFS shows better accuracy for
DRDoS detection [40]

Destructive cyber-threats Neural network-based machine
and deep learning approach

Proactive cyber-threat detection with
greater accuracy and prediction [41]

Critical infrastructure includes both physical and cyber-systems that are necessary
for a society’s basic functions and security [42]. These systems include those related to
electricity, water, transportation, telecommunications, and healthcare. Vulnerabilities in the
energy industry result from possible assaults on infrastructure used for the production and
distribution of power [43]. Cyber-attacks targeting water treatment controls and system
pollution are two problems that might affect water infrastructure [44]. Physical structural
disturbances or cyber-attacks targeting operating systems can have a significant impact
on transportation networks, encompassing seaports and airports. Infrastructure related
to telecommunications, which is necessary for emergency response and communication,
is vulnerable to both physical damage and cyber-attacks. Cyber-attacks that aim to com-
promise sensitive data and cause service interruptions are especially dangerous for the
healthcare industry, the vitality of this infrastructure, and its growing dependence [45].
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2.4. Mathematical Techniques and Machine Learning

In many scientific fields, mathematical models are commonplace and essential for
solving problems [46]. They provide a summarized mathematical depiction of reality
that aids in understanding intricate systems, resolving problems, and obtaining vital
information for well-informed decision-making. These models use algorithms to determine
which solution best fits the given problem. Within the mathematical sciences, computational
optimization is a well-known topic that focuses on determining a function’s extreme values,
such as its maximum or lowest value [33,47]. Since they give a variety of systems a
competitive edge, optimization techniques have grown in importance over the past 20 years
for management, decision-making, technology advancement, and general development.
Numerous methods have been developed to solve problems in optimization and machine
learning due to the practical importance of both domains [48]. None of those algorithms
are perfect, even though most of them work well to solve the problems they are applied
to. Many constraints related to optimization, as well as machine learning techniques, are
well documented in the literature. Malware categorization issues are related to attack-
detection issues [49]. Machine learning methods are used to classify binary data as benign
or malicious. Support vector machine (SVM), K-nearest neighbor (KNN), and decision
tree (DT) models are supervised non-parametric methods, whereas naïve Bayes (NB) is
a parametric algorithm [50,51]. By dividing the feature set using splitting functions, the
DT algorithm produces a decision tree. Two crucial DT algorithm parameters, tree depth
and splitting criteria, are adjusted to create the classifier [52]. In the KNN algorithm, the
prediction of input instance is conducted based on the nearest k-training instances [53]. The
distance metric and the value of k, which represents the nearest k instances, are essential
parameters in classifier training. Support vector machine (SVM) finds a hyperplane which
can classify the dataset into a different class. The SVM classifier is trained with two
essential parameters: the kernel function and hyperparameter (c value), which plays a vital
role in creating the hyperplane for separating the non-linear feature space into different
classes [54,55]. The ensemble machine learning algorithms random forest (RF), AdaBoost,
and gradient boosting (GB) build multiple weak classifiers and then build a strong classifier.
Some ensemble algorithms provide an option to build weak learners using different simple
algorithms like SVM and KNN. Each ensemble machine learning algorithm uses different
science and mathematical equations to develop the final classifier. The only difference is
when applying them to the training dataset [56].

2.5. Hybrid Techniques

A hybrid algorithm that blends optimization and machine learning techniques utilizes
the strengths of both to establish a robust framework for addressing complex challenges [57].
This approach improves decision-making by weaving optimization methods into the
machine learning process and vice versa. The result is that optimization helps to steer
the learning process, thus enhancing both the precision and efficiency of decisions. This
synergistic combination leverages both explicit mathematical optimization and data-driven
learning capabilities, leading to more effective and streamlined decision-making [58]. In
the field of cyber-security, hybrid machine learning approaches are increasingly employed
to strengthen defenses against a wide range of cyber-attacks. These hybrid methods blend
different machine learning techniques to enhance threat detection, response capabilities,
and predictive accuracy [59]. For instance, anomaly detection algorithms learn normal
network or system behavior to detect both known threats and unusual activities that could
signify new attacks when combined with signature-based methods. Predictive analytics
integrated with threat intelligence platforms use historical data and current trends to
forecast attack vectors and potential targets. Ensemble learning techniques improve threat
classification by combining multiple classifiers, while deep learning models combined with
rule-based systems enforce specific security policies and checks [60]. Adaptive systems
utilizing reinforcement learning continually refine strategies for detecting and mitigating
evolving threats. Additionally, neuro-fuzzy systems help interpret the significance of
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network anomalies in ambiguous or incomplete data. These hybrid models enable cyber-
security systems to process vast and varied datasets, recognize complex patterns, adapt
to new threats, and enforce security protocols efficiently, resulting in more robust and
intelligent cyber-security solutions [61]. Different business companies depend upon cyber-
security experts that are known as threat hunters. These security experts defend all types
of cyber-attacks in a timely manner, even zero-day attacks, with real-time data [62]. To
improve business security, most organizations base their systems on artificial intelligence.
Although different types of machine learning model are used for cyber-security, not all of
these models are used for proactive techniques based on real-time data [63].

2.6. Significance of Machine Learning

As cyber-threats become increasingly diverse, sophisticated, and targeted, automation
is emerging as a crucial tool for security teams, which are often overwhelmed. Today’s
security landscape is fraught with challenges such as malware, phishing, ransomware,
denial-of-service (DoS) attacks, and zero-day exploits. Traditional defense mechanisms
are imperfect, and many detection methods still depend heavily on manual analysis and
decision-making by security analysts to identify advanced threats, malicious behaviors, and
significant risks. Machine learning excels in identifying and predicting specific patterns,
outperforming human capabilities in this area. However, security decisions and policy
adjustments often struggle to keep pace with the demands of complex and dynamic
network environments. Leveraging machine learning for intelligent decision-making,
automation in the realm of cyber-security has become increasingly feasible. This study
also aimed to identify and comparatively assess the effectiveness of ML models. Various
models, including RF, SVM, MLP, AdaBoost, and hybrid models, were comprehensively
assessed for threat hunting in real-time cyber-security. All models performed well with
high accuracy and precision in identifying anomalies, except for MLP, compared to various
previously described models [41,64–67]. Previously reported SVM, RF, NB, and logistic
regression models exhibited 94% accuracy for threat detection [51]. Similarly, a CNN
analyzed for intrusion detection in an IoT system showed maximum accuracy of 93% [53].
Another study reported the efficiency of ML models and found 93% accuracy for NB and
SVM, 94% for RF and AdaBoost, and 95% for KNN models [54]. The AdaBoost model
optimized in this study showed an advantage over all other models by detecting threats
with high accuracy, of greater than 0.95, for both normal and anomalous data identification.
AdaBoost performs exceptionally well at differentiating between true and false positives at
various thresholds, as indicated by an ROC area of 0.98. This suggests the greater reliability
of the model for different sensitivities in cyber-security scenarios. The model training and
validation score demonstrates its robustness. The AdaBoost model is well scaled to handle
large datasets, and therefore can be effectively used in real-world security applications. The
previous literature on the significance of machine learning in cyber-security is summarized
in Table 2 below.

Table 2. Significance of machine learning in cyber-security.

Techniques Problems Findings Advantages References

IF and convolutional
neural network
(CNN) models

Hybrid cyber-attack
detections

Detected the maximum
attacks with

maximum accuracy

Proposed hybrid model of
reasonable efficiency but

lacks comparison
[64]

NB, RF, and J48 model To detect DDoS attacks
Random forest model is

more accurate than
other models

Efficient attack detection in
SCADA system but limited to

one attack type
[65]

DT model

User-centric security
and fake data

identification for
IoT-based critical

infrastructure

To find theoretical and
experimental solutions that

solve security issues

Secure channel by decision tree
in IoT security. Lacks

comparative study
[66]
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Table 2. Cont.

Techniques Problems Findings Advantages References

RF, DT, SVM,
perceptron, and

Gaussian NB classifier

Secure data
dissemination

architecture

Accurate, secure, and
reliable architecture for

IoT-based critical
infrastructure

Efficient cyber-security in
critical infrastructure but
exhibited less accuracy

[67]

RF, SVM, MLP,
AdaBoost and
hybrid model

Cyber-threat detection
from real-time dataset

Efficient threat hunting
with high accuracy

and precision;
AdaBoost outperformed

all models

All models performed well for
cyber-threat detection.

Comparative analysis shows
high effectiveness of AdaBoost,

RF, and hybrid models for
real-world application.

This study

3. Methodology

There are various phases of the methodology for distributed and scalable machine
learning-based systems that are used for proactive threat hunting in critical infrastructure.
These phases of the methodology include data collection, architecture, data pre-processing,
selection and training of the machine learning model, model validation, and performance
evaluation of the models, as given in detail below. Every phase of the methodology is
designed for unique challenges and critical infrastructure to evaluate the real-time threats.

3.1. Data Collection

For this study, real-time open-source data were collected from websites including
Hugging face, GitHub, and Kaggle. This dataset mimics the real-time cyber-security
data, containing both normal and anomalous data. The anomalous data are based on
banking transactions for unauthorized access, SWIFT attacks, and man-in-the-middle
(MITM) attacks. These attacks are common in critical infrastructure; therefore, machine
learning models were trained and tested on this dataset to determine their effectiveness in
real-world critical infrastructure applications. These real-time data streams are handled by
efficient data pipelines, which also use safe storage techniques and encryption to guarantee
data integrity and secrecy.

3.2. Experimental Setup

On a Windows 10 PC with a GeForce GTX 980 GPU (NVIDIA, Santa Clara, CA,
USA) and an Intel 2.20 GHz CPU (Intel, Santa Clara, CA, USA), models were trained
utilizing MATLAB. Google and NVIDIA collaborated to provide GPUs and CPUs in order
to increase processing performance. Python 3.8 was used for this investigation, and Google
Colab, which has 16 gigabytes of RAM, was used to conduct the experimentations. Google
Colab is a useful tool for executing code and carrying out tests because of its intuitive
and smooth integration with Python. Larger datasets and memory-intensive operations
are supported by the platform’s considerable RAM capacity, which makes more thorough
investigations possible.

3.3. Data Pre-Processing

In next phase, data pre-processing was carried out to convert data into an appropriate
format before being used as input. First, data cleaning was conducted to handle the missing
values in the dataset. A large number of missing values were identified, which were then
filled by the technique of imputation and removal. Some missing values were handled by
estimating the mean of the observed values. However, a large number of missing values
were difficult to handle; therefore, these were omitted from the dataset by deleting the rows
and columns containing null values. Then the data were further processed to eliminate
the duplicate and irrelevant data that skew the results. The exploratory data analysis was
also conducted by analyzing the pair-plot and matrix diagram to analyze the patterns of
variables with respect to each other. Moreover, outliers can distort the training dataset;
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therefore, these were also detected and removed, which improved the accuracy of the
models. The isolation forest model was utilized to detect and further handle the outliers
in the dataset. Data encryption was used to ensure the security of the data and make it
easier for various ML models to work together while protecting sensitive information from
online threats.

3.4. Machine Learning Models

A variety of machine learning (ML) models, such as random forest (RF), support vector
machine (SVM), multi-layer perceptron (MLP), AdaBoost, and hybrid models, were tested
to identify the anomalies. Using labeled datasets and historical data, the ML models were
trained. Supervised learning was used for recognized threat patterns, while unsupervised
learning was used for anomaly detection.

3.5. Model Evaluation

To improve model performance, cross-validation and hyperparameter adjustment
were carried out. The system enables periodic retraining of models using updated datasets,
and facilitates continuous learning from fresh data to respond to evolving threats. Accuracy,
precision, recall, F1-score, and ROC curves were among the assessment matrices that were
used to assess each model’s effectiveness. The formulas for calculating the metrics are
given below in equations. The methodology flowchart is displayed in Figure 1 below.
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Precision =
True Positive

True Positive + False Positive
(1)

Accuracy =
Number of correct prediction
Total number of Predictions

(2)

Recall =
True Positive

True positive + False Negative
(3)

F1 score =
Precision ∗ Recall
Precision + Recall

(4)

4. Results and Discussion

The findings of this study consist of important domains, including experimental data
analysis, data preparation, and the use of machine learning models for anomaly detection
and threat hunting, which are presented in Section 4. Exploratory data analysis makes the
dataset’s primary structures and models visible. To ensure data quality and applicability
for model training, pre-processing techniques were used. In addition, this section defines
how different machine learning models were applied to identify possible threats and offers
insights into their efficacy, as well as study implications.

4.1. Exploratory Data Analysis (EDA)

Exploratory data analysis was a significant phase of this study that revealed the
patterns, trends, and types of data used for machine learning models. The statistical
evaluation of the dataset was conducted and is given in Table 3.

Table 3. Statistical evaluation of the dataset.

Parameter Card Present Flag Balance Age Amount

Count 7717 12,043 12,043 12,043
Mean 0.80 14,704 30.6 188

Std 0.39 31,504 10.0 593
Minimum 0.00 0.24 18.0 0.10

50% 1.00 6432 28.0 29.0
Maximum 1.00 26,713 78.0 8836

Moreover, the pair-plot of the dataset (Figure 2) provided the visual representation of
the relationship between pairs of features in the dataset. Plots of this kind are especially
helpful in determining probable patterns, correlations, and distributions between various
variables. The figure indicates that the card_present_flag plot shows no significant link
with other features. When the card is present, the transaction appears to be more dispersed
throughout a larger range of amounts, which are rather concentrated at smaller amounts.
The distribution of the balance variable is right-skewed, indicating that while most people
have smaller balances, a small percentage have noticeably higher amounts. The relationship
between balance and other variables is more complex in the scatter plot. The distribution
of the age variable is slightly skewed to the left, showing a higher percentage of younger
people, whereas the amount variable is heavily skewed to the right, indicating a few
high-value transactions. These skewed distributions are clear indications of the presence
of outliers. Potential outliers are highlighted by the scatter plots, particularly in terms
of amount and balance. These outliers can require attention during data pre-processing,
or they might be areas of interest for additional investigation. Plots with concentrated
points in specific places may indicate common trends or clusters that could be helpful for
analyzing customer behavior or developing prediction models.
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4.2. Data Pre-Processing

Data pre-processing is a significant step as it influences a model’s quality and effective-
ness. Data are arranged into a clean and usable format that allows models to learn from the
data more efficiently. A correlation matrix of all categorical columns, as shown in Figure 3,
was analyzed for feature extraction. Moreover, the detection of outliers for their removal
in data pre-processing is also a crucial step to improve the model’s performance. These
outliers can skew the results and negatively influence the machine learning models.

Figure 4 indicates the number of outliers detected over time. The number of outliers
found is considerable in the beginning and peaks at about 20. This suggests that the data
may have experienced some initial instability or noise. Over time, there are noticeable
swings in the number of outliers, with both larger and lower outlier counts. This variability
shows that throughout time, the nature or quality of the data may vary. The number of
outliers jumps at a few significant points in the data, including the beginning and the end of
the period. These peaks might point to occurrences, irregularities, or notable modifications
in the underlying process that produced the data during the data collection process.
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4.3. Threat Detection by ML Models

The next step is the threat detection by utilizing ML classifiers. Various ML models
were applied to identify threats or anomalies in the real-time dataset of critical infrastructure.
These include RF, SVM, MLP, AdaBoost, and hybrid models, which were assessed for threat
hunting, and their performance was compared. These reconstruction-based models provide
greater sensitivity, enabling more threat detection. The performance of these models was
analyzed by utilizing the confusion matrix, ROC curve, and precision–recall curve. The
details of all these models are as follows.
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4.3.1. Random Forest (RF) Model

The random forest model was tested on the dataset and the following results were
obtained, as shown in Figure 5. A value of 0 in the figure indicates a negative class (normal
data), while 1 denotes a positive class (anomalies). The confusion matrix shows that this
model correctly identified 132 threats in the dataset. Moreover, 2069 were instances where
this model correctly determined the absence of a threat. However, 31 false positive and
84 false negative instances were errors determined in this model while searching for an
intrusion in the data framework.
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The ROC and precision–recall curves of the RF model are shown in Figure 6 below.
The ROC curve plots the true positive rate against the false positive rate across various
thresholds. The area under the ROC curve determines the degree of the model’s quality and
discriminates whether the model satisfies the specific conditions or not. The area greater
than 0.98 indicates excellent performance of RF in terms of threat identification. However,
the F1-score is about 0.7, which indicates accurate detection of threats at first, but precision
is lost by identifying more false positives. The model is quite good at differentiating threats
and normal data, as evidenced by its high AUC value. The F1-score exhibits reasonable
balance but precision becomes compromised as recall rises. The detailed classification
report of the evaluation metrics is given in Table 4. This table indicates greater precision,
of 0.960, for normal data identification and 0.809 for anomaly detection. Moreover, high
overall accuracy of 0.950 is observed for this model. Overall, these measures collectively
suggests that the RF model performed well for threat hunting, with a robust ability to
minimize false positives.

Table 4. Evaluation metrics for random forest models.

Precision Recall F1-Score Support

0 0.960 0.985 0.972 2100
1 0.809 0.611 0.696 216

Accuracy 0.950 0.950 0.950 0.950
macro avg 0.885 0.798 0.834 2316

Weighted avg 0.946 0.950 0.947 2316
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4.3.2. Support Vector Machine (SVM) Model

The comprehensive assessment of the model’s accuracy and reliability was also con-
ducted using a confusion matrix (Figure 7). A significant number of normal data (2092)
were correctly identified by SVM model, indicating its good performance in identifying
normal instances. Very few errors (8) were observed as false positives. However, the
model failed to identify a considerable number of actual threats (188), which is a critical
concern for threat detection application. This model successfully captured a small number
of threats (28), highlighting the need for improvement.
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The efficiency of the SVM model was also analyzed using ROC and precision–recall
curves (Figure 8). The area under the curve (ROC) of the SVM model is 0.82, suggesting that
the model can distinguish between normal and anomalous cases with reasonable accuracy.
The ROC curve’s shape indicates that, across a range of thresholds, the model maintains
a high true positive rate while limiting the false positive rate. The precision–recall curve
plot is also essential where detecting the anomalies is crucial. The maximum F1-score
achieved by the model is 0.22. This value reflects the trade-off between precision and recall,
emphasizing the difficulty of detecting anomalies. The model achieves excellent precision
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at first, but as recall increases, it decreases. This shows that although the model may
correctly detect some abnormalities, a higher proportion of true positives is accompanied
by a higher proportion of false positives. The curve’s downward trend suggests that as
the model tried to capture more true threats (high recall), the proportion of false positives
also increased, reducing precision. Table 5 indicates the efficiency of the model in terms of
evaluation metrics. This model exhibited high precision (0.917) for normal data detection,
and low precision (0.77) for abnormal data, with 0.915 accuracy.
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Table 5. Evaluation metrics for support vector machine models.

Precision Recall F1-Score Support

0 0.917 0.996 0.955 2100
1 0.777 0.129 0.222 216

Accuracy 0.915 0.915 0.915 0.915
macro avg 0.847 0.562 0.588 2316

Weighted avg 0.904 0.915 0.886 2316

4.3.3. Multi-Layer Perceptron (MLP) Model

The MLP model indicated efficient detection of both non-threat and threat data but
also showed less precision for identification. Its confusion matrix (Figure 9) demonstrates a
greater number of instances, 1172 and 171, for true negative and positive data in the data
framework, while a large number of instances (928) were misclassified as false threats. Few
of the threats (45) failed to be detected by the model. This indicates that the model has the
ability to identify intrusion but also could lead to false alarms during an attack situation.

The ROC and precision–recall curves together provide a nuanced understanding of
the MLP model efficiency in terms of intrusion detection. The ROC area under the curve of
0.76 exhibits the moderate performance of the model (Figure 10). The shape of the curve
suggests that this model sustains a comparatively high true positive rate at the expense of
a greater false positive rate. Similarly, the low F1-score of 0.26 illustrates the difficulties in
striking a balance between recall and precision. The detail of the classification report and
accuracy of the MLP model are given in Table 6. This indicates a high precision of 0.96 for
normal data and a very low precision of 0.155 for abnormal data identification. The overall
accuracy of MLP model was found to be 0.579.
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Table 6. Evaluation metrics for multi-layer perception model.

Precision Recall F1-Score Support

0 0.963 0.558 0.706 2100
1 0.155 0.791 0.260 216

accuracy 0.579 0.579 0.579 0.579
macro avg 0.559 0.674 0.483 2316

Weighted avg 0.887 0.579 0.665 2316

4.3.4. AdaBoost Model

The confusion matrix of AdaBoost model is shown in Figure 11. The model’s excellent
recognition of non-anomalous data is demonstrated by its exact identification of 2071 nor-
mal cases (class 0). It is important for practical anomaly detection systems to minimize
disruptions caused by false alerts, and the low frequency of false positives (29) shows
that the model does not frequently raise unnecessary alarms. The model properly found
146 real anomalies. This suggests a reasonable sensitivity level and shows that the model
can identify true abnormalities in the dataset. Seventy real abnormalities (70) were missed
by the model, which mistakenly classified them as typical occurrences. Even though this



Sensors 2024, 24, 4888 16 of 24

number is small, it is nevertheless noteworthy since false negatives in anomaly detection
can have detrimental effects.
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The area under the ROC curve of 0.98 signifies excellent performance, as shown in
Figure 12. The curve’s proximity to the top right corner denotes an elevated true positive
rate and a low false positive rate, highlighting the model’s robustness in recognizing
anomalies and reducing false alarms. Similarly, the model achieves the maximum F1-score
of 0.75, as indicated by the precision–recall curve. The pattern of the curve shows that
the model performs well up until recall increases to a point where precision begins to
decline more sharply. The overall metrics calculated from these curves are given in Table 7,
exhibiting the highest precision values of 0.96 and 0.83 for 0 and 1 classes, respectively.
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Table 7. Evaluation metrics for AdaBoost models.

Precision Recall F1-Score Support

0 0.967 0.986 0.976 2100
1 0.834 0.675 0.746 216

Accuracy 0.957 0.957 0.957 0.957
macro avg 0.900 0.831 0.861 2316

Weighted avg 0.954 0.957 0.955 2316
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4.3.5. Hybrid Model

Like all other models, the hybrid model also shows a strong ability to correctly recognize
traffic, reducing the number of false alarms. This model also did not erroneously indicate
normal traffic as attacks, as indicated by the comparatively low number of false positives.
Even though 136 cases were correctly identified as cyber-attacks, there were still 80 cases when
attacks went unnoticed (Figure 13). This indicates the lower effectiveness of the hybrid model
as compared to the supervised AdaBoost model for cyber-intrusion detection.
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Figure 13. Confusion matrix of hybrid model.

Moreover, when evaluation curves of hybrid model were evaluated (Figure 14), the
area for ROC curves was found to be 0.89. This signifies the strong performance of
this model, with a higher true positive rate and fewer false positive values. This is also
confirmed by the sharp decrease in precision in the precision–recall curve, indicating an F1-
score of 0.70. The values of precision and accuracy for cyber-attack detection were calculated
to be 0.786 and 0.949, respectively, as shown in Table 8. These indicators show that the
hybrid model can identify cyber-attacks with a high degree of accuracy; nevertheless,
further work needs to be done to improve overall precision and minimize false positives.
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Table 8. Evaluation metrics for hybrid model.

Precision Recall F1-Score Support

0 0.962 0.982 0.972 2100
1 0.786 0.629 0.699 216

Accuracy 0.949 0.949 0.949 0.949
macro avg 0.874 0.806 0.835 2316

Weighted avg 0.946 0.949 0.946 2316

4.3.6. Learning Curves for Classifiers

The learning curves for all the classifiers, as shown in Figure 15, indicate the model
performance in terms of training and cross-validation scores as the number of training
examples increases. Gaining a knowledge of these curves is crucial for recognizing bias–
variance trade-offs, possible overfitting or underfitting problems, and learning behaviors
of the models. The learning curve for RF demonstrates that the model fits the training data
very well, possibly overfitting, as evidenced by the training score, which stays constantly
high, close to 1.0. The validation score was constant between 0.92 and 0.90, indicating a
strong extrapolation to unobserved data. Given the narrow difference between the cross-
validation and training scores, it can be assumed that the random forest model operates
well with little overfitting, resulting in high accuracy and good generalization. The learning
curve of SVM suggests that the training score was first high but then decreased as the
number of training examples increased, eventually stabilizing around 0.91. The stabilization
of the validation score around 0.91 indicates consistent performance for the tested data.
The SVM model appears to have good generalization with the data, as indicated by the
convergence of both training and testing scores. The training score of MLP varies but
typically remains high, between 0.9 and 0.95. Additionally, there is diversity in the cross-
validation score, which typically ranges from 0.85 to 0.90, demonstrating the generalization
performance. The MLP model may be overfitting to the training data, as indicated by
the wider difference between the training and cross-validation scores, with oscillations
showing sensitivity to various subsets of the data. A successful fit on the training data is
indicated by the training score, which begins high and gradually declines before stabilizing
at 0.96 to 0.98. Good performance on unseen data is indicated by the cross-validation score,
which exhibits more variation but often hovers around 0.92 to 0.94. Although the AdaBoost
model retains a rather excellent generalization performance, the difference between the
training and cross-validation scores points to a possible modest overfitting of the model.
The training score for the hybrid model remains constantly high, ranging from 0.95 to
0.97, suggesting that the hybrid model provides a very good fit to the training set. Cross-
validation scores are less consistent, ranging from 0.88 to 0.92. This score is a more accurate
indicator of the model’s performance in actual settings. The validation stability indicates
that the performance of the model is neither considerably enhanced nor diminished by the
addition of new data. Variabilities in the model’s performance are indicated by fluctuations
in the training and cross-validation scores. These variations may be brought about by the
data’s nature or the model’s sensitivity to various subsets of the data. The cross-validation
score exhibits a greater degree of fluctuation, suggesting possible discrepancies in the
model’s ability to generalize.
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4.4. Comparative Analysis

The comparative analysis of all models was also carried out in terms of evaluation
metrics to determine the best optimized model for threat hunting. Firstly, the comparison
of the main parameter of the area under the ROC curve was conducted to determine the
efficiency of models with respect to others, as shown in Figure 16. As we discussed earlier,
the ROC curve is regarded as an important parameter to identify the accuracy of the model.
A value between 0.7 and 0.8 is regarded as acceptable, 0.8–0.9 is considered excellent, while
above 0.9 is considered outstanding. The figure indicates the outstanding performance
of RF and AdaBoost models in terms of the ROC curve, while the hybrid model shows
slightly less performance, and a lower ROC value was observed with the MLP model.
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Figure 16. Comparison of area under ROC curve of all models.

The comparison of the precision, recall, and F1-score for anomalous (Figure 17a) and
normal data (Figure 17b) detection, along with the accuracy of each model, is given in
the form of bar graphs shown in Figure 17 below. This also indicates that the AdaBoost
algorithm depicts highest precision and accuracy for anomaly detection. Moreover, the
value for recall and accuracy is below 0.8 but still greater than that of all others. This exhibits
the appreciable effectiveness of the AdaBoost model in differentiating the normal and
anomalous data from a real-time dataset in cyber-security. This efficiency trend is followed
by RF and hybrid models, which exhibit almost equal efficiency to that of the AdaBoost
model in terms of these evaluation metrics. Moreover, the SVM model shows lower recall
and F1-score for threat detection. Furthermore, the worst performance is demonstrated
by the MLP model, with small precision and F1-score for cyber-threat detection in critical
infrastructure. Figure 17b indicates evaluation metrics for normal data detection. This
figure clearly shows that all models indicate reasonably high performance in terms of
normal data detection without any errors, while the MLP algorithm also indicated small
recall and F1-score for normalized data detection in the real-time dataset. By considering
the learning curves, evaluation metrics, and ROC curve area, AdaBoost outperformed all
other models and was found to be the most optimized for threat hunting. By analyzing
all these metrics and ROC curve patterns, we concluded the following order of model
performances in terms of cyber-threat detection: AdaBoost > RF > hybrid > SVM > MLP.
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ditionally, we included a thorough synopsis of those methods. 
• This study emphasizes the crucial role of ML in bolstering cyber-security for critical 

infrastructure. 
• Random forest and AdaBoost models displayed exceptional performance, each with 

a 0.98 ROC area and overall accuracies of 95% and 95.7%, respectively. 
• The hybrid model showed potential, with a 0.89 ROC area and 94.9% accuracy, alt-

hough it requires improvement to lower false positives. 
• ML models’ continuous learning capabilities ensure that they can adapt to new and 

emerging threats, enhancing the accuracy and speed of threat detection. 
• Our work sheds light on how to build optimized autonomous models that can protect 

the system from sophisticated cyber-attacks. Future studies should try to replicate 
this study across a range of operational contexts and data variations in more general 
scenarios. We used learning curves to assess the model feasibility in terms of threat 
detection. Gaining a knowledge of these curves is crucial for recognizing bias–vari-
ance trade-offs, possible overfitting or underfitting problems, and learning behaviors 
of the models. 
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Figure 17. Comparison of evaluation metrics of (a) anomaly detection and (b) normal data detection
for all models.

5. Conclusions

Early anomaly detection in software-defined networking has an extensive impact
on the network’s operational efficiency. The latest developments in ML aid in effective
anomaly identification and improve service quality. Here, we investigated the use of RF,
SVM, MLP, AdaBoost and hybrid machine learning models in tandem for identifying
anomalies and offer a thorough overview of network architecture. Firstly, we talk about the
limits of the current methods and the significance of identifying anomalies in contemporary
networks. We outline their fundamental idea, possible uses, advantages, and drawbacks.
Additionally, we included a thorough synopsis of those methods.

• This study emphasizes the crucial role of ML in bolstering cyber-security for critical
infrastructure.

• Random forest and AdaBoost models displayed exceptional performance, each with a
0.98 ROC area and overall accuracies of 95% and 95.7%, respectively.

• The hybrid model showed potential, with a 0.89 ROC area and 94.9% accuracy, al-
though it requires improvement to lower false positives.

• ML models’ continuous learning capabilities ensure that they can adapt to new and
emerging threats, enhancing the accuracy and speed of threat detection.

• Our work sheds light on how to build optimized autonomous models that can protect
the system from sophisticated cyber-attacks. Future studies should try to replicate
this study across a range of operational contexts and data variations in more general
scenarios. We used learning curves to assess the model feasibility in terms of threat
detection. Gaining a knowledge of these curves is crucial for recognizing bias–variance
trade-offs, possible overfitting or underfitting problems, and learning behaviors of
the models.
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1. Prokopowicz, D.; Gołębiowska, A. Increase in the Internetization of economic processes, economic, pandemic and climate crisis

as well as cybersecurity as key challenges and philosophical paradigms for the development of the 21st century civilization. J.
Mod. Sci. 2021, 47, 307–344. [CrossRef]

2. Ruposky, T.J. The Exponential Rise of Cybercrime. Univ. Cent. Fla. Dep. Leg. Stud. Law J. 2022, 5, 137.
3. Jain, A.K.; Sahoo, S.R.; Kaubiyal, J. Online social networks security and privacy: Comprehensive review and analysis. Complex

Intell. Syst. 2021, 7, 2157–2177. [CrossRef]
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