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Abstract: With the gradual expansion of mining scale in open-pit coal mines, slope safety problems
are increasingly diversified and complicated. In order to reduce the potential loss caused by slope
sliding and reduce the major threat to the safety of life and property of residents in the mining area,
this study selected two mining areas in Xinjiang as cases and focused on the relationship between
phase noise and deformation. The study predicts the specific time point of slope sliding by analyzing
the dynamic history correlation tangent angle between the two. Firstly, the time series data of the
micro-variation monitoring radar are used to obtain the small deformation of the study area by
differential InSAR (D-InSAR), and the phase noise is extracted from the radar echo in the sequence
data. Then, the volume of the deformation body is calculated by analyzing the small deformation at
each time point, and the standard deviation of the phase noise is calculated accordingly. Finally, the
sliding time of the deformation body is predicted by combining the tangent angle of the ratio of the
volume of the deformation body to the standard deviation of the phase noise. The results show that
the maximum deformation rates of the deformation bodies in the studied mining areas reach 10.1
mm/h and 6.65 mm/h, respectively, and the maximum deformation volumes are 2,619,521.74 mm3

and 2,503,794.206 mm3, respectively. The predicted landslide time is earlier than the actual landslide
time, which verifies the effectiveness of the proposed method. This prediction method can effectively
identify the upcoming sliding events and the characteristics of the slope, provide more accurate and
reliable prediction results for the slope monitoring staff, and significantly improve the efficiency of
slope monitoring and early warning.

Keywords: microvariation monitoring radar; deformation time prediction; deformable body; phase
noise standard deviation; dynamic course correlation

1. Introduction

Slope sliding is a geological phenomenon that occurs during open-pit coal mining
when slopes are subjected to water erosion, rainfall, groundwater movement, and human
factors, causing them to slide in a specific direction under the influence of gravity [1]. China
is rich in mineral resources, and in recent years, with the advancement of mining technology,
open-pit mining activities have increased, making slope instability a major type of disaster
that threatens public facilities and people’s lives and property. Early identification and
warning of landslide disasters have become important tasks [2–5]. On 22 February 2023,
a large-scale collapse occurred at the Xinjiang Mine in Alxa League, Inner Mongolia
Autonomous Region, resulting in 53 deaths, 6 injuries, and a direct economic loss of CNY
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204.3025 million. Therefore, it is crucial to pay close attention to the safety hazards of mine
slopes, accurately monitor potential unstable slopes, and formulate reasonable monitoring
and governance plans [6–8]. In 2023, the Ministry of Natural Resources issued the “14th
Five-Year Plan for National Geological Disaster Prevention and Control”, proposing to
establish a comprehensive prevention and control system with geological disaster risk
prevention and control as the main line, enhance disaster prevention capabilities and
engineering standards, and prevent and mitigate geological disaster risks. In the 2024
national geological disaster prevention and control work, it is required to fully utilize
comprehensive remote sensing technology to identify and prevent major hazards [9,10].

Due to the complex nature of the rock and soil bodies of open-pit mine slopes and
the various factors influencing slope instability, slopes have become one of the main
safety hazards in open-pit mine engineering management activities [11]. Monitoring
and managing unstable slopes have gradually become important aspects of ecological
restoration in open-pit mines, and scholars at home and abroad have conducted extensive
research on this [12–14]. In the 1960s, Saito proposed a landslide prediction model based
on creep theory through landslide experiments. This model divides the landslide process
into three stages, with slope instability typically occurring in the accelerated deformation
stage, characterized by a significant increase in surface deformation rate [15]. Subsequently,
many scholars have conducted follow-up studies based on this model, promoting the
development of landslide early warning and prediction. In 1969, Hoek proposed an
extension method for estimating landslide timing based on the displacement–time curve of
landslide monitoring at the Chuquicamata mine in Chile [16]. In 1985, Japanese scholar
Fukuzono proposed the “Fukuzono Method” for predicting the time of slope stability
failure through large-scale model experiments [17].

With the development of computer technology, communication technology, systems
science, nonlinear analysis theory, and intelligent technology, landslide early warning and
prediction have evolved into a multidisciplinary integrated technology. This has attracted
the attention of many researchers aiming to improve the accuracy of early warning and
prediction, leading to the emergence of various models, methods, and systems for early
warning and prediction [18]. In 2009, Qiang Xu proposed the tangent angle landslide early
warning standard based on the Saito model. He found that when the tangent angle of the
displacement–time curve exceeds 45 degrees, it signals that the landslide has entered the
accelerated deformation stage, and when the tangent angle approaches 90 degrees, the
likelihood of a landslide increases [19]. In 2020, Kamal Das and Thaljaoui et al. developed
real-time threshold prediction systems for landslides based on wireless sensor networks
and limit equilibrium-based landslide prediction systems, respectively. These systems have
significantly improved the accuracy of predicting slope sliding time [20,21].

In recent years, with the development of remote sensing technology, ground-based
micro-variation monitoring radar technology, as an important branch of InSAR technology,
has represented an innovative technology in remote sensing monitoring. This technology
combines the principles of synthetic aperture radar imaging and differential interferometry,
enabling precise measurement of small surface changes. It has been widely applied to ob-
tain surface deformation data over large areas, showing great monitoring potential [22,23].
Over the years, this technology, with its all-weather, all-time operation, minimal environ-
mental interference, wide monitoring range, and high precision, has been widely applied in
acquiring large-area surface deformation data [24]. The Ground-Based Synthetic Aperture
Radar (GB-SAR), which evolved from this technology, has shown immense potential in
geological hazard monitoring and early warning. Particularly, the development of linear,
circular, and array types of GB-SAR has significantly enhanced the capability to monitor
geological disasters such as landslides and ground subsidence [25]. In terms of landslide
early warning and prediction, scholar Wang Yadong proposed a new method for predict-
ing slope instability time by integrating the coherence and volume of landslide bodies
with indicators of slope deformation and tangent angle [26]. The application of machine
learning and neural network technology is also being extensively researched, providing
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important technical means for landslide monitoring [27–30]. InSAR technology itself dis-
plays significant advantages in monitoring large mining areas, particularly in the domains
of surface deformation monitoring and environmental impact assessment. It provides
millimeter-level precision in deformation data, covers extensive geographical areas, and re-
veals the dynamic processes of deformation and their potential long-term impacts through
time-series analysis. Due to its cost-effectiveness and independence from ground facilities,
InSAR is particularly suited for monitoring in complex or remote terrains [31–33]. By
precisely monitoring the deformation of the surface around mining areas, InSAR not only
helps evaluate the impact of mining activities on geological stability and the environment
but also provides a scientific basis for mine management and environmental restoration,
making it an ideal tool for managing large mining areas and environmental monitoring.

The phase information of GB-SAR is crucial data for generating high-quality radar
images and performing interferometric measurements. During the SAR imaging process,
the radar system emits electromagnetic pulses that are reflected back upon contact with
ground targets. The phase information in the reflected echo signals reflects the distance
traveled by the radar wave from transmission to reception. Since the propagation speed
of electromagnetic waves is known, by precisely measuring the phase difference of the
echo signals, highly accurate distance information can be calculated. In InSAR technology,
the phase differences between multiple SAR images of the same area obtained at different
times are used to analyze small surface changes. However, when slope deformation
occurs, the interferograms of the target area are limited by linear phase models, resulting in
significant noise in the generated interferogram phases [34–37]. When there is severe phase
noise in local areas, the deformation information extracted from the interferograms can be
inaccurate [38]. Therefore, the accuracy of phase noise in interferograms is a crucial factor
affecting the magnitude of deformation values.

This paper addresses the characteristics of slope sliding timing and proposes a method
to reflect the degree of slope deformation from the perspective of noise. This method is
based on the dynamic process correlation between slope deformation volume and phase
noise standard deviation. By combining the dynamic process correlation with the tangent
angle, a comprehensive early warning strategy is formulated. Using time series data from
two mining areas in Xinjiang as examples, a time prediction model is constructed, and
its predictive performance is analyzed and evaluated in detail, verifying the practical
application of the method.

2. Study Area
2.1. Overview of Study Area One

The open-pit mine in the study area is located on the slope of the middle and lower
part of the Altay Mountains in northwestern China, in Altay City, Xinjiang Province.
The elevation of the slope is between 1000 and 1300 m. The extent of the mine is about
1.2 km long in the northwest–southeast direction and about 0.7 km wide in the northeast–
southwest direction. The terrain is characterized by a gradual increase from north to east,
and the relative height difference varies by up to 50~300 m. These elevation differences
are caused by the destruction of the original topography and geomorphology caused by
open-pit mining activities. Therefore, a number of platforms with obvious height difference
are formed, which leads to the fluctuation of terrain. The summary map of the study
area and a panoramic view of the open-pit mine after the slope sliding from the radar
perspective are as follows (Figure 1):
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Figure 1. Geographic location and site image of Research Area 1: (a) Altay prefecture in Xinjiang 
Province, (b) Fuyun County in Altay Region, (c) Post-slope slide site image. 

2.2. Overview of Study Area Two 
Study area two is still an open-pit mine, located in the southern foot of the middle 

Tianshan Mountains in China, in the Aksu region of Xinjiang Province. The altitude of the 
coal mine is between 945 and 1020 m. The extent of the coal mine is 3.625 km long from 
east to west and 0.330–0.580 km wide from north to south, and the area of the mine field 
is about 1.527 km2. The summary of the geographical location of the study area is as fol-
lows (Figure 2): 
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Figure 2. Geographic location of study area two: (a) Aksu prefecture in Xinjiang Province, (b) 
Baycheng county in Aksu prefecture. 

Figure 1. Geographic location and site image of Research Area 1: (a) Altay prefecture in Xinjiang
Province, (b) Fuyun County in Altay Region, (c) Post-slope slide site image.

2.2. Overview of Study Area Two

Study area two is still an open-pit mine, located in the southern foot of the middle
Tianshan Mountains in China, in the Aksu region of Xinjiang Province. The altitude of the
coal mine is between 945 and 1020 m. The extent of the coal mine is 3.625 km long from
east to west and 0.330–0.580 km wide from north to south, and the area of the mine field is
about 1.527 km2. The summary of the geographical location of the study area is as follows
(Figure 2):
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In the field of geology, this study focuses on the diversity of rock types in specific areas,
including five main types of gneiss, schist, granulite, marble, and amphibolite. These rocks
provide key material support for the geological structure and geomorphology of the area.
Especially in some slope areas, through systematic observation of rock mass, it is found that
higher integrity is gradually shown from the surface to the deep layer. Although the rock
mass is relatively unified, the process of crushing it inevitably leads to the development
of structural fracture zones. The formation of these fault zones may be closely related
to regional geological dynamics, environmental vibration factors such as seismic activity,
and human excavation operations, as well as rock structure characteristics, which together
affect the structural stability of rock mass. Although there are local fractures, the rocks
in the whole area generally show good stability and resistance to external erosion, which
effectively maintains the integrity of the geological structure and provides an important
material basis for the geological safety and sustainable development of the region.

2.3. Experimental Equipment and Experimental Data

The two regional experiments take the synthetic aperture micro-variation monitoring
radar as an example. The technology realizes the relative displacement simulation between
the radar and the monitoring object based on the principle that the radar sensor moves
along a predetermined linear trajectory, thereby simulating the effect of a large-aperture
antenna with a small-aperture actual antenna. In the distance dimension, this method
achieves high-resolution distance measurement by transmitting and receiving electromag-
netic wave signals and using pulse compression technology. In the azimuth dimension, the
electromagnetic wave signal is processed by coherent accumulation through the motion
of the sensor along the straight-line trajectory to achieve high azimuth resolution. Thus, a
high-resolution two-dimensional image of the monitoring area is generated. The working
principle of the radar is shown in Figure 3:
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Figure 3. Micro-variation monitoring radar measurement diagram.

The micro-variation monitoring radar used in the two experiments is the MPDMR-LSA
system developed by Inner Mongolia University of Technology (Figure 4), and the system
parameters are shown in Table 1.

The data come from two research areas in different time periods. The monitoring time
of the first research area began on 18 April 2021 and ended on the morning of 21 April
2021. A total of 225 radar images were obtained. The monitoring time of study area two
began on 11 September 2023 and ended on the morning of 12 September 2023. A total
of 126 radar images were obtained. Figure 5 shows the radar images of the two research
areas obtained by the micro-variation monitoring radar. Since the monitoring environment
is mainly composed of rock structures with strong scattering performance, the obtained
imaging results show high clarity.
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Table 1. Parameters of micro-variability monitoring radar.

Parameter Numerical Value

Frequency range 16.5 GHz~17.5 GHz
Monitoring range 60◦ × 30◦

Picture resolution 0.3 m × 0.0054 rad
Monitoring accuracy 0.1 mm
Operating distance 5 km

Working temperature −30 ◦C~50 ◦C
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3. Methods

The development process of a landslide usually occurs over an obvious time span,
during which the cumulative displacement and time relationship show three stages of
characteristic changes. These three stages are: the initial deformation stage, in which the
deformation development is slow; subsequently, the landslide enters the stage of uniform
deformation, and the displacement rate of the landslide remains relatively constant. Fi-
nally, it enters the accelerated deformation stage. At this stage, the deformation rate of
the landslide increases rapidly, resulting in the final failure, as shown in Figure 6. In this
process, the landslide will show significant macroscopic deformation and failure charac-
teristics. Especially in the stage of deformation acceleration, there is usually pre-landslide
precursor information, which is very important for the advanced prediction and warning
of a landslide. Based on these observations, the early detection and emergency warning
system for landslides is realized, which provides a scientific basis for the risk management
and mitigation strategy of landslide disasters. Through in-depth study of the deformation
behavior and failure mechanism of various types of landslides, and a comprehensive analy-
sis of the morphological characteristics of a large number of monitored displacement–time
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curves, it is concluded that under different stress conditions, different types of landslide
displacement–time curves can be divided into a set of gradient deformation curve groups,
as shown in Figure 7. These curve groups can be classified into three main deformation
modes: gradual, sudden and stable.
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As a tool for monitoring landslide activities, the displacement–time curve has signifi-
cant advantages in providing early warning, but its ability is limited when dealing with
sudden landslides, especially in providing sufficient early warning time for such landslides.
In addition, a single displacement–time curve mainly provides quantitative data of slope
displacement, and these data may not reveal the complete potential risk of landslides
without other context information. Therefore, this study proposes a comprehensive method
to enhance the accuracy and effectiveness of landslide warning through the combination of
multiple parameters.

3.1. Forecasting Process

The slope sliding time prediction method based on the dynamic history correlation
of the volume of the deformation body and the standard deviation of the phase noise
combined with the tangent angle mainly includes five parts, namely, the acquisition of the
displacement of the slope deformation body, the extraction of the volume of the deformation
body, the normalization of the standard deviation of the phase noise, the calculation of the
dynamic history correlation, and the combination of the tangent angle model. The overall
process is shown in Figure 8:
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In the figure, the threshold includes the slope displacement threshold and the slope
velocity threshold; the threshold is that the displacement and velocity of the deformation
body at a certain moment are greater than the slope displacement threshold and velocity
threshold.

3.2. Acquisition of Displacement of Slope Deformation Body

In the micro-variation monitoring radar, after the accurate registration of the radar
single-look complex image (SLC) at different times in the same area, the displacement in
the radar line-of-sight direction can be obtained by calculating the phase change of the
target point in the two phases. The principle of interferometry is shown in Figure 9.
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It is assumed that the initial complex image observed by the micro-variation moni-
toring radar is I1. The complex image of the moment after the change is I2; these can be
expressed as:

I1 =| I1 | eiφ1 (1)

I2 =| I2 | eiφ2 (2)

The phase difference between two complex images of continuous time series can be
used to calculate the displacement of the target point between the two observations. The
small deformation obtained by differential interferometry also needs to be filtered to obtain
the true deformation value. The phase difference calculation formula is

Ts
i = − λ

4π
(φ2 − φ1) (3)

In the formula, Ts
i is the deformation of the target point between two observations. φ1

and φ2 are the phases of the two observations, respectively, and λ is the wavelength of the
radar wave.

In the process of long-term geological monitoring, random factors such as human
activity interference, local vibration caused by construction, and noise of the monitoring
system itself may cause fluctuations in monitoring data. If only relying on the change of a
single feature pixel for region recognition, the fluctuation of pixel values caused by these
interferences may be mistaken for pixel distortion. However, geological disasters such as
landslides usually involve significant deformation over a wide range, rather than limited
changes in a few isolated feature pixels. Therefore, this study proposes a feature pixel
selection strategy based on deformation velocity threshold (v) and cumulative displacement
threshold (s). The strategy aggregates the detected feature pixels through the connectivity
algorithm to identify the sensitive areas that need to be preferentially monitored.

3.3. Extraction of Slope Deformation Volume

In the application of micro-variation monitoring radar, because the transmission and
reception of a radar beam are completed at different times, the performance of azimuth
resolution is represented by azimuth angle, which leads to the heterogeneity of the surface
area distribution represented by each pixel in radar data. Specifically, in the area near
the radar station, the actual surface area covered by the corresponding pixels is relatively
small; on the contrary, as the distance from the radar station increases, the actual surface
area covered by the corresponding pixel gradually increases. This phenomenon causes the
projection of each radar pixel on the surface to appear as a fan-shaped annular region. The
area of the fan-shaped annular region can be accurately calculated and determined by the
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key parameters of the radar, including the range resolution, azimuth resolution, and the
distance from the radar to the target [39]. The calculation formula is as follows:

Sn =
2n − 1

2
αβ2 (4)

In the formula, Sn is the area of a single pixel; α is azimuth resolution; β is the distance
resolution; n is the sampling position of the corresponding pixel in the distance direction.

In the study of mine slope stability, the volume change of the deformation body
is the key factor to predict and prevent slope sliding. The volume change reflects the
dynamic adjustment of the internal structure and density of the slope, which is closely
related to the displacement vector of the slope and its change rate. The volume increase
or decrease caused by the development of cracks or the change of material density in
the slope may indicate a significant change in slope stability. This is because the volume
adjustment directly affects the mechanical balance and stress distribution of the slope,
which determines the potential risk of slope sliding. Therefore, accurate monitoring and
analysis of the volume change of slope deformation is a key step in formulating effective
preventive measures and intervening in slope instability. The calculation method of slope
volume is as follows:

Vi = (
N

∑
n=1

(Dn
i × Sn))/N (5)

In the formula, Vi is the deformation volume of the i moment; Dn
i is the deformation

value of the n pixel after filtering at the i moment; N is the total number of pixels in
the sensitive area. Due to the gradual deformation of the slope, its range is gradually
expanding, so the number of pixels in the sensitive area is gradually increasing.

The method introduced in this paper involves a mathematical model for estimating the
overall slope volume by combining the calculations of the volumes of all parts of the slope.
In the slope sliding warning system, the estimation of the slope volume is very important,
because it directly affects the assessment of the potential threat of the slope and determines
the scale and influence range of the slope. Larger slope sliding will cover a wider area
and cause more serious damage. Accurate assessment of the volume of slope sliding can
improve the frequency of emergency response and reduce casualties and property losses.
The volume calculation model formula (5) described in this paper indicates that the slope
volume is approximately calculated by the sum of the volumes of the sections.

3.4. Normalize the Standard Deviation of Phase Noise

In the field of micro-variation monitoring technology, phase noise is the main factor af-
fecting the accuracy of deformation measurement. Its intensity directly affects the accuracy
of elevation measurement, the effectiveness of deformation monitoring, and the integrity
of phase information. The phase noise is mainly caused by the noise in the system, the
baseline decoherence effect, and the error caused by the time decoherence effect. These
factors may not only lead to a significant decrease in the accuracy of elevation measurement,
but may also weaken the ability of deformation monitoring. In synthetic aperture radar
(SAR) imaging technology, the coherence coefficient between two SAR images used to
generate interferograms has a direct impact on the phase noise level. Furthermore, the
degree of phase noise can be quantified by the coherence coefficients of these two SAR
images. The larger the coherence coefficient, the smaller the phase noise. Franceschetti et al.
gave the relationship between the standard deviation of phase noise and the coherence
coefficient in this paper:

σn
i =

∫ x

−x
(φ − φn

0 , j)2ρ(φ, γn
i , 1, φn

0 , j)dφ (6)
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In the formula, σn
i is the standard deviation of the phase noise of the n pixel at the i

moment; φ is the interference phase; φn
0,i is the initial phase of the n pixel at the i moment.

rn
i is the corresponding coherence coefficient.

ρ(φ, γn
i , 1, φn

0,i) represents the phase probability density function with the multiplicity
of 1, and its analytical expression is as follows:

ρ(φ, γn
i , 1, φn

0 , ) = Γ(1.5)(1−(γn
i )

2)β

2
√

πΓ(1)(1−β2)
1.5 +

1−β2

2π ·
F(1, 1; 1/2; β2),−π < (φ − φn

0 ) < π
(7)

In the formula, Γ(g) is the gamma function; β = γn
i (φ − φn

0,i); F(g) represents the
Gaussian hypergeometric function.

The coherence coefficient mentioned in the above formula measures the similarity
of the radar echoes of the same surface points observed at different time points, that is,
the similarity of the observation results of the target at two different times. The phase
consistency of the observed target will gradually decrease with the change between the two
radar scans. When the coherence coefficient is 0 in the ideal state, the target is completely
incoherent. The coherence coefficients of the two SAR images are calculated as follows:

γn
i =

∣∣∣∣ ∑
n∈W

Si(n)× Si+1(n)
∣∣∣∣√

∑
n∈W

|Si(n)|2 × ∑
n∈W

|Si+1(n)|2
(8)

In the formula, Si(n) and Si+1(n) are the n echo values of the i and i + 1 time in the
window W respectively; Si+1(n) denotes the conjugate complex number of Si+1(n); rn

i is
the calculated nth coherence coefficient at time i.

Due to the large data fluctuation of the phase noise standard deviation at different
positions at the same time, the average of the phase noise standard deviation can improve
the stability of the calculation process, ensure that all the phase noise standard deviation
is equally important, and avoid the calculation results dominated by the prominent char-
acteristics of some values. The average standard deviation of phase noise is calculated
as follows:

σi = (
N

∑
n=1

σn
i )/N (9)

In the formula, σi is the average standard deviation of phase noise; N is the total
number of pixels in the sensitive area.

3.5. The Calculation of the Dynamic Process Correlation and Its Fusion with the Tangent
Angle Model

Conventionally, landslide monitoring and prediction often rely on single-pixel analysis
methods, which play a key role in analyzing surface deformation and predicting sliding.
However, there are also some limitations. For example, single-pixel analysis will be
disturbed by various environmental factors, atmospheric disturbances, and other seasonal
changes. These factors will have a significant impact on the monitoring results, resulting
in misjudgment of slope stability. Therefore, from the overall point of view, this paper
proposes the dynamic history coherence between the volume of the deformation body and
the average standard deviation of the phase noise. In order to describe the deformation
degree of the slope over a period of time, the calculation is as follows:

DCC =
Vi
σi

(10)

where DCC is the dynamic history coherence between the volume of the deformation body
and the average standard deviation of the phase noise.
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In this study, an innovative slope sliding time prediction technology is introduced,
which combines multi-threshold judgment and dynamic history coherence tangent angle
technology. When calculating the coherence of the dynamic process, the overall volume of
the deformation body is comprehensively considered, and the phase noise is evaluated. In
the face of the complexity of slope sliding and the difficulty of in-depth analysis of complex
data obtained by micro-variation monitoring radar, an improved method of tangent angle of
dynamic process coherence of slope sliding is proposed to improve the depth and accuracy
of data analysis.

When monitoring a specific area to predict the occurrence of landslides, the compre-
hensive multi-threshold and dynamic process coherence tangent angle technology can
effectively identify the landslide risk in the terrain acceleration stage. This method can
not only make accurate prediction before landslide events, but also provide an effective
technical scheme for a landslide early warning system in open-pit mines. In the process of
analyzing the gradually deformed mine slope, it is observed that with the accumulation of
deformation, the measurement value of dynamic history correlation gradually increases.
After reaching the preset threshold, the possibility of landslide occurrence will increase
significantly. Usually, before the landslide approaches, the curve of dynamic process corre-
lation will show a significant upward trend, which provides key data support for taking
preventive measures in time.

4. Results and Analysis

In order to verify the effectiveness and relative advantages of the slope sliding time
prediction method proposed in this study, this paper selects two slopes in the Xinjiang
mining area as case study objects. By using the prediction method proposed in this study
and combining it with a large number of micro-variation monitoring data, a time prediction
model is constructed. Subsequently, the prediction performance of the model in the actual
situation is analyzed and evaluated in depth.

In this study, a predictive model was applied to process differential interferometric
images from radar data collected from two mining areas during the time windows of 18
April to 21 April 2021, and 11 September to 12 September 2023. This processing yielded
geological differential interferograms of the two monitoring areas (see Figure 10). Detailed
analysis of cumulative deformation displacement in specific areas was conducted, with
Figure 11 displaying the cumulative deformation situations in the two mining areas during
the corresponding time periods and highlighting significant changes in pixel deformation
values. These results emphasized significant surface deformations observed during the
monitoring period, providing key evidence for further study. Additionally, it was found that
the coherence in the deformation zones of slopes changed significantly when deformation
occurred, as shown in Figure 12, which displays the coherence changes in the two study
areas. To more precisely identify and analyze surface deformations, this paper used a
conditional threshold selection method and connected the selected images after processing,
significantly enhancing the accuracy and reliability of the data analysis. Figure 13 presents
the post-selection results, clearly showing that areas 1 and 2 in the two mining areas are
positioned similarly within the observation scene. Particularly in area 2, most pixels were
successfully identified and filtered out, indicating that this area experienced significant
surface deformation activity during the observation period.
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By extracting the deformation of the selected area, the displacement of the study area
shows a continuous increasing trend (Figure 14), but the cumulative displacement curve of
study area one basically conforms to the ‘three stages’ of the Saito model landslide, and
the cumulative displacement curve of study area two basically conforms to the uniform
acceleration stage and the variable acceleration stage. The displacement and calculated
velocity extracted at different times in the landslide area are shown in Table 2.
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Table 2. Parameters of slope sliding: (a) Study area one, (b) Study area two.

Time s/mm v/(mm·h−1) Time s/mm v/(mm·h−1)

(a)

18-02:27:19 0 0 19-23:51:52 11.41 0.64
18-05:00:03 0.61 0.35 20-02:22:38 12.46 0.09
18-07:30:57 1.05 0.18 20-05:00:06 13.59 1.16
18-10:18:57 1.66 0.02 20-07:30:59 14.13 0.11
18-13:08:24 1.89 0.15 20-10:05:56 15.30 0.29
18-15:39:35 2.16 0.07 20-12:37:00 16.64 0.40
18-18:10:51 2.50 0.25 20-15:23:13 17.93 0.24
18-20:42:16 3.34 0.24 20-17:54:28 19.91 0.27
18-23:13:44 3.92 0.26 20-20:34:53 22.39 2.01
19-01:44:45 4.57 0.54 20-23:13:41 25.05 3.91
19-13:31:00 7.32 0.06 21-01:48:20 28.65 6.41
19-16:09:09 8.24 0.42 21-04:29:47 34.07 10.01
19-18:40:06 9.02 0.08 21-07:19:35 45.09 9.77
19-21:02:43 10.17 0.85 21-09:50:36 56.98 0

(b)

11-19:36:58 0.35 0 12-04:14:12 18.41 1.52
11-20:41:55 3.28 3.35 12-05:18:49 19.98 1.41
11-21:46:22 6.53 3.05 12-06:23:27 21.50 1.59
11-22:51:19 8.12 1.60 12-07:28:24 22.80 1.09
11-23:55:59 10.38 2.46 12-08:33:03 23.97 1.10
12-01:00:56 13.12 2.58 12-09:37:58 26.98 2.86
12-02:05:26 15.10 2.30 12-10:06:32 30.37 6.17
12-03:10:21 16.95 1.62 12-10:35:25 32.38 5.89
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It can be seen from Figure 12 that the two monitoring areas show different changes.
From 02:27 on 18 April to 02:00 on 19 April, the monitoring area showed a relatively
stable state, and the displacement increased slightly, but there was no obvious geological
deformation. Then, in the later period, that is, from 03:00 on 19 April to 19:00 on 20
April, the geological deformation of the monitoring area entered the stage of constant
velocity deformation, and the deformation was relatively stable. From 19:00 on 20 April to
about 7:50 on 21 April, the geological deformation of region 1 experienced an accelerated
deformation stage. The displacement of monitoring area 2 shows an increasing trend
from 19:00 on 11 September to 02:00 on 12 September, and an obvious deformation stage
begins to appear. Then, from 03:00 on 12 September to 08:00 on 12 September, it shows a
constant speed deformation stage. At this time, although the deformation speed fluctuated
slightly, the overall deformation was relatively stable. Subsequently, the region began to
undergo an accelerated deformation stage. Table 2 shows the cumulative displacement of
the whole process of deformation. In the accelerated deformation stage, the cumulative
displacement increases sharply, and the deformation speed also shows an increasing trend.
The specific numerical results show that the maximum cumulative displacement of the
study area reached 56.98 mm, and the maximum speed reached 10.1 mm/h; the maximum
cumulative displacement of study area two reached 32.38 mm, and the maximum speed
reached 5.98 mm/h.

In the research and practice of slope sliding warning, the slope volume calculation
after identifying the research area of the slope is a key factor, and its accuracy is directly
related to the potential hazards of the slope and the possible impact range. The volume of
the two study areas’ changes over time are shown in Figure 15:
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It can be seen from the figure that the volume change is displayed in two different
sequences: blue represents the volume change, and red represents the volume of the
deformation. In the initial stage, the volume change of study area one is relatively small
and stable, which indicates that the deformation of the slope is maintained at a safe level at
the initial stage, and the increase in the volume of the deformation body is not significant.
On the contrary, the volume of study area two shows a large change from the beginning.
With the passage of time, especially in the accelerated deformation stage of the slope
(Figure 16), the slope volume shows a significant growth trend, while the growth trend
of the variation of the slope deformation volume gradually becomes larger. The sharp
increase in the deformation volume of the slope may indicate that after a certain point in
time, the stability of the slope decreases significantly, resulting in a rapid increase in the
deformation volume. In addition, a sharp increase in the volume of deformation at the end
may indicate a critical state [40], which may lead to slope instability or collapse.
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area two.

Before the obvious sliding of the slope, the displacement curve of the slope shows a
horizontal trend, and the speed shows a trend of small up-and-down fluctuation (Table 2).
This is due to noise and other reasons, such that the speed cannot show a stable trend.
When the slope begins to deform rapidly, the displacement begins to rise rapidly, the speed
increases rapidly, and the standard deviation of phase noise at the same position increases
rapidly (Figure 17).
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In study area one, the data on the morning of 20 April showed that the standard
deviation of phase noise gradually increased, and increased significantly at 7:00 on 21 April,
revealing the overall trend of phase noise. In contrast, the standard deviation of phase
noise in study area two remained stable before 6:00 on 9 September, but then began to
increase significantly (Figure 17). The variation in the standard deviation of the phase noise
provides a new prediction index, which is helpful for the optimization of the monitoring
and slope warning system.

By incorporating the dynamic phase noise standard deviation into the calculation
(Figure 18), not only can the deformation trend of the landslide area be simulated more
accurately, but also, the dynamic history correlation curve shows more concise and intuitive
features than the velocity change curve. It is worth noting that the starting point of the rise
of the dynamic process correlation curve closely corresponds to the accelerated deformation
stage defined in the Saito model, which further verifies its application value.
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Figure 18. Dynamic process correlation curve of the deformation area: (a) Study area one, (b) Study
area two.

On the eve of the critical sliding of the slope, the correlation of the dynamic process
shows a sharp decline, and reaches the lowest value when the landslide occurs. With the
gradual recovery of regional stability after the landslide, the standard deviation of phase
noise gradually decreases. The comprehensive analysis shows that the dynamic history
correlation curve can effectively reflect the overall development trend of the slope in its
accelerated deformation stage. Accuracy is a crucial step in the process of identifying the
uniform deformation stage in the displacement–time curve. The correct identification of
this stage is affected by many factors, including environmental factors such as temperature
and rainfall, as well as human factors, which may lead to rapid or slow fluctuations in the
deformation rate during the constant velocity deformation stage. This fluctuation increases
the complexity of determining the deformation rate in the constant velocity deformation
stage, which requires dynamic adjustment according to the actual deformation situation
(Figure 19).
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In this study, the dynamic history correlation analysis was initiated by observing
the case where the thresholds of cumulative displacement and deformation velocity were
exceeded. After this threshold, the dynamic history correlation curve shows obvious
slope fluctuations in a short time scale. This fluctuation highlights the important changes
in the dynamic response at the critical stage and provides a key time window for in-
depth understanding of landslide activity. Compared with the displacement velocity, the
observation window of the history correlation curve in the homogeneous deformation
stage is more limited, thus simplifying the determination process of the homogeneous
deformation rate. As shown in Figure 20, the tangent angle curve of the dynamic history
correlation clearly and intuitively shows the trend change, and its maximum tangent angle
value usually appears at the moment of landslide occurrence.
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In this study, by integrating a predictive algorithm of volume and phase noise standard
deviations with a tangent angle model, we successfully predicted the expected occurrence
times of slope sliding. Empirical analysis indicated that in study area one, on 21 April
2021, at 7:05 AM, monitoring equipment recorded a deformation rate of 9.77 mm/h and a
cumulative displacement of 45.09 mm. Simultaneously, the dynamic correlation tangent
angle rose to the threshold, triggering the highest landslide alert. In study area two, on
12 September 2023, at 10:06 AM, monitoring equipment recorded a deformation rate of
6.17 mm/h and a cumulative displacement of 30.37 mm. At this time, the dynamic process
correlation tangent angle rose to 89.1 degrees, triggering the highest alert. Analysis of the
displacement tangent angle shows that once a slope enters the slipping process and the
tangent angle exceeds a certain threshold, a landslide event is imminent and enters an irre-
versible phase, with this moment being the critical time. According to regulations, once the
dynamic process correlation tangent angle reaches the alert threshold, the highest warning
should be issued at least two hours in advance to ensure the safety of the mining area.
Through this warning mechanism, timely evacuation of mining facilities was successfully
executed in both events, significantly reducing the risk of property and personnel losses.

However, it should be noted that despite the overall increasing trend in the tangent
angle curve, the fluctuation of the monitoring data may still lead to misjudgment. Therefore,
in the application of this prediction method, the fine analysis and in-depth interpretation of
the data is the key to ensure the accuracy and reliability of the monitoring results. Through
specific case analysis, this study verifies the effectiveness and practicability of the landslide
early warning mechanism and shows the important role of scientific monitoring and early
warning in disaster management.

5. Discussion

Traditionally, early warning systems often issue early warning signals by setting the
threshold of a single pixel. However, this method has a significant flaw: a single pixel is
susceptible to environmental changes, such that monitoring data may fluctuate suddenly
or continue to increase, resulting in false positives. Therefore, it is less reliable to judge
the risk of landslides by relying on the data change of single pixel point. In order to
solve this problem, modern technology has begun to adopt remote sensing monitoring
technology and apply point cloud data for analysis, so as to avoid the limitations of relying
on a single data point. Although this new method improves the overall reliability of
early warning, environmental and human factors may still introduce noise and affect the
accuracy of monitoring. Therefore, this study proposes a new dynamic history threshold
warning index for landslide monitoring and related phase noise factors, which combines
the analysis of deformation volume and phase noise. In addition, by integrating the tangent
angle model, this paper further proposes a comprehensive early warning system suitable
for open-pit mine slope landslides.
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In the field of geological monitoring, determining the appropriate threshold for slope
deformation has always been a key challenge, and there is currently no widely accepted
method for effective threshold determination. Typically, threshold determination is based
on the analysis of long-term cumulative data, and as more data accumulate, these thresholds
need continuous optimization and adjustment to more accurately reflect actual geological
conditions. The setting of thresholds is influenced by various factors, including the size
of the slope, the characteristics of the strata, and the types of rock and soil. In practical
monitoring operations, historical data analysis methods are commonly used, involving
the evaluation of the maximum deformation rates observed in the past and using these as
the unacceptable maximum deformation rate thresholds during landslide events. When
determining specific thresholds, it is essential to consider the properties of the geotechnical
body, the degree of human interference, the potential impact area, and other factors that
may lead to an increase of 10–20% in the maximum deformation rate. If the monitored
slope deformation rate exceeds this threshold, the stability of the slope needs to be closely
monitored. If no landslides or signs of landslides are observed, the threshold should
be adjusted and updated based on the current deformation rate. Although the method
proposed in this study has been validated in two mining areas, we recognize that these data
may not be sufficient to comprehensively demonstrate its applicability across all mining
sites. These two mining areas represent only a limited number of soil types. Therefore,
future research needs to test this method in more diverse mining areas and soil types to
further verify its effectiveness and reliability in different environments. This will help
to more comprehensively evaluate the method’s potential for landslide prediction and
enhance its generalizability.

Based on long-term monitoring experience, considering the influence of noise on
deformation monitoring and the nonlinear inverse relationship between deformation and
coherence, this study proposes an innovative angle-cut warning criterion. In the process of
interferogram inversion deformation, the influence of noise cannot be ignored, which will
significantly affect the accuracy of deformation data. In addition, the deformation process
of the target area itself will also change its scattering characteristics, and weather factors,
such as rainfall and snowfall, may also affect the echo characteristics of the radar signal,
thus affecting the accuracy of the inversion results. Therefore, ensuring the high accuracy
of deformation data is a key prerequisite for accurate early warning. It should be noted
that phase noise is an inevitable persistence factor. Only when the deformation velocity
and cumulative displacement reach a certain degree can the dynamic history correlation
be effectively calculated. At the same time, the accurate identification of the landslide
acceleration stage depends on the accumulation and in-depth analysis of a large amount
of data.

6. Conclusions

(1) This study conducted a comprehensive analysis of the relationship between slope
sliding time and the response of the sliding body, considering key factors such as
tangent angles, sliding volume, and phase noise. This analysis led to the develop-
ment of a model that precisely predicts the timing of slope sliding. To validate the
effectiveness of the model, two mining areas in Xinjiang were selected as case study
sites. The experimental results demonstrate that the model can effectively predict the
pre-sliding time of slopes, and the prediction usually occurs earlier than the actual
sliding events, thereby confirming the model’s strong predictive capability and its
practicality in real-world engineering applications.

(2) Drawing on long-term monitoring experience, this study considered the nonlinear
inverse relationship between phase noise and coherence, and integrated this model
with a tangent angle model to propose a dynamic process-related tangent angle crite-
rion. By precisely analyzing the tangent angle of the model, this method significantly
improved the accuracy and reliability of the early warning system. To verify the effec-
tiveness of the proposed warning criterion, experimental validation was conducted
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in two mining areas. The experimental results showed that when the tangent angle
reaches a specific threshold, slope collapse occurs, thereby confirming the practical
value and effectiveness of the warning criterion in real applications.

(3) Based on the comprehensive analysis above, this study has successfully developed
and validated a model for predicting the timing of slope sliding. Through precise
data monitoring, the model significantly enhances the accuracy of monitoring data
and improves the practicality and effectiveness of the early warning system. Utilizing
this innovative technology and clear warning criteria, the method can more effec-
tively predict and prevent potential geological disasters, thereby providing robust
technological support for mine area safety management. These achievements not
only enhance the application efficiency of existing technologies but also contribute
significant academic value to the field of geological disaster prevention.
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