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Abstract: Sleep quality is heavily influenced by sleep posture, with research indicating that a supine
posture can worsen obstructive sleep apnea (OSA) while lateral postures promote better sleep. For
patients confined to beds, regular changes in posture are crucial to prevent the development of
ulcers and bedsores. This study presents a novel sparse sensor-based spatiotemporal convolutional
neural network (S3CNN) for detecting sleep posture. This S3CNN holistically incorporates a pair
of spatial convolution neural networks to capture cardiorespiratory activity maps and a pair of
temporal convolution neural networks to capture the heart rate and respiratory rate. Sleep data were
collected in actual sleep conditions from 22 subjects using a sparse sensor array. The S3CNN was then
trained to capture the spatial pressure distribution from the cardiorespiratory activity and temporal
cardiopulmonary variability from the heart and respiratory data. Its performance was evaluated
using three rounds of 10 fold cross-validation on the 8583 data samples collected from the subjects.
The results yielded 91.96% recall, 92.65% precision, and 93.02% accuracy, which are comparable to
the state-of-the-art methods that use significantly more sensors for marginally enhanced accuracy.
Hence, the proposed S3CNN shows promise for sleep posture monitoring using sparse sensors,
demonstrating potential for a more cost-effective approach.

Keywords: sparse sensor-based; sleep posture detection; model-based feature extraction; spatiotemporal
convolutional network

1. Introduction

Sleep posture, which plays a pivotal role in determining sleep quality, has gained
considerable attention in the field of sleep medicine. It has been found that a supine pos-
ture may increase the risk of obstructive sleep apnea (OSA), while a lateral posture could
potentially reduce such risks [1]. Additionally, the IEEE Sensors Journal [2] underscores the
significance of regular positional adjustments for bedridden patients to prevent ulcers and
bedsores, pointing to the necessity of sleep posture monitoring. Despite polysomnography
(PSG) being recognized as the definitive standard for assessing sleep posture [3], its limita-
tions due to high costs, time consumption, and the requirement for professional oversight
restrict its utility for continuous monitoring. Consequently, there is significant value in
developing an accurate and portable method for sleep posture detection.

Home sleep tests (HSTs) provide a convenient and cost-effective way for individuals
to monitor their sleep conditions at home. HST devices mainly fall into two primary cate-
gories: wearable devices and non-contact devices. Wearable devices, exemplified by chest
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straps equipped with gyroscopes [4,5] and wristbands integrated with accelerometers [6–8],
enable the simultaneous detection of sleep posture and monitoring of physiological pa-
rameters. However, their reliance on being placed on specific body parts, such as the wrist
or chest, may lead to inaccuracies due to loose or incorrect placement, making them im-
practical for long-term use [9,10]. This limitation has prompted researchers to increasingly
focus on non-contact devices, which can monitor sleep without interfering with the user’s
normal activities.

To address these limitations, non-contact devices for monitoring sleep have been
developed, such as camera-based, radar-based, and pressure-based systems. Camera sys-
tems using red-green-blue (RGB) or red-green-blue-depth (RGB-D) imaging technologies
provide detailed visuals of sleep patterns but are often restricted by their high computa-
tional cost, lighting conditions, and obstructions by clothing or bedding [8,11–13]. These
cameras also pose potential privacy risks. Radar devices, typically employing continuous
wave technology, can track sleep postures by identifying signal reflection changes during
movements such as rolling [9,14–17]. These devices can distinguish supine from lateral
positions but frequently encounter difficulties in differentiating finer details, like left versus
right lateral positions, and separating signals from one’s pulse and respiration [18].

Pressure-based systems, particularly those employing dense sensor arrays, have been
increasingly recognized as a promising method for detecting sleep postures by effectively
mapping the body’s pressure distribution. Early research utilized large mattresses equipped
with thousands of sensors to monitor pressure changes during sleep [19–27]. Sophisticated
analysis methods, including support vector machines (SVMs), the k-nearest neighbors
(KNN) algorithm, convolutional neural networks (CNNs), and ResNet, have been applied
to these pressure maps, achieving accuracy rates exceeding 95%. However, the considerable
size and high cost of these sensor arrays have become barriers to developing portable
devices. In response, researchers like J. Liu and Y. Chen have developed innovative
devices with sparse sensor arrays which focus on measuring body pressure with fewer
sensors [18,28–31]. These systems, with sensors strategically placed in proper areas, manage
to achieve nearly 90% accuracy in detecting sleep postures. Despite this, they overly rely on
static pressure distribution images. This reduction in sensor resolution leads to a significant
loss of critical detail, weakening the model’s ability to extract complex features and limiting
its adaptability and generalizability. Furthermore, their performance is evaluated using
lab-generated data rather than real sleep scenarios, making them unsuitable for handling
complex signal environments. Overall, these technologies are not robust for daily home
sleep monitoring across diverse populations.

In this study, we propose S3CNN, a novel sparse sensor-based spatiotemporal convolu-
tional neural network tailored for sleep posture detection. The network uses a strategically
limited set of piezoelectric ceramic sensors to efficiently capture pressure signals. To com-
pensate for the limited number of sensors, the S3CNN utilizes advanced feature extraction
techniques to extract critical indicators from multi-channel vibrational data. The network
enhances adaptability by combining spatial and temporal data processing. It uses two
shallow 2D convolutional neural networks (Conv2Ds) to process spatial patterns within car-
diorespiratory activity maps and two shallow 1D convolutional neural networks (Conv1Ds)
to handle temporal features from the heart and respiratory rates. This approach not only
facilitates robust detection of sleep postures but also improves the model’s generalizability
by capturing dynamic physiological changes over time, reducing the dependence on static
data. Testing on datasets has demonstrated that the S3CNN achieves superior performance
with a minimal number of sensors. The primary contributions of this study are outlined
as follows:

• Using piezoelectric ceramic sensor arrays centered in the chest area, our 58 cm× 28 cm
mattress with only 32 sensors enables precise sleep posture detection.

• We developed a model-based feature extraction method which enhances the inter-
pretability of physiological parameters by correlating them with electrical signals,
improving the performance of sleep posture classification.
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• The S3CNN architecture, with shallow Conv1Ds and Conv2Ds, effectively integrates
dynamic temporal and static spatial features, boosting detection accuracy.

• Validated on a real-world sleep dataset, the S3CNN achieved 93.02% accuracy with
a minimal sensor array, demonstrating excellent stability in three rounds of 10 fold
cross-validation.

2. Hardware Construction

We chose piezoelectric ceramic materials for our monitoring mattress due to their
flat shape, high sensitivity, low cost, and excellent high-frequency response. As shown
in Figure 1a, these sensors consist of a circular piezoelectric element and a brass plate at
the base. When subjected to varying forces, they generate a faint current based on the
piezoelectric effect. For stable connectivity, each sensor (3 cm in diameter) was mounted
on a 3 cm × 5 cm printed circuit board. The flexible piezoelectric ceramic array had a
planar layout, featuring an 8 × 4 electrode matrix which formed 32 channels. Each row
and column was connected by electrodes, with each electrode covering an area of 15 square
centimeters (3 cm × 5 cm). The array’s total area (58 cm × 28 cm) matched an adult’s chest
width, allowing clear visualization of the vibration distribution details.

Figure 1. (a) Piezoelectric ceramic sensor unit. (b) Voltage amplifier circuit. (c) Circuit used to scan
the pressure distribution.

The schematic of the readout circuit in Figure 1c contains an analog front end (includ-
ing the piezoelectric ceramic union and non-inverting amplifier), low-pass filter, analog-to-
digital converter circuit, and wireless communication circuit. When subjected to a vertical
periodic pressure F(t) with an amplitude Fm and angular frequency ω, a micro-current Ii
was generated as follows:

Ii
∼=

dQi
dt

= ωd33Fm cos ωt (1)

where d33 represents the piezoelectric constant generated by the effect. Given that d33 is
typically quite small (less than 600 pc/N), the current Ii generated by the piezoelectric
effect with an electric field and pressure in the vertical direction is rather weak. Here, Qi is
the charge generated by the external force.

To ensure effective detection and processing of this signal, it is necessary to amplify
the feeble current through the non-inverting amplifier, as shown in Figure 1b. In this
amplifying circuit, the piezoelectric ceramic sensor is equivalent to an alternating current
(AC) power source characterized by an equivalent resistance R1 and equivalent capacitance
C1. Here, C2 represents the input capacitance of the amplifier, and R2 is the input resistance
of the circuit. The input voltage Ui, the output voltage Uim, and Uo can be calculated
as follows:

Ui =
•
Ii

RM
1 + jωRMCM

= jωd33
•

Fm

R1R2
R1+R2

1 + jω R1R2
R1+R2

(C1 + C2)
(2)
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Uim = |Ui| =
d33FmωRM√

1 + (ωRMCM)2
(3)

Uo = βUim cos ωt (4)

where
•
Ii and

•
Fm are the complex forms of Ii and Fm, respectively, and RM and CM are the

equivalent input resistance and input capacitance of the amplifying circuit, respectively.
The output voltage Uo can be obtained by an operational amplifier with a gain of β. Thus,
we can ascertain the relationship between the amplitude of periodic vibrations and the
output AC voltage.

3. Methods

Figure 2 shows the overall procedure of sleep posture detection in this study, which
includes signal processing, feature extraction, and model training. The details are elabo-
rated below.

Figure 2. Sleep posture recognition procedure with pressure signal.

3.1. Signal Processing

The collected raw signal, containing various physiological data, are often subject to
motion artifacts. To precisely analyze the cardiopulmonary features within these mixed
signals, a signal processing module was employed. This module consisted of two com-
ponents: signal decomposition and artifact identification. Signal decomposition isolates
cardiopulmonary components from the mixed signals, while artifact identification sepa-
rates disturbed samples from undisturbed samples, ensuring the accurate extraction of
reliable cardiopulmonary features [17].

3.1.1. Signal Decomposition

Respiratory and cardiac activities, including breathing patterns and heart pulsations,
generate subtle vibrations detected as composite signals by the sensors. For precise assess-
ment of heart and lung activity, it is crucial to isolate these physiological signals from the
aggregated data. The pressure signal produced by respiration typically falls within the
frequency range of 0.1–0.8 Hz [32,33], whereas the cardiovascular pressure signal, known as
the ballistocardiogram (BCG), fell within the frequency range of 0.8–15 Hz [34]. To extract
these two types of signals, we employed a Chebyshev type-I finite impulse response (FIR)
band-pass filter with an order of 999. The deviation signal was computed by subtracting
the respiratory and cardiac signals from the composite signal. Each decomposed sample
contained 6000 sampling points, representing one minute of data. Steps 1–3 of Algorithm 1
outline the signal decomposition process, including designing and applying the filters and
calculating the energy components.

Figure 3 illustrates the separation of the undisturbed signal. The respiration signal,
which was highly periodic, accounted for approximately 90% of the raw signal’s energy.
The ballistocardiogram (BCG) signal consists of two components: an enveloping waveform
and IJKL waves [35]. The IJKL waves, related to ventricular ejection and aortic flow, occur at
a frequency about one-fifth that of the heartbeat [36] and constitute 5–8% of the raw signal’s
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energy. The deviation signal, marked by its lack of significant periodicity, comprises less
than 3% of the energy. Additionally, according to Equations (2) and (3), we can determine
the relationship between the periodic movements of the heartbeat and respiration and their
corresponding signal components.

Algorithm 1 Pseudocode for signal decomposition and artifact identification

Require: Time series data (6000 samples) composite_signal
1: Step 1: Design band-pass filters
2: Respiratory filter FR: 0.1–0.8 Hz, order 999
3: Ballistocardiogram filter FC: 0.8–15 Hz, order 999
4: Step 2: Apply filters to composite_signal
5: resp_signal = filter(FR, composite_signal)
6: bcg_signal = filter(FC, composite_signal)
7: dev_signal = composite_signal - (resp_signal + bcg_signal)
8: Step 3: Calculate energy components
9: composite_energy = sum(composite_signal.ˆ2)

10: resp_energy = sum(resp_signal.ˆ2)
11: bcg_energy = sum(bcg_signal.ˆ2)
12: dev_energy =composite_energy - (resp_energy + bcg_energy)
13: Step 4: Calculate energy entropy
14: resp_ent_energy = energy_entropy(resp_signal, 400, 40)
15: bcg_ent_energy = energy_entropy(bcg_signal, 100, 10)
16: dev_ent_energy = energy_entropy(dev_signal, 10, 1)
17: Step 5: Calculate approximate entropy
18: resp_ent_approx = calculate_approx_entropy(resp_signal, 2, 0.2 *

std(resp_signal))
19: bcg_ent_approx = calculate_approx_entropy(bcg_signal, 2, 0.2 *

std(bcg_signal))
20: dev_ent_approx = calculate_approx_entropy(dev_signal, 2, 0.2 *

std(dev_signal))
21: Step 6: Artifact identification based on entropy features
22: features = [resp_ent_energy, bcg_ent_energy, dev_ent_energy,

resp_ent_approx, bcg_ent_approx, dev_ent_approx]
23: model = MLPClassifier(hidden_layer_sizes=(12,),

activation=’logistic’)
24: artifact_detected = model.predict(features) > 0.5
25: Return: resp_signal, bcg_signal, dev_signal, artifact_detected

3.1.2. Signal Contamination Management

In realistic environments, body movements commonly introduce motion artifacts into
the raw signal. PSG and sleep monitoring data indicate that approximately 13% of nighttime
sleep involves various body movements. When body movements occur, the sensors in
contact with the body will receive irregular, non-periodic, and intensely amplified forces,
resulting in a significant amount of motion artifacts which interfere with normal signals [37].
To identify and eliminate samples severely affected by motion artifacts, we classified the
samples as “interfered samples” or “uninterfered samples”. As shown in Equation (5),
the piezoelectric sensitivity Sv, which represents the coefficient relationship between the
applied force F(t) and the output voltage Uo [38–40], allowed us to more intuitively reflect
the differences in patterns between the “interfered samples” and “uninterfered samples”:

Sv ∼=
∣∣∣∣ ∆Uo

∆F(t)

∣∣∣∣
∆t→0

≈ βUi
Fm

=
βd33ωRM√

1 + (ωRMCM)2
(5)
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where ∆t is the unit time (∆t → 0); ∆F(t) is the pressure change in the unit time; ∆Uo is
the corresponding change in output voltage; and ω is the angular velocity, which varies
with the pressure values. The piezoelectric sensitivity can be calculated based on ω:

Sv ≈


βd33
CM

(ωRMCM)2�1

βd33ωRM√
1+ωRMCM

others

(6)

As demonstrated in Equation (6), the piezoelectric sensitivity Sv remained approximately
constant at sufficiently high frequencies ω. For an undisturbed signal, the angular velocities
of heartbeats, respiration, and the pulse satisfy the condition (ωRMCM)2 � 1, making
the output voltage linearly proportional to the input pressure force. Conversely, for the
disturbed signal, when this condition is not met, Sv varies with ω, leading to a nonlinear
relationship between the output voltage and the input force.

Figure 3. The separation of a one-minute undisturbed signal.

We employed entropy features, such as energy entropy and approximate entropy
(ApEn), to quantify the nonlinearity of the signals, thereby distinguishing between dis-
turbed and undisturbed signals. Typically, respiratory signals have a breathing cycle of
about 4 s, BCG signals have a heartbeat cycle of about 1 s, and deviation signals lack peri-
odicity, which external disturbances can disrupt. To capture significant feature differences,
we set the energy entropy windows for respiration, the BCG, and deviation to 400, 100,
and 10, with steps of 40, 10, and 1, respectively, as shown in Step 4 of Algorithm 1. For the
ApEn feature, we used an embedding dimension of 2 and a similarity threshold of 0.2, as
outlined in Step 5. Finally, we classified the signals as “interfered” or “uninterfered” using
a multilayer perceptron with 12 hidden units. Through our observations of the PSG data,
we found that more significant body movements resulted in a greater number of channels
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with “interfered” signals. To identify the samples affected by body movements, we used
the number of “interfered” channels as a threshold. Increasing the threshold from 1 to
7 channels enhanced the performance of motion detection. However, setting the threshold
above 7 did not result in further accuracy improvements and significantly decreased the
recall rate. Therefore, we empirically set the threshold to 7 for optimal performance.

3.2. Feature Extraction

For uninterfered samples, we extracted the respiration and BCG signals using band-
pass filters with ranges of 0.1–0.8 Hz and 0.8–15 Hz, respectively, as depicted by the black
points in Figure 4. Given that the frequencies of respiration and heartbeats are relatively
fixed and fall within the linear response range of our device, we employed the sum of
sinusoids function to approximate these real signals. Based on experimentation, a single
sinusoidal term was found to be sufficient for fitting the respiration signal. In 200 sets of
experiments, the R-squared value of the fitting curve ranged from 0.85 to 0.93, indicating
that the fitting function U∼res was highly consistent with the actual respiration signal Ures.
The simulated respiration U∼res is indicated by the red lines in Figure 4a. The corresponding
formulas are as follows:

Ures ≈ U∼res ≈ Ares sin(2π frest) =
d33β

CM
Fres sin(2π frest) (7)

where Ares is the amplitude of the fitting curve and fres is its frequency, also representing
the frequency of respiration activity. Meanwhile, Fres reflects the intensity of the respira-
tion force.

Figure 4. The separation of a one-minute undisturbed signal. (a) Resoiratory signal. (b) BCG signal.

The black dotted line in Figure 4b displays the BCG signal, which was composed of
600 sampling points extracted from the undisturbed signals. As previously mentioned, the
envelope of the BCG signal aligned with the heartbeat cycle, and one envelope cycle con-
sisted of five IJKL waves. Therefore, we approximated the BCG signal using a polynomial
with three cosine terms. During the experiment, we found that the coefficients of the first
term Abcg and the second term Bbcg were quite similar in the fitted polynomials. Addition-
ally, the frequency of the third term f 3

bcg was approximately equal to the mean frequency of
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the first and second terms. Therefore, without considering the phase, the simulated BCG
signal could be converted into an amplitude modulation (AM) signal. Figure 4b shows
the simulated BCG signal obtained by the fitting AM modulation function as a red line. In
200 sets of experiments, the R-squared value of the simulated BCG signal ranged from 0.7
to 0.75, indicating that the simulated BCG signal U∼bcg was consistent with the actual BCG
signal Ubcg. The corresponding formulas are as follows:

Ubcg ≈ U∼bcg = Abcg cos(2π f 1
bcgt) + Bbcg cos(2π f 2

bcgt)
+Cbcg cos(2π f 3

bcgt)

≈ Cbcg

{
1 +

2Abcg
Cbcg

cos
[
π( f 1

bcg − f 2
bcg)t

]}
cos
[
π( f 1

bcg + f 2
bcg)t

] (8)

Ubcg ≈ U∼bcg ≈ UAm

[
1 + Mbcg cos(2π fheat)

]
cos
(

2π fbcgt
)

≈ βd33Fbcg
CM

[
1 + Mbcg cos(2π fhea)

]
cos
(

2π fbcg

) (9)

where UAm represents the amplitude of the amplitude-modulated (AM) signal, Fbcg is
the force from ventricular ejection and vasoconstriction, Mbcg, the modulation index,
indicates the BCG signal’s amplitude relative to the carrier, and the frequencies fhea and
fbcg correspond to the heart rate and frequency of IJKL waves, respectively.

We aim to extract the amplitude features Fres and Fbcg from these equations. How-
ever, the presence of the time t and phase-related cosine terms complicates this task. To
isolate these features and eliminate the influence of t and the phase, we plan to use the
Maclaurin series to calculate the instantaneous variables of the signal, as shown in Equa-
tions (10) and (11):

∑t=N∆t
t=0 ∆|Ures| ≈

2047βd33

1.65CM
Fres(2π fres)(4 fresN∆t) (10)

∑t=N∆t
t=0 ∆

∣∣∣Uenv
bcg

∣∣∣ ≈ 2047βd33

1.65CM
Fbcg Mbcg(2π fhea)(4 fheaN∆t) (11)

where the sampling interval ∆t = 0.01 s of the signals approaches 0, satisfying the Maclaurin
series’ expansion condition [41]. Given that N∆t exceeds the cycle durations of both the
heartbeat and respiration, this signal can be approximated as an integer multiple of these
cycles. Uenv

bcg is the envelope of the Ubcg signal obtained using envelope detection.
Equations (10) and (11) reflect the approximate relationships between our target

features, the respiratory activity intensity Fres, and cardiac activity intensity Fbcg with the
respiratory signal Ures and the BCG signal Ubcg. According to our previous description, β,
d33, CM, and N∆t are constants. The parameters fres and fhea are the respiratory frequency
and heartbeat frequency obtained during signal processing. Ures is the extracted respiratory
signal, and Uenv

bcg is the envelope of the extracted BCG signal. Therefore, we can obtain the
respiratory activity intensity Fres and cardiac activity intensity Fbcg from the decomposed
respiratory and BCG signals. Our feature extraction method applies the inverse functions
of Equations (9) and (10), using a model-based approach to approximate signals and extract
the target features.

We derived the estimation of the cardiac and respiratory activity intensities for each
channel in the uninterfered samples. These intensities, mapped across a 32 channel array,
collectively define the spatial characteristics of cardiopulmonary activities, presenting a
static view of features. Figure 5 displays these activity intensities across various sleep
postures after applying the data augmentation and smoothing techniques. The original
features obtained from the 32 channel sensor formed a 4× 8 array, which had a resolution
too low to effectively extract features using multi-layer CNN convolutions. Moreover, the
large spacing between sensors resulted in significant variations in the features, hindering
accurate feature extraction. To address these issues, we applied data augmentation by
enlarging the original data by a factor of 4 in both dimensions, resulting in a 16× 32 image.
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This process, combined with specialized MATLAB (9.9.0.1467703 (R2020b)) smoothing,
enhanced the resolution and reduced variability, facilitating better feature capture by
the CNN.

Figure 5. Spatial characteristics of cardiopulmonary activities. (a) Supine state. (b) Right lateral state.
(c) Left lateral state.

In Figure 5, the intensity map shows the heart and thoracic regions, with darker colors
indicating higher activity intensities. In the supine posture (Figure 5a), the sensor array
had the most extensive contact area with the thoracic region. In the lateral posture, the
contact area between the chest and the sensor array significantly decreased, allowing for a
clear distinction between the supine and lateral postures. Although the contour areas of
the left and right lateral images are similar, according to the moment balance principle in
statics, the tilt direction of the body was typically the opposite of the offset direction of the
center of gravity to maintain stability. In the left lateral posture (Figure 5c), the image tilts
to the right, but the high-intensity area is on the left side. Conversely, in the right lateral
posture (Figure 5b), the image tilts to the left, but the high-intensity area is on the right side.
In summary, the cardiac and respiratory intensity features exhibited significant differences
under different sleep postures, making them easier to train for accurate classification.

For the temporal features, we separately obtained the amplitude and interval character-
istics of the respiration and heartbeat signals as shown in Algorithm 2. For the respiration
signal, to avoid misidentifying the peak values, we applied a smoothing window with
a size of 5 to the sampled data. Then, we used the zero-crossing method to detect the
peaks and record their amplitudes and intervals. To recover and reflect these dynamic
changes in a uniform time series, we employed a feature-based interpolation technique.
Specifically, we inserted feature data points between adjacent peaks equal to the number
of points in their interval to generate a feature sequence consistent with the length of the
original signal. This resulted in a 2× 6000 matrix of amplitude and interval features for
the respiration signal. In contrast to the respiration signal processing, for the BCG signal,
we first performed envelope detection to obtain the heartbeat cycle signal rather than
directly detecting the peaks. After obtaining the envelope, we followed the same process
as that for the respiration signal, using peak detection and feature-based interpolation.
This also resulted in a 2× 6000 matrix of amplitude and interval features for the heartbeat
signal. Thus, we obtained the initial amplitude interval features for both the respiration
and heartbeat signals.

3.3. S3CNN Model

Building on this foundation, we developed the S3CNN, a novel network based on the
multi-channel convolutional neural network (MCNN) architecture designed to integrate
multimodal features effectively. This network processes one-dimensional temporal features,
including the inter-beat intervals and respiration peaks. It also integrates two-dimensional
spatial features which capture the active distribution of cardiac and respiratory activities
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across the sensor array. Figure 6 illustrates the architecture of the S³CNN, comprising two
primary modules: the MCNN for optimized feature extraction and a classification module
for sleep posture detection. The MCNN analyzes data across multiple channels, enhancing
feature integration. Subsequently, the posture detection module fuses these integrated
features to classify different sleep postures effectively.

Algorithm 2 Pseudocode for temporal feature extraction and resampling

Require: Time series data resp_signal, bcg_signal, dev_signal
1: Step 1: Respiration Signal Processing
2: smoothed_resp_signal = smooth(resp_signal, window_size=5)
3: resp_peaks = zero_crossing_peaks(smoothed_resp_signal)
4: resp_amplitudes = amplitudes(resp_peaks)
5: resp_intervals = intervals(resp_peaks)
6: resp_features = stack_features(resp_amplitudes, resp_intervals)
7: Step 2: BCG Signal Processing
8: envelope_bcg_signal = envelope(bcg_signal)
9: bcg_peaks = zero_crossing_peaks(envelope_bcg_signal)

10: bcg_amplitudes = amplitudes(bcg_peaks)
11: bcg_intervals = intervals(bcg_peaks)
12: bcg_features = stack_features(bcg_amplitudes, bcg_intervals)
13: Step 3: Feature-Based Interpolation
14: resp_features = interp_features(resp_features, target_length=6000)
15: bcg_features = interp_features(bcg_features, target_length=6000)
16: Step 4: Resample Features
17: resp_matrix = resample(resp_features, 90)
18: bcg_matrix = resample(bcg_features, 180)
19: Return: resp_matrix, bcg_matrix

Figure 6. Architecture of S3CNN. It mainly includes two modules, namely (1) a multi-channel CNN
module and (2) a cascaded layer, with fully connected layers and a Softmax layer.

3.3.1. Multi-Channel CNN Module

As illustrated in Figure 7, the detailed network structure and its components are clearly
presented. Table 1 provides a comprehensive overview of the parameters used, including
the filter sizes, activation functions, and connections, thereby offering an in-depth explana-
tion of the architecture. The multi-channel CNN effectively processes dynamic temporal
and static spatial features in separate streams. The dynamic temporal features captured
by the heartbeat and respiration amplitude interbeat were input into the MCNN-Conv1D
network as two-dimensional vectors (2 × n), where M1 and M2 represent the respiratory
and cardiac features, respectively, M1 combines the amplitude R1

A and interval R1
B features

of respiration, and M2 comprises the amplitude R2
A and interval R2

B features of the heart-
beat. On the spatial side, the MCNN-Conv2D network analyzed the distribution of the
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cardiopulmonary intensity through activity maps. Here, N1 and N2 encapsulate the cardiac
HA and respiratory HB activity maps, respectively. The features processed by the Conv1D
and Conv2D networks were carefully aligned to ensure consistent output dimensions.
These were then stacked to facilitate a comprehensive assessment of the features.

Figure 7. Configuration of S3CNN.

Based on Algorithm 2, the initial amplitude interval features for the respiration and
BCG signals were both 2× 6000 matrices. Since the respiratory cycle was approximately
4 s, and the heartbeat cycle was roughly 1 s, such a high sampling frequency was unnec-
essary. Additionally, this high frequency significantly increased the data volume, placing
an excessive burden on the network. To address this, we resampled the data, reducing
the respiratory data to 90 points per minute and the cardiac data to 180 points per minute.
This resampling yielded respiratory amplitude interval features M1 with dimensions of
2× 90 and cardiac amplitude interval features M2 with dimensions of 2× 180. This strategy
preserved the dynamic characteristics of each breath and heartbeat while maintaining con-
sistent output sizes across the subnetworks. The inputs M1 and M2 were then processed by
two streamlined neural network architectures, Conv1d-1 and Conv1d-2, which consisted of
three layers of one-dimensional convolution followed by global average pooling, as shown
in Figure 7. This configuration maintained consistency in feature extraction despite varia-
tions in the input dimensions. Through the MCNN-Conv1D mapping function fi(·), each
input Mi was transformed into scaled feature vectors Fi, with the process parameterized
by θi addressing the diverse physiological data, as shown in Equation (12):

Fi = fi(Mi, θi) i = 1, 2 (12)

Unlike MCNN-Conv1D, which processes temporal feature vectors, MCNN-Conv2D
specializes in spatial features by analyzing images of the cardiopulmonary intensity. Due



Sensors 2024, 24, 4833 12 of 20

to the limited number of sensors, the resolution of the cardiopulmonary activity map
was initially only 4× 8. To compensate for this low resolution, we enlarged the original
images fourfold using bicubic interpolation. Consequently, the inputs for the subnetworks
Conv2d-1 and Conv2d-2 within MCNN-Conv2D, denoted as N1 and N2, respectively, were
respiration and heartbeat activity maps scaled to dimensions of 16× 32. The architecture
of each subnetwork included three two-dimensional convolutional layers, followed by
a max pooling layer and an adaptive max pooling layer to ensure standardized output
dimensions across different inputs. Through the MCNN-Conv2D mapping function gi(·),
each input Ni was transformed into scaled feature maps Ei parameterized by βi, as shown
in Equation (13):

Ei = gi(Ni, βi) i = 1, 2 (13)

Table 1. Detailed parameter table for S3CNN network architecture.

Layer Name Filters and Kernels Strides and Padding Activation

Conv1D-1 Layer 1 filters = 16, kernel = 11 strides = 1, padding = “same” ReLU
Conv1D-1 Layer 2 filters = 24, kernel = 11 strides = 2, padding = “same” ReLU
Conv1D-1 Layer 3 filters = 32, kernel = 11 strides = 2, padding = “same” ReLU
Conv1D-2 Layer 1 filters = 16, kernel = 11 strides = 2, padding = “same” ReLU
Conv1D-2 Layer 2 filters = 24, kernel = 11 strides = 2, padding = “same” ReLU

MaxPooling1D - pool size = 3 -
Conv1D-2 Layer 3 filters = 32, kernel = 11 strides = 1, padding = “same” ReLU
Conv2D-1 Layer 1 filters = 6, kernel = (3,3) strides = (2,2), padding = “same” ReLU
Conv2D-1 Layer 2 filters = 16, kernel = (3,3) strides = (2,2), padding = “same” ReLU
MaxPooling 2D-1 - pool size = (2,2) -
Conv2D-1 Layer 3 filters = 32, kernel = (4,2) strides = (1,1), padding = “valid” ReLU
Conv2D-2 Layer 1 filters = 12, kernel = (3,3) strides = (2,2), padding = “same” ReLU
MaxPooling 2D-2 - pool size = (2,2) -
Conv2D-2 Layer 2 filters = 24, kernel = (3,3) strides = (1,1), padding = “same” ReLU
MaxPooling 2D-3 - pool size = (2,2) -
Conv2D-2 Layer 3 filters = 32, kernel = (4,2) strides = (1,1), padding = “valid” ReLU

Fully Connected Layer 1 units = 64 - relu
Fully Connected Layer 2 units = 96 - relu

3.3.2. Sleep Posture Detection Using Stacked Features

Fusing multi-modal features is crucial in determining sleep posture. The temporal
features [F1; F2] extracted through MCNN-Conv1D and spatial features [E1; E2] extracted
through MCNN-Conv2D are both presented as 32× 2 matrices. We stacked these features
into a 32× 4 matrix of stacked features S = [Fi; Ei], which were then flattened along
the row dimension to combine these diverse types of information. A sequence of fully
connected layers of dimensions 64 and 96, followed by a Softmax function, served as
the mapping function h(·), tasked with integrating these features for classification. This
process effectively encapsulated the temporal and spatial information within the data. As a
result, the sleep posture G was identified by applying this mapping function to the stacked
features, represented by the following equation:

G = h(S, θdp) (14)

where θdp represents the parameters of the posture detection model, encompassing all
relevant layers and functions involved in determining the sleep posture.

4. Results
4.1. Dataset

This study utilized a dataset approved by the Ethical Committee of Peking Union
Medical College Hospital on 20 August 2019 with IRB No. JS-2089. The dataset included
22 participants aged 30–68 years, comprising 15 males and 7 females. Most participants
suffered from varying degrees of OSA and diverse body types, including eight overweight
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and five lean individuals. We collected vibration data near the chest using a sparse sensor
array, while PSG was utilized to monitor sleep postures and body movements. Data were
collected from each participant over durations ranging from 4.5 to 7 h, totaling 8583 min.
Of these, 937 min (10.92%) were affected by body movements (referred to as “interfered
samples”), while 7646 min (89.08%) were unaffected (referred to as “uninterfered samples”).
Throughout a night, there are typically 15–25 sleep posture changes, with each posture
lasting approximately 30 min. Due to individual differences in sleep posture habits, the
proportion of each sleep posture varied significantly among the participants, making a
small number of individual samples insufficient for robust training. However, on average,
the time spent in the supine position was greater than that spent in the right lateral position
and slightly greater than that spent in the left lateral position. Overall, the dataset was
balanced with respect to sleep postures, including 3806 min (49.78%) of the supine position,
2566 min (33.56%) of the right lateral position, and 1274 min (16.66%) of the left lateral
position. It is worth noting that some preliminary findings using this dataset were also
reported in our paper, being presented at the Annual International Conference of the IEEE
Engineering in Medicine Biology Society (EMBC) [42]. The class distribution of the dataset
is presented in Table 2.

Table 2. Description of the dataset.

Sleep Posture All Samples Uninterfered
Samples Interfered Samples

Supine 4232 3806 426
Right Lateral 2934 2566 368
Left Lateral 1417 1274 143

Total Samples 8583 7646 937

To effectively assess the model’s adaptability and generalization, we divided the data
from 22 nights into 10 subsets based on the participants for a balanced cross-validation
process. Each subset contained data from 2–3 nights, leading to significant differences in
the sample distribution. We systematically tested the performance through three rounds of
10 fold cross-validation on these subsets. In each round, the performance was evaluated
using the F1 score, accuracy (Acc), recall (Rec), precision (Pre), and AUC value. Each
10 fold cross-validation produced 10 confusion matrices, which were then aggregated to
obtain an overall confusion matrix for that round. This approach, known as summing
confusion matrices, is commonly used to provide a comprehensive reflection of the model’s
performance across all subsets. By summing the confusion matrices from each of these 10
iterations, we obtained a final confusion matrix which accurately represented the model’s
overall performance. The total sample size used for these confusion matrices was 7646,
which corresponded to the “uninterfered” subset used for training. This method mitigated
the variability in sleep posture distribution across different nights and individuals, pro-
viding a more robust assessment of the model’s capabilities. To further verify the model’s
generalization capabilities, we conducted three rounds of cross-validation and calculated
the mean and standard deviation of these metrics, ensuring stability and reliability under
various environmental conditions.

4.2. Detection Performance

To enhance the performance of the S3CNN model, we meticulously initialized the
critical hyperparameters, including the learning rate, batch size, epoch count, and kernel
initialization techniques. For this study, the initial learning rate was set to 0.001, and the
training was limited to a maximum of 100 epochs. We chose a batch size of 48 to achieve a
balance between the computational efficiency and processing speed. To combat overfitting,
L1 regularization was incorporated into the loss function. Apart from these modifications,
other parameters were retained at their default settings within the Keras framework. The
details of all hyperparameters used in our model, including their respective values and
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the rationale for choosing them, are provided in Table 3. Finally, the adaptability and
generalization ability of our model were validated across different subsets using three
rounds of 10 fold cross-validation.

Table 3. Hyperparameter table for S3CNN.

Hyperparameter Value(s) Rationale

Learning Rate 0.001 Balances convergence speed and training
stability

Batch Size 48 Provides a balance between memory usage
and gradient estimate stability

Number of Epochs 100 Sufficient for convergence based on initial
experimentation

Weight Decay 0.0005 L2 regularization to prevent overfitting by
penalizing large weights

Optimizer Adam Chosen for its adaptive learning rate and
good performance in similar tasks

Dropout Rate 0.5 Helps to prevent overfitting by randomly
dropping neurons during training

Activation Functions ReLU, Softmax
ReLU for hidden layers to introduce
non-linearity and Softmax for output layer
classification

Figure 8a shows the confusion matrix of the sleep posture detection by the S3CNN
model. With the uninterfered samples, the accuracy, recall, precision, and F1 score of the
proposed method reached 93.02%, 91.96%, 92.65%, and 0.9229, respectively. Additionally,
Figure 8b illustrates the ROC curves for different postures, with AUC values for supine,
right lateral, and left lateral postures at 0.9418, 0.9288, and 0.9464, respectively. The overall
performance, indicated by a total AUC of 0.9382, demonstrates the model’s strong capability
in accurately classifying sleep postures.

Figure 8. (a) Confusion matrix of S3CNN. (b) AUCs of different sleep postures in S3CNN model.

5. Discussion
5.1. Ablation Study

In this study, the S3CNN model utilizes multi-channel CNN networks to extract spa-
tiotemporal features, effectively combining one-dimensional dynamic and two-dimensional
static features to recognize sleep postures. To assess the impact of specific components such
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as the MCNN-Conv1D and MCNN-Conv2D on the model’s performance and generalizabil-
ity, detailed ablation experiments were conducted. Importantly, we employed three rounds
of 10 fold cross-validation to validate the robustness of different ablation studies, a method
which effectively quantifies the stability and variability of our experimental results.

As shown in Table 4 and Figure 9, the MCNN-Conv2D, focusing on spatial features,
achieved an accuracy of 87.71± 0.69%. This surpassed the MCNN-Conv1D, which utilized
temporal features and recorded an accuracy of 77.96± 1.37%. Although both individual
networks performed poorly in recognizing lateral postures, the ROC curves indicate that the
MCNN-Conv2D significantly improved the detection of the left lateral posture compared
with the MCNN-Conv1D. The integrated S3CNN model, combining the Conv1D and
Conv2D networks, outperformed these single-feature networks. It maintained the left
lateral detection performance of the MCNN-Conv2D while significantly enhancing the
accuracy for the supine and right lateral postures, achieving an accuracy of 92.58± 0.44%.
In three rounds of 10 fold cross-validation, the process of obtaining the confusion matrix
involved summing the confusion matrices and ensuring each resulting confusion matrix
included data from all samples. Although the training results for sleep posture prediction
using the MCNN-Conv1D, MCNN-Conv2D, and S3CNN were not identical each time,
the differences were within manageable limits. Specifically, the variance in predictions
using the MCNN-Conv1D was within 200 samples, while that for the MCNN-Conv2D was
within 100 samples and that for the S3CNN was within 50 samples, indicating that the
S3CNN maintained stable performance. Overall, the submodules of the S3CNN not only
improved the performance of sleep posture detection but also significantly enhanced the
model’s adaptability and generalizability.

Figure 9. (a) Confusion matrix of MCNN-Conv1D. (b) AUCs for sleep postures in MCNN-Conv1D.
(c) Confusion matrix of MCNN-Conv2D. (d) AUCs for sleep postures in MCNN-Conv2D.
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Table 4. Performance comparison in ablation study.

Metric MCNN-Conv1D for
Temporal Features

MCNN-Conv2D for
Spatial Features

S3CNN for
Spatiotemporal Features

Acc 77.96± 1.37% 87.71± 0.69% 92.58± 0.44%
Rec 76.61± 1.16% 87.52± 0.75% 91.69± 0.34%
Pre 76.49± 1.08% 86.93± 0.68% 92.29± 0.36%

F1 score 0.7623± 0.0110 0.8734± 0.0065 0.9186± 0.0043
AUC 0.8145± 0.090 0.8912± 0.0048 0.9353± 0.0029

5.2. Performance Comparison

Table 5 compares the S3CNN with state-of-the-art sleep posture detection methods.
While our method trailed the top performers by a margin of 1–5% in accuracy, it signifi-
cantly reduced the sensor requirements by one to two orders of magnitude. This reduction
substantially decreases the costs related to sensors and computational needs, thereby im-
proving its suitability for integration into embedded devices. Furthermore, deep learning
methods for feature extraction [17,23,24,28,29,31,43–45] consistently outperform traditional
techniques such as the k-nearest neighbors (KNN) algorithm, histogram of oriented gra-
dients (HOG), principal component analysis (PCA), and SVMs [2,19–22,25–27,30,46,47]
in terms of performance. This highlights the benefits of using a neural network-based
architecture in our approach. However, the excessive depth of deep learning networks will
significantly increase the demand for computational resources. Current state-of-the-art
methods often rely on numerous sensor nodes and parameters, requiring robust hardware
capabilities and limiting widespread deployment. These methods typically use absolute
pressure values from the entire body, which are highly susceptible to disturbances. To
improve accuracy, they increase the sensor density, raising costs and limiting scalability. In
contrast, our S3CNN achieved excellent performance with a shallow three-layer network
by focusing on features from the chest area. We separated the cardiac and respiratory
activity intensities, filtering out irrelevant information and closely associating the features
with sleep posture, allowing good performance even at low resolutions. However, relying
solely on static image features is insufficient for handling sudden data changes and cannot
capture variations over time. Therefore, we also extracted the temporal features from
respiratory and cardiac signals and integrated these multimodal features using the S3CNN.
This integration further enhances the robustness and accuracy of sleep posture recognition,
making our method suitable for portable and wearable devices and broadening its potential
for real-world applications.

Table 5. Performance comparison with state-of-the-art methods.

Reference Number of Sensors Method Accuracy

Mineharu et al. [19] 64× 27 = 1728 Support Vector Machine 77.1%
Hsia et al. [21] 32× 64 = 2048 Support Vector Machine 83.5%

Qilong et al. [2] 32× 32 = 1024 Support Vector Machine 98.1%
Matar et al. [22] 64× 27 = 1728 HOG + LBP 96.7%

Enokibori et al. [23] 3200 Deep Neural Network 99.7%
Heydarzadeh et al. [24] 32× 64 = 2048 Deep Neural Network 98.1%

Qisong et al. [28] 32× 32 = 1024 CNN-SVM 91.2%
Diao et al. [29] 32× 32 = 1024 RestNet 95.1%

Georgios et al. [20] 32× 32 = 1024 PCA-HMM 90.3%
Xu et al. [25] 64× 128 = 8192 K-nearest Neighborhood 91.2%

Yousef et al. [26] 32× 64 = 2048 K-nearest Neighborhood 97.1%
Zhangjie et al. [30] 32× 24 = 768 HOG-PCA 89.0%

Jen et al. [31] 11× 20 = 220 CNN 96.9%
Our method 4× 8 = 32 S3CNN 93.0%
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Unlike traditional methods which rely on lab-generated data, our study used datasets
from real sleep scenarios, including significant motion artifacts, which accounted for
approximately 13% of the data. These motion artifacts notably degrade the accuracy of sleep
posture detection, posing a major challenge for real-life applications. We addressed this
by employing a model-based feature extraction method to distinguish between interfered
and uninterfered samples, significantly mitigating the impact of motion artifacts on the
detection accuracy. By integrating static spatial features with dynamic temporal features,
our method enhances adaptability and generalizability, achieving stable performance in
practical scenarios. To verify the real-world applicability of the S3CNN, our device was
part of a national project titled “Research on the Safety and Efficacy System and Standard
System of Active Health Products and Human Health State Assessment” (2018YFC200148).
Over 100 participants tested our device in homes, factories, and nursing homes, collecting
more than 500 nights of sleep posture data. User feedback indicated that our device’s
monitoring results were consistent with the actual conditions. These data also contributed
to the development of standards and the publication of related works on human health
state monitoring, demonstrating the practicality and high performance of our method in
embedded devices for long-term monitoring. Moreover, we are currently collaborating
with industry partners to bring our technology to market.

5.3. Analysis of Model Adaptability and Limitations

The proposed SNNN was thoroughly validated using 10 datasets derived from a
sleep posture dataset. The validation process involved a 10 fold cross-validation method
repeated across three rounds to ensure robustness. Each fold’s training set comprised
7243–7755 samples from 19–20 patients, while the test set consisted of 828–1340 samples
from the remaining 2–3 subjects. The S3CNN achieved an accuracy rate of 90–93% across
the test sets within each fold, demonstrating significant variation in body types, sleep habits,
and diverse sleep postures. The consistent performance across all folds and rounds indicates
that our model can effectively handle motion artifacts and maintain high performance
across diverse long-term datasets. Therefore, it is suitable for widespread use in daily
sleep monitoring.

However, the sleep posture dataset provided by the Ethical Committee of Peking
Union Medical College Hospital is limited to only 22 subjects. This relatively small dataset
imposed significant constraints on our study. A primary limitation is the the infrequency
of the prone sleep posture in normal sleep, appearing in less than one percent of cases
and making it difficult to collect sufficient prone posture data for training. This scarcity
led to the absence of prone posture detection. Moreover, this study filtered out interfered
samples without exploring the correlations between sequential sleep postures, resulting in
approximately 10 percent of the samples being wasted. Additionally, the lack of exploration
into the correlations between sequential sleep postures contributed to the lack of continuity
in detecting sleep postures, which adversely affected performance. To address these
limitations, future studies will incorporate additional laboratory data to enrich our dataset
with prone samples. We also plan to enhance our models by integrating networks which can
capture the temporal dynamics across sequences and utilize inter-sample temporal features.

6. Conclusions

In this study, we developed an automated sleep posture identification technique
using a sparse sensor array of piezoelectric ceramic sensors, employing only 32 sensors.
This method effectively detects nuanced pressure disturbances caused by physiological
movements, capturing both breath and heart activity. We proposed a synergistic framework
named the S3CNN, which combines an MCNN-Conv1D to analyze the temporal features
and an MCNN-Conv2D to analyze the spatial features from the mixed pressure signals.
The S3CNN was thoroughly validated across various datasets and achieved performance
comparable to advanced methods which utilize a significantly larger array of sensors.
This performance not only demonstrates the superior adaptability and generalizability
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of the S3CNN but also offers a cost-effective solution for home sleep monitoring through
portable devices. However, our method filters out interfered samples, leaving a portion
of the dataset unutilized. Future work will focus on incorporating additional data and
enhancing temporal dynamic modeling to further improve accuracy and enable continuous
long-term monitoring.
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