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Volatile tin oxide memristor
for neuromorphic computing

Dongyeol Ju1 and Sungjun Kim1,2,*
SUMMARY

The rise of neuromorphic systems has addressed the shortcomings of current computing architectures,
especially regarding energy efficiency and scalability. These systems use cutting-edge technologies
such as Pt/SnOx/TiN memristors, which efficiently mimic synaptic behavior and provide potential solu-
tions tomodern computing challenges.Moreover, their unipolar resistive switching ability enables precise
modulation of the synaptic weights, facilitating energy-efficient parallel processing that is similar to bio-
logical synapses. Additionally, memristors’ spike-rate-dependent plasticity enhances the adaptability of
neural circuits, offering promising applications in intelligent computing. Integrating memristors into
edge computing architectures further highlights their importance in tackling the security and efficiency
issues associated with conventional cloud computing models.

INTRODUCTION

In the landscape of modern computing, traditional architectures (epitomized by the von Neumann model) are encountering escalating chal-

lenges in terms of energy efficiency, scalability, and versatility. This has instigated a search for alternative paradigms capable of emulating the

parallel processing prowess of the human brain, resulting in the emergence of neuromorphic computing as a promising contender.1–4 Within

this quest for neuromorphic computing solutions, various types of next-generation memory have emerged to adapt such computing func-

tions. Among these, resistive random-access memory (RRAM) is prominent due to its unique advantages over other emerging next-gener-

ation memory technologies, such as phase-change RAM (PcRAM), magneto-resistive RAM (MRAM), ferroelectric tunnel junctions (FTJs),

and ferroelectric RAM (FRAM). RRAMoffers several distinct advantages, including its capacity for fast switching speeds, energy-efficient oper-

ation, and simplicity.5–11 Unlike PcRAM, which relies on phase transitions between the amorphous and crystalline states, RRAMemploys resis-

tive switching mechanisms, enabling faster switching speeds and lower energy consumption.12 In contrast, MRAM relies on magnetic effects

for data storage, which can result in higher power consumption and scalability challenges compared to RRAM.13 Furthermore, RRAM’s

compatibility with complementary metal-oxide-semiconductor (CMOS) processes facilitates seamless integration into existing semicon-

ductor fabrication technologies, offering advantages of scalability and cost-effectiveness compared to FTJs.14–16 RRAM’s ability to achieve

multi-bit storage per cell (surpassing the binary storage of FTJs and FRAM) further enhances its suitability for neuromorphic computing ap-

plications, where the ability to store and process analog information is crucial.17 Unipolar switching is another characteristic feature of RRAM

devices that provides additional benefits for neuromorphic computing applications. Unlike bipolar switching, which involves both set and

reset operations, unipolar switching only requires one type of voltage bias application to toggle between the high and low resistance

states.18,19 This simplifies device operation and control, while also reducing the complexity and energy consumption associated with synaptic

emulation in neuromorphic computing systems. In general, typical RRAM devices comprise three consecutive layers: a bottom electrode, an

insulating layer, and a top electrode. The insulating layer is situated between the electrodes and functions as the switching layer, where resis-

tive changes occur due to themigration of ions or defects.8 Among the variousmaterials used for the insulating film,metal oxides are themost

commonly employed and can be deposited using various techniques, such as atomic layer deposition, sputtering, or spin coating.20–22 Metal

oxidematerials offer high-speed operation, reliability, and compatibility with current CMOS technology, enhancing cost-effectiveness during

fabrication.23–25 Typically, metal-oxide-based RRAM operates by the migration of oxygen ions when an external bias is applied, resulting in

the creation of a conductive filament or defective region, altering the memristor’s resistance states.26–28

Recently, there have been attempts to integrate various functionalities into a single memristor to improve cost-effectiveness in neuromor-

phic computing applications. For example, some studies have explored the application of computing architectures such as reservoir

computing and Pavlov’s training using memristors.29,30 Similarly, Du et al. demonstrated the use of dynamic memristors for reservoir

computing, enabling the analysis of time-series data.31 Jena et al. implemented Pavlov’s experiment using Ag/TiO2/Ptmemristors, facilitating

the establishment of strong synaptic interactions through training.32 While various functionalities have been demonstrated in recent studies,

edge computing is an aspect of memristor-based functionality that has received less attention. Edge computing revolves around processing
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Table 1. Comparison of the Pt/SnOx/TiN memristor in comparison to the previous devices

No. Structure

Switching

characteristic

Switching

type Window

Operating

voltage

Multi-level

state

Synapse

emulation

Versatile

behaviors Reference

1 Ag/HfO2/Pt Unipolar Digital >10,000 0.5 V X O X Abbas et al.38

2 Au/CSPbBr3/ITO Bipolar Digital N/A �0.5 to 0.5 V X O X Luo et al.39

3 Ag/ZnO/Ag Unipolar Digital N/A 1 V 6 O X Chen et al.40

4 Cr/ZnO/FTO Bipolar Analog >400 �3 to 3 V X O X Pham et al.41

5 ITO/ZnO NPs/ITO Bipolar Digital N/A �3 to 3 V X O X Fan et al.42

6 W/WOx/GaOx/ITO Bipolar Analog N/A �1 to 1 V X O X Liu et al.43

7 ITO/MXene/EGaIn Bipolar Digital >100 1.5 to �2.5 V X X Edge computing,

Pavlov conditioning

Thomas et al.44

8 Pt/LCO/NiO/Pt Bipolar Analog N/A �3.5 to 3.5 V X O X Jeong et al.45

9 Ag/FAPbI3/

SnO2/ITO

Bipolar Analog >100 �1.5 to 1 V X O X Lee et al.46

10 Pt/SnOx/TiN Unipolar Analog >22 3 V 23 O Edge computing This study

X, no emulation of synase showccased; O, emulation of synapse shown.

ll
OPEN ACCESS

iScience
Article
data closer to its origin and offers notable advantages, including latency reduction, bandwidth optimization, and enhanced privacy and se-

curity.33 This is achieved by distributing computation and storage resources nearer to the data-generating devices, such as IoT devices, sen-

sors, and autonomous systems.Moreover, this approachminimizes the need to transmit data to centralized data centers, resulting in real-time

decision-making and responses, which are crucial for time-sensitive applications such as autonomous vehicles and industrial automation.34,35

Edge computing also reduces network congestion and data transmission costs by processing and filtering data locally, transmitting only

essential information to the cloud or data center. This overcomes one of themain limitations of current cloud computing,33,36 enhances overall

system efficiency, and addresses privacy concerns by processing sensitive data locally. Hence, risks associated with transmitting data over

insecure networks are mitigated. When memristor-based neuromorphic computing systems are employed in edge computing, additional

benefits are realized. For example, the fast-switching and energy-efficient nature of RRAM enables efficient processing and storage of

data directly at the edge, reducing reliance on centralized computing resources.37 Additionally, the parallel processing capabilities of mem-

ristor arrays facilitate the seamless execution of distributed computing tasks, enhancing the scalability and performance of edge computing

systems. By leveraging the complementary strengths of memristor-based neuromorphic computing and edge computing paradigms, future

computing architectures will be able to achieve unprecedented levels of efficiency, adaptability, and intelligence.

In this study, we investigated the diverse functionalities of an individual Pt/SnOx/TiN memristor, focusing on emulating synaptic functions

alongside edge computing implementations. Prior to assessing its computing capabilities, the electrical properties of the fabricated mem-

ristor were examined through DC bias applications. The results revealed unipolar switching behavior and demonstrated uniformity across

cell-to-cell and cycle-to-cycle endurance functions. During the bias sweep, gradual increases and decreases in the current state were

observed, indicating a non-filamentary switching operation. This facilitated easy acquisition of multiple resistance states compared to fila-

mentary switching memristors, in which the resistance states depend on the random formation of filaments.26 Controlled pulse applications

demonstrated the achievement of diverse conductance states, enabling potentiation and depression with a linear update of conductance

values. Moreover, the volatile properties of the memristor were leveraged to emulate the short-termmemory (STM) characteristics of biolog-

ical brains, facilitating synapse functions such as learning, forgetting, paired-pulse facilitation (PPF), and spike-rate-dependent plasticity

(SRDP). Finally, by applying different pulse schemes to the memristor, 4-bit edge computing functionality was implemented, allowing for

the generation and consumption of data at a single memristor. Table 1 highlights the versatile functionalities of our memristor compared

to previously reported two-terminal resistive switching devices. These findings underscore the versatile and cost-effective functionalities

of the Pt/SnOx/TiN memristor, which is promising for future computing paradigms.

RESULTS AND DISCUSSION

Figure 1A presents a schematic illustration of the fabricated memristor and a summary of the fabrication process of depositing each layer via

sputtering. The electrical properties were examined by applying the bias to the top Pt electrode. A cross-sectional transmission electron mi-

croscopy (TEM) image that showcases the Pt and TiN electrode with 40-nm-thick SnOx sandwiched between each layer is depicted in

Figures 1B and S1. Furthermore, to examine the chemical properties of the SnOx insulating film, X-ray photoelectron spectroscopy (XPS) anal-

ysis in depthmode examining the chemical composition of the thin films using Ar ion sputtering, etching layer by layer was utilized. Figure 1C

showcases the Sn 3d peak spectra of the SnOx thin film, where doublet peaks of Sn 3d5/2 and Sn 3d7/2 were evident at binding energies of

approximately 486.2 and 494.6 eV, respectively.47 Additionally, the O 1s spectra in Figure 1D revealed double peaks at binding energies of

approximately 531 and 529.9 eV, representing the oxygen vacancy (Vo
+) and Sn-O bonding, respectively.48 Thus, through the TEM image and

XPS spectra, the presence of the SnOx switching film was confirmed.
2 iScience 27, 110479, August 16, 2024



Figure 1. Structural and chemical analysis

(A) Schematic illustration of the Pt/SnOx/TiN memristor.

(B) Cross-sectional TEM image of the Pt/SnOx/TiN memristor.

(C and D) XPS peak spectra representing (C) Sn 3d and (D) O 1s of the SnOx layer.
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The electrical characteristics of the fabricated memristor were investigated by applying a DC bias, with a step voltage of 0.05 V Fig-

ure 2A displays the I-V curve of the Pt/SnOx/TiN memristor. Unlike bipolar resistive switching devices, the developed memristor ex-

hibited unipolar switching behavior, where the resistive switching only occurred in a single voltage polarity direction, comprising the

set and relaxation processes.49 When a forward bias of 2.5 V was applied, a gradual increase in current was observed. This reached

the compliance current (CC) applied to prevent the hard breakdown of the memristor, reducing its overall resistance. This set process

transitioned the device from the off to the on state. Conversely, during a reverse bias sweep from 2.5 to 0 V, the current gradually

decreased, indicating the relaxation process. This increased the overall resistance of the memristor and transitioned the device from

the on to the off state. Memory storage in resistive switching devices occurs through changes in the resistance state under an applied

bias, switching between the high resistance state (HRS) and low resistance state (LRS), corresponding to the off and on states, respec-

tively. In the presented device, the set process switched the device from HRS to LRS, while the relaxation process switched it from LRS

to HRS. These resistive switching properties occurred at the same voltage polarity with resultant sequential switching, demonstrating

the unipolar resistive switching functionality of the developed memristor, which may be due to the difference in work function between

the metal electrode and insulator.18 Furthermore, the uniformity of the device during continuous switching (known as endurance) was

evaluated by sequentially applying 2.5 V to the top electrode. This resulted in a continuous set and relaxation process. Then, by

measuring the resistance state from a read bias of 0.7 V, distinct states of LRS and HRS during consistent resistive switching were

evident. Figure 2B presents the endurance performance of the Pt/SnOx/TiN memristor, which demonstrated an average memory win-

dow of 22.53 without any significant variation in resistance states. To analyze the variation in resistance states in more detail, the coef-

ficient of variation (CV) was calculated, as displayed in Figure 2C. The LRS and HRS exhibited CV values of 0.027 and 0.154, respectively,

indicating minimal variation in resistance states during sequential bias application. The uniformity of the developed memristor across

different cells is illustrated in Figure S2, where each I-V curve represents 100 DC cycles from six randomly selected cells, highlighting the

consistent performance of the memristor’s cell-to-cell and cycle-to-cycle variations. The conduction mechanism of the Pt/SnOx/TiN de-

vice was expected to be non-filamentary due to the gradual increase and decrease of current values in the I-V curve.50,51 Unlike filamen-

tary RRAM, which exhibits abrupt switching behaviors, non-filamentary switching suggests that resistive switching occurs through the

migration of oxygen ions within the insulating layer (Figure 2D), creating defective regions under an applied bias.51 As demonstrated

in Figure 2E, oxygen ions within the SnOx film migrated toward the top electrode when a positive bias was applied to the Pt electrode.

This increased the defective region and enabled conduction, resulting in resistive switching from HRS to LRS. Conversely, during the
iScience 27, 110479, August 16, 2024 3



Figure 2. Electrical properties under DC bias application and conduction mechanism

(A) Unipolar resistive switching I-V curve of the Pt/SnOx/TiN memristor.

(B) Endurance property over 100 DC cycles, gained from a read bias of 0.7 V, representing HRS and LRS.

(C) Variation of the resistance states acquired from 100 DC cycles.

(D–F) Schematic illustrations of the conduction mechanism of the Pt/SnOx/TiN memristor: (D) initial, (E) LRS, and (F) HRS.
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gradual reduction of the applied bias, the self-diffusion of oxygen ions occurred, decreasing the defective region and insulating

behavior, resulting in resistive switching from LRS to HRS (Figure 2F).52

By using the gradual switching capabilities of the developed memristor, we investigated its multi-level cell (MLC) functionality by varying

the set bias and CC during resistive switching. MLC is essential for high-density memory implementation because it increases the storage

density of a singlememristor by storing data in theHRS, the LRS, and the resistance states between them, enabling large datasets to be stored

within a single memristor.53 Figure 3A demonstrates that MLC was achieved by varying the set voltage, where the set biases ranged from 1.5

to 2.6 V, in an increasing step voltage of 0.1 V, resulting in 12 different LRS states. Increasing the set bias caused increased migration of the

oxygen ions, which widened the defective region and altered the LRS. Figure 3B illustrates the endurance properties of each LRS state, where

each state was tested for 20 cycles. This result highlighted the easy resistance state modulation and great uniformity of the device. Figure 3C

illustrates how MLC was achieved by varying the CC, resulting in 23 different resistance states (0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, and 10 mA). The CC in memristors limits the maximum device current when a bias is applied, con-

trolling the migration of oxygen ions and the size of the defective region. Thus, by controlling the CC similar to that of the set bias, enhance-

ment of the defective region could be regulated. The endurance function of the CC-controlled MLC is depicted in Figure 3D, where each of

the 23 distinct LRS states underwent 20 uniformDC cycles whilemaintaining a consistent HRS. The resistance values acquired through varying

set amplitudes and CC are analyzed in Figure S3, showcasing the acquired 11 and 23 multi-level LRS states. Overall, the MLC functionality of

the Pt/SnOx/TiNmemristor could be easily regulated through variousmethods, facilitating the attainment of high-density memory with excel-

lent uniformity.

Through the pulsemeasurements, we demonstrated the neuromorphic computing capabilities and synapse emulation of the Pt/SnOx/TiN

memristor. In biological brains, data processing occurs through the linear update of synaptic weights within interconnected synapses and

neurons, facilitating energy-efficient parallel processing.54 Therefore, achieving gradual data updates and acquiring multiple conductance

states within a memristor is crucial for implementing energy-efficient neuromorphic computing. To observe such behavior in the developed

Pt/SnOx/TiN memristor, we examined potentiation and depression by observing the increase and decrease of conductance under the appli-

cation of sequential set and reset pulses. As the Pt/SnOx/TiNmemristor operates with a single bias polarity, the reset pulses were replaced by

read pulses with intervals (0 V), enabling an energy-efficient process without the application of additional reset pulses. Owing to the inert and

volatile functions of the presentedmemristor, a gradual decrease in current under the condition of no bias applicationwas exhibited, resulting

in decay similar to depression. Potentiation and depression in the developedmemristor consisted of 50 pulses each, with potentiation pulses

at 2.5 V for 0.5 ms and depression pulses at 0 V for 2 ms. This was followed by a read pulse at 0.7 V to record the change in conductance. The

results of applying this pulse scheme are displayed in Figure 4A, demonstrating a gradual increase and decrease in the conductance states.

During continuous potentiation pulses, there was a gradualmigration of oxygen ions toward the top electrode, resulting in a gradual increase
4 iScience 27, 110479, August 16, 2024



Figure 3. MLC properties of the memristor

(A) MLC properties of the Pt/SnOx/TiN memristor acquired through differing set voltages.

(B) Endurance properties of the set voltage-induced MLC, representing 20 cycles each.

(C) MLC properties of the Pt/SnOx/TiN memristor acquired through differing CC values.

(D) Endurance properties of the CC-induced MLC, representing 20 cycles each.
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of defective regions. Conversely, the application of 0 V depression pulses resulted in gradual self-diffusion of the migrated oxygen ions,

causing a gradual decrease in the conductance states. To assess the uniformity of the potentiation and depression behaviors, the pulse

train applications were repeated 10 times, resulting in 10 cycles of repeated potentiation and depression curves, as displayed in Figure 4B.

This result confirmed that the behavior was not temporary. Employing the easily controlled conductance functions of the Pt/SnOx/TiN mem-

ristor, further trials were conducted to investigate conductance updates by varying the pulse applications during potentiation anddepression.

Initially, as depicted in Figure 4C, we varied the width of the pulse during the potentiation process into six different conditions (500 ms–3 ms),

while keeping the other parameters constant. The pulse width-varied potentiation and depression behaviors of the Pt/SnOx/TiN device are

illustrated in Figure 4C, demonstrating a linear relationship between the width of the pulse and the maximum conductance value. Addition-

ally, under different conditions, all the potentiation and depression curves exhibited a linear update of the conductance value. The repeat-

ability of this behavior is demonstrated in Figure 4D, where each curve exhibited 10 sequential behaviors. Next, as displayed in Figure 4E, the

potentiation and depression behaviors under different pulse numbers were investigated, ranging from 50 to 200. Four different conductance

states were obtained, with their repeated behaviors observable in Figure 4F. The interval of potentiation pulses was also varied under five

different conditions, as displayed in Figure 4G. Owing to the volatile properties of the developed memristor, a longer pulse interval caused

a decrease in the increased conductance after each pulse application, resulting in the smallest enhancement of the conductance value. The

repeated potentiation and depression function under different pulse interval conditions is presented in Figure 4H. By observing the poten-

tiation and depression, the easily controlled conductance and its varied values under different pulse circumstances of the Pt/SnOx/TiN device

were demonstrated. This result highlighted the diverse methods of conductance update in the memristor, rendering it suitable for adapting

neuromorphic computing.

In biological synapses, synaptic plasticity categorizes memory properties based on the synaptic weight.55 For instance, a small application

of synaptic weight results in short-term potentiation, creating STM, which typically lasts frommilliseconds to a fewminutes. Accordingly, STM

is mainly used for tasks that demand immediate recall and filtering.56,57 This serves as an interim stage, where information is briefly retained

before being either transferred to long-term memory (LTM) or discarded. In the absence of recall, there is a gradual decline in the synaptic

weight, eventually causing forgetting. In contrast, by repeatedly engaging in this process, the transition to LTM occurs as the synaptic con-

nections undergo dynamic changes, solidifying key memories over the course of our lives through experiences.58 Leveraging the volatile

properties of the Pt/SnOx/TiN memristor, we believe that efficient emulation of brain memory (especially STM) can be achieved. For such

behavior, firstly, the volatile function of ourmemristor, depending on the arriving strength of the spike, was observed. Figure 5A depicts excit-

atory postsynaptic current (EPSC) facilitation occurring through sequential read pulse applications after the arrival of spike sets, resulting in

the device’s resistance state changing fromHRS to LRS. The arrived spikes weremodified to 3 V for 1 ms, and the number of spikes was varied
iScience 27, 110479, August 16, 2024 5



Figure 4. Controllable potentiation and depression function of the memristor

(A) Potentiation and depression behavior of the Pt/SnOx/TiN memristor.

(B) 10 cycles of repeated potentiation and depression curves.

(C) Potentiation and depression behavior obtained through different widths of the potentiation pulse.

(D) 10 cycles of repeated potentiation and depression curves, tested under different pulse widths.

(E) Potentiation and depression behavior obtained through changing the number of pulses.

(F) 10 cycles of repeated potentiation and depression curves, tested under different numbers of pulses.

(G) Potentiation and depression behavior obtained through differing pulse intervals.

(H) 10 cycles of repeated potentiation and depression curves, tested under different potentiation pulse intervals.
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Figure 5. Demonstration of the STM behavior

(A) Observation of STM functions of the Pt/SnOx/TiN memristor under the application of different numbers of spikes.

(B) Facilitation of current occurring during 0.5 s.

(C) PPF function of the Pt/SnOx/TiN memristor represented as the change of PPF index as a function of spike intervals.

(D) Learning and forgetting behaviors of the Pt/SnOx/TiN memristor.

(E) Implementation of increased synaptic plasticity through training rehearsal.

(F) Current changes in the learning property of the memristor, investigated under different learning and forgetting intervals.

(G) Current changes in the forgetting property of the memristor, investigated under different learning and forgetting intervals.
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from 5 to 100. Instant facilitation of EPSC occurred after each spike application. After 0.5 s, the applied EPSC saturated into similar levels,

showcasing the strong STM functions of the Pt/SnOx/TiN memristor (Figure 5B). Using these volatile functions of the memristor, PPF was

tested, which is a crucial function in biological STM and refers to the relative enhancement between two sequentially arriving spikes.59,60 Iden-

tical spikes of 3 V for 1 ms were applied to the Pt/SnOx/TiN memristor under different intervals. Owing to the facilitation of current in volatile

memristors, longer intervals result in forgetting the previous input, degrading the amount of enhanced current. The term ‘‘PPF index’’ was

acquired through the following equation:61

PPF index ð%Þ =

�
I2 � I1

I1

�
3 100 (Equation 1)

Here, terms I2 and I1 represent the current response after the second and first pulses, respectively. Figure 5C displays the PPF index ob-

tained as a function of spike intervals, which indicates a gradual reduction in the PPF index with increasing intervals. This decrease reflected

the diminishing enhancement rate due to forgetting associated with longer intervals, mirroring the functions of the biological brain. Addition-

ally, the learning and forgetting behaviors of the biological brain were replicated using the Pt/SnOx/TiN memristor, as displayed in Fig-

ure 5D.62 The learning process of the memristor involved 10 consecutive learning sections followed by 10 consecutive forgetting sections,

each consisting of pulses of 3 V for 1 ms and 0 V for 1 ms. Training the memristor involved applying sequential set pulses, resulting in an

increased current, while forgetting entailed a reduction in current due to the absence of training. This behavior mirrors the process in the

human brain, where STM gradually decays without rehearsal, resulting in forgetting.57 Interestingly, Figures 5D and 5E illustrate that

throughout the sequential training and forgetting process, there was an overall increase in current. Again, this mirrors the brain function,

where rehearsal results in the transition from STM to LTM due to increased synaptic plasticity.56 The developed memristor’s function was

further modified by simply tuning the current states under pulse applications, as demonstrated in Figures 5F and 5G. The data indicated vary-

ing intervals between each training and forgetting sequence, ranging from 0 to 4 s. As the interval increased (indicated by the red dots), the

current enhancement between each training section tended to decrease, resulting in complete forgetting after each forgetting section.

Conversely, as the interval decreased (indicated by the purple dots), the current enhancement between each training section tended to in-

crease, resembling stronger synaptic plasticity. This resulted in the transition from STM to LTM through the rehearsal process, as the current

after each forgetting sequence increased.

The Pt/SnOx/TiN memristor also demonstrated modification of the synaptic weight in response to incoming spikes in synaptic connec-

tions, adhering to the principle of SRDP.63 SRDP is a phenomenon observed in synaptic connections where the strength of synaptic transmis-

sion changes in response to the rate of neuronal firing or the spike frequency.64 This mechanism allows synaptic connections to adaptively

regulate their strength according to the activity patterns of interconnected neurons, improving the flexibility of neural circuits and facilitating

information encoding in the brain. To assess this adaptability, the neural firing patterns of the arriving spikes at the synapse weremanipulated
iScience 27, 110479, August 16, 2024 7



Figure 6. Synapse function emulation

(A) SRDP function of the Pt/SnOx/TiN memristor. Change of EPSC observed under pulse spike of 3 V for 100 ms with an interval of 5 ms.

(B) SRDP function observed under differing spike widths.

(C) Changes in enhancement rate as a function of spike width.

(D) Changes in EPSC under pulse spike of 3 V for 5 ms with interval of 1 ms.

(E) SRDP function observed under differing spike intervals.

(F) Changes in enhancement rate as a function of spike interval.

(G) Changes in EPSC under pulse spike of 1.6 V for 5 ms with an interval of 5 ms.

(H) SRDP function under differing spike amplitudes.

(I) Changes in enhancement rate as a function of spike amplitude.
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under three different conditions, which were categorized based on the altered parameters. Figures 6A–6C depicts the impact of the spike

width on synaptic weight change. To investigate this function, pulse sets comprising 100 set pulses of 3 V and 100 ms with intervals of

5 ms were applied to the memristor (inset of Figure 6A), resulting in EPSC enhancement (Figure 6A). Leveraging this spike-induced EPSC

enhancement behavior, the width of the spikes was varied across 11 different conditions, ranging from 100 ms to 10 ms, as depicted in Fig-

ure 6B. The enhancements observed under different spikewidth conditions are summarized in Figure 6C, where the term ‘‘Enhancement rate’’

was calculated using the following equation:

Enhancement rate ð%Þ =

�
Af

Ai

�
(Equation 2)

Here, terms Af and Ai denote the EPSC value after 100 spike applications and the initial state, respectively. Figures 6D–6F displays the

SRDP behavior based on the spike intervals. To investigate this function, 100 spikes with 3 V over 5 ms were applied to the memristor with

an interval of 1ms (inset of Figure 6D), resulting in EPSC enhancement. Figures 6E and 6F demonstrate the application of varied spike intervals

to the memristor, where the intervals were varied into 12 different conditions ranging from 1 to 100 ms. This resulted in a decrease in the

enhancement rate as the spike intervals increased, which was attributed to the volatile properties of the Pt/SnOx/TiN device. Finally, as de-

picted in Figures 6G–6I, the SRDPbehavior was explored based on the spike amplitude intervals. Here, a sequence of 100 set pulses with 1.6 V

over 5 ms and an interval of 5 ms was applied to the Pt/SnOx/TiN memristor to observe the EPSC response, as displayed in Figure 6G. The

SRDP function under varied amplitude conditions (1.6–3.2 V), showcasing nine different conditions, is depicted in Figure 6H. This revealed a

linear relationship between the spike amplitude and enhancement rate, where stronger spikes resulted in larger synaptic weights.
8 iScience 27, 110479, August 16, 2024



Figure 7. Demonstration of 4-bit edge computing utilizing Pt/SnOx/TiN memristor
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Examining thediverse capabilities of the developedmemristorwill be vital to provide amore comprehensive understanding of its potential

and limitations, allowingus tooptimize its effectiveness for specificapplications.Moreover,by investigating its flexible functionalities,wecould

achieve cost savingsby integrating various functions into a singlememristor, eliminating the requirement formultiple specialized components.

This versatility would facilitate enhancing the performance while simplifying the design complexity, ultimately resulting in amore efficient and

multifunctional device. Furthermore, in addition to applications in neuromorphic computing, exploring thememristor’s ability to emulate syn-

apsesopensuppossibilities for implementing systemssuchas edgecomputingwithin a singlememristor. Edgecomputing is apartiallydistrib-

uted computing topology where data processing occurs locally at the edge near the user, addressing the challenges in security and efficiency

encountered in traditional cloud computing. In contrast to cloud computing, where data generation and usage are centralized at the cloud

server, edge computing distributes data processing closer to the source, enhancing security and efficiency.33 Edge computing enables users

to directly access data storedwithin thememristor, facilitating a power-efficient computing architecture (Figure S4A).33 In this setup, a series of

pulses is categorized into two types,where ‘‘1’’ represents apotentiationpulse of 3 V for 5ms,while ‘‘0’’ represents a decaypulse of 0 V for 5ms,

followed by a read pulse of 0.7 V to record state changes. Each ‘‘1’’ and ‘‘0’’ denotes thewrite and erase sequences, respectively. By employing

this pulse schemewith distinct ‘‘1’’ and ‘‘0’’ states, 16 different states corresponding to binary numbers from 0 to 15 are possible, allowing suc-

cessful implementation of 4-bit edge computing using the developed Pt/SnOx/TiN memristor (Figures 7 and S4B).

Conclusions

The Pt/SnOx/TiN memristor described in this paper presents a promising avenue for advancing neuromorphic computing and edge

computing paradigms. Through its unique resistive switching behavior and versatile functionalities, this memristor offers an efficient and scal-

able solution for emulating synaptic behavior and implementing complex computing tasks. In terms of neuromorphic computing, the Pt/

SnOx/TiN memristor demonstrated unipolar resistive switching operating under singular voltage polarity. Moreover, its MLC functionality

would facilitate high-density memory implementation, while its pulse-modulated conductance updates enable adaptable and flexible oper-

ation. The memristor’s ability to emulate synaptic plasticity, as evidenced by its SRDP behavior, also opens up avenues for advanced

computing systems. By dynamically adjusting the synaptic strength based on spike frequency, the Pt/SnOx/TiN memristor enhances the

adaptability of neural circuits, paving the way for intelligent computing applications. Beyond neuromorphic computing, the Pt/SnOx/TiN

memristor also demonstrates potential for edge computing applications. In addition, its integration within a single device enables efficient

and power-conscious computing topologies, addressing the security and efficiency challenges encountered in traditional cloud computing

models. Overall, the Pt/SnOx/TiN memristor represents a versatile and efficient building block for next-generation computing systems, of-

fering opportunities for innovation in diverse fields ranging from artificial intelligence to IoT and beyond.

Limitations of the study

The use of volatile memristors based on SnOx has facilitated edge computation and versatile synapse functions. Due to their volatility, data

generated at the edge are automatically erased without requiring an erase sequence. However, for certain edge computing applications,

retaining the generated datamight be crucial. Therefore, it is suggested to employ second-order memristors, which exhibit both non-volatile

and volatile characteristics, in future edge computing implementations.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Ti target (>99.99% purity) THIFINE N/A

Sn target (>99.99% purity) THIFINE N/A

Pt target (>99.99% purity) THIFINE N/A
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Sungjun Kim

(sungjun@dongguk.edu).

Materials availability

This study did not generate new unique materials.

Data and code availability

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
� This manuscript did not generate new data or code.

� All other items: Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study does not use experimental models typical in the life sciences.

METHOD DETAILS

Experimental procedures

Fabrication of memristor

The Pt/SnOx/TiN stacked memristor was created by sequentially depositing each layer onto a SiO2/Si substrate. Initially, the substrate was

prepared and cleaned with isopropyl alcohol (IPA) and acetone. Then, a 100-nm-thick TiN bottom electrode was deposited usingDC reactive

sputtering, with a Ti target of 99.99%purity, amain chamber pressure of 3mTorr, and a DCpower of 120W. Ar andN2 gases were used at flow

rates of 19 and 1 sccm, respectively. Following this, a 40-nm-thick SnOx insulating layer was deposited on the TiN electrode via RF sputtering,

using a Sn target of 99.99% purity at a main chamber pressure of 3 mTorr and an RF power of 60W. The flow rates of the Ar andO2 gases were

20 and 10 sccm, respectively. Subsequently, a square-patterned top electrode with a width of 100 mmwas patterned on the SnOx layer using

negative photoresist (PR) and photolithography techniques. Finally, a 100-nm-thick Pt top electrode was deposited via DC sputtering using a

Pt target of 99.99% purity at a main chamber pressure of 5 mTorr and a DC power of 90 W. Ar gas was used at a flow rate of 20 sccm. A lift-off

process in acetone was then employed to finalize acquirement of the Pt electrode.

Structural characterization

For the XPS depth analysis, a Nexsa instrument equipped with a microfocus monochromatic Al-K X-ray source (1486.6 eV) was used with an

Ar+ sputter source, an ion energy of 2 kV, and a beam size of 50 m. Additionally, cross-sectional TEM images were obtained to examine the

structural characteristics of the fabricated memristor using equipment from Oxford Instruments (UK).
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Electrical measurements

The DC I-V curves and pulse transients of the Pt/SnOx/TiN memristor were evaluated using a semiconductor parameter analyzer (Keithley

4200-SCS and 4225-PMU ultrafast module, Solon, OH, USA). For testing, a voltage bias was applied to the top Pt electrode while the bottom

TiN electrode was grounded under room temperature and pressure conditions.

QUANTIFICATION AND STATISTICAL ANALYSIS

This study does not include statistical analysis or quantification.

ADDITIONAL RESOURCES

Additional resource contains magnified TEM image and electrical properties can be found in the supplemental information.
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