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Abstract

BACKGROUND—As artificial intelligence (AI) tools become widely accessible, more patients 

and medical professionals will turn to them for medical information. Large language models 

(LLMs), a subset of AI, excel in natural language processing tasks and hold considerable promise 

for clinical use. Fields such as oncology, in which clinical decisions are highly dependent on a 

continuous influx of new clinical trial data and evolving guidelines, stand to gain immensely from 

such advancements. It is therefore of critical importance to benchmark these models and describe 

their performance characteristics to guide their safe application to clinical oncology. Accordingly, 

the primary objectives of this work were to conduct comprehensive evaluations of LLMs in the 

field of oncology and to identify and characterize strategies that medical professionals can use to 

bolster their confidence in a model’s response.

METHODS—This study tested five publicly available LLMs (LLaMA 1, PaLM 2, Claude-v1, 

generative pretrained transformer 3.5 [GPT-3.5], and GPT-4) on a comprehensive battery of 

2044 oncology questions, including topics from medical oncology, surgical oncology, radiation 

oncology, medical statistics, medical physics, and cancer biology. Model prompts were presented 

independently of each other, and each prompt was repeated three times to assess output 

consistency. For each response, models were instructed to provide a self-appraised confidence 

score (from 1 to 4). Model performance was also evaluated against a novel validation set 
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comprising 50 oncology questions curated to eliminate any risk of overlap with the data used 

to train the LLMs.

RESULTS—There was significant heterogeneity in performance between models (analysis of 

variance, P<0.001). Relative to a human benchmark (2013 and 2014 examination results), GPT-4 

was the only model to perform above the 50th percentile. Overall, model performance varied 

as a function of subject area across all models, with worse performance observed in clinical 

oncology subcategories compared with foundational topics (medical statistics, medical physics, 

and cancer biology). Within the clinical oncology subdomain, worse performance was observed 

in female-predominant malignancies. A combination of model selection, prompt repetition, and 

confidence self-appraisal allowed for the identification of high-performing subgroups of questions 

with observed accuracies of 81.7 and 81.1% in the Claude-v1 and GPT-4 models, respectively. 

Evaluation of the novel validation question set produced similar trends in model performance 

while also highlighting improved performance in newer, centrally hosted models (GPT-4 Turbo 

and Gemini 1.0 Ultra) and local models (Mixtral 8×7B and LLaMA 2).

CONCLUSIONS—Of the models tested on a standardized set of oncology questions, GPT-4 

was observed to have the highest performance. Although this performance is impressive, all 

LLMs continue to have clinically significant error rates, including examples of overconfidence 

and consistent inaccuracies. Given the enthusiasm to integrate these new implementations of AI 

into clinical practice, continued standardized evaluations of the strengths and limitations of these 

products will be critical to guide both patients and medical professionals. (Funded by the National 

Institutes of Health Clinical Center for Research and the Intramural Research Program of the 

National Institutes of Health; Z99 CA999999.)

Introduction

Recently, several artificial intelligence (AI)-based tools have become available to the general 

public that will have significant implications for health care and medical practice. Many 

medical professionals have casually interacted with large language models (LLMs) such 

as ChatGPT,1 Bard/Gemini,2 and Claude,3 and some have begun to use these models as 

augmented search engines to serve as reference tools for complex medical information. 

Although models capable of generating convincing and coherent text have existed for 

years,4 these prior models have fallen short of matching the depth of human cognition. 

With recent advances, LLMs have begun to exhibit emergent properties that appear to 

replicate human-level intelligence.5 Remarkably, LLMs have displayed high performance 

on subspeciality medical examinations, including those in plastic surgery.6 otolaryngology,7 

ophthalmology,8 dermatology,9 and neurosurgery.10 They have also shown the ability to pass 

the bar examination11 and the United States Medical Licensing Examination.12,13

Although LLMs promise to fulfill a growing need in medicine to index, incorporate, and 

synthesize the ever-growing volume of information, their utility for this application in 

clinical oncology remains unexplored. The aim of the present study, therefore, was to 

evaluate the current state-of-the-art LLMs (generative pretrained transformer 3.5 [GPT-3.5], 

GPT-4, PaLM 2, Claude-v1, and LLaMA 1) on more than 2000 oncology questions to 

assess the models’ accuracy, self-appraised confidence, and consistency of response across 

independent replicates, representing the most comprehensive head-to-head comparison of 
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LLMs across any medical specialty to date. We also developed a novel benchmarking 

dataset comprising 50 oncology questions designed to evaluate model performance without 

the risk of data leakage (i.e., the risk that a specific question and answer set was in the 

LLM training set). Our intention was to provide foundational information to aid medical 

professionals and patients in understanding the utility and limitations of LLMs in oncology 

and to profile strategies to improve their reliability.

Methods

Our primary aim was to compare the performance of a set of state-of-the-art LLMs on 

a test set of multiple choice questions in clinical oncology and foundational oncology 

topics (medical statistics, medical physics, and cancer biology). Our secondary aim was 

to evaluate strategies available to end users to improve their confidence in model output. 

In the primary analysis, we studied a subset of commonly used LLMs, including four 

centrally hosted models with nonpublic model weights (PaLM 22 [Google Bard], Claude-

v13 [Anthropic], GPT-3.51 [OpenAI/Microsoft], and GPT-414 [OpenAI/Microsoft]) and a 

local model with public model weights (LLaMA 115 [Meta]). Because of the large number 

of prompts required for this analysis (more than 6000 per model), the user-friendly chatbot 

interface was not an ideal prompting environment. All prompting was conducted from 

April 2023 to May 2023 and performed independently and programmatically using the 

application programming interface, which allowed for an automated and efficient workflow. 

Meta’s LLaMA 1 model16 includes four versions of increasing complexity — 7 billion (B), 

13B, 33B, and 65B — with the model name indicating how many parameters are in the 

network. LLaMA models were run locally on the computational resources of the National 

Institutes of Health’s high-performance computing Biowulf cluster (http://hpc.nih.gov). For 

the secondary analysis on prompting strategies, the LLaMA model evaluation focused on the 

best-performing LLaMA model, LLaMA 65B.

The LLMs evaluated in this study fell into two categories: base models (LLaMA models) 

and models fine-tuned with reinforcement learning from human feedback (RLHF), including 

PaLM 2, Claude-v1, GPT-3.5, and GPT-4. Base models require examples within the prompt 

(few-shot learning) to achieve proper output formatting, whereas RLHF-tuned models 

can achieve the appropriate formatting through prompting instructions alone (zero-shot 

learning). For each prompt (Prompts 1 and 2 in the Supplemental Methods in Supplementary 

Appendix 1), the question and four answer choices were provided in addition to instructions 

to provide an answer (A, B, C, or D), a confidence score (1, 2, 3, or 4), and an explanation 

of the response. Models were instructed to deliver a confidence score, with 1 indicating a 

random guess and 4 indicating maximal confidence.

The testing set was composed of standardized questions in clinical oncology as well as 

other foundational topics in oncology, and it was sourced from the American College of 

Radiology in-training radiation oncology examinations17 (2013, 2014, 2015, 2016, 2017, 

2020, and 2021). Although these questions test radiation oncology trainees, they include 

questions that cover the breadth of clinical practice for all oncologists (medical, surgical, and 

radiation). Questions with multiple answers or those that included images in the question 

were removed. Answers were determined to be correct on the basis of a published answer 
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key created by expert oncologists, and unanswered queries were scored as incorrect. Each 

model was evaluated on 2044 unique questions, repeating every question across three 

independent replicates (6132 independent prompts per model). Accuracy was assessed 

independently for each set of 2044 questions, scoring each model replicate on the basis 

of the number of 2044 total queries that were answered correctly. Model performance was 

compared with a strategy of random guessing across 100 replicates and was contextualized 

using the subset of questions for which human performance was available (2013 and 2014 

examinations).18 We benchmarked the performance of the models against the performance 

of radiation oncology trainees using the means and standard deviation (SD) of the 

human performance on these examinations, allowing for the identification of a percentile 

performance for each LLM (reported as an average percentile performance across three 

replicates).

A subset of 1168 questions with available subject labels was used to describe the variation 

of model performance according to subject, including foundational topics (cancer biology, 

medical physics, and medical statistics) and clinical oncology (sarcoma; breast; central 

nervous system; gastrointestinal; genitourinary; gynecology; head, neck, and skin; lung; 

lymphoma/leukemia; and pediatrics). As part of the secondary aim of this study (i.e., 

evaluating strategies available to end users to improve their confidence in model output), 

LLM self-assessed confidence, consistent responses across question replicates, and the 

combination of these strategies were used to identify a subset of model responses in which 

accuracy was highest.

Although this question bank is not widely available online in its entirety, there remains a 

tangible risk of data leakage into the LLM training sets. Furthermore, this question bank 

is not open source, and thus we are unable to make these questions, prompts, and output 

available for future analysis and benchmarking. To address these limitations, a novel clinical 

oncology validation set was constructed that consisted of 50 questions; this set was created 

and reviewed by three oncologists and benchmarked on an expanded set of up-to-date 

models available at the time of this subsequent validation effort (February 2024). Although 

PaLM 2 was no longer available for medical benchmarking, this expanded list included all 

other models in the primary analysis in addition to Google’s most state-of-the-art models 

(Gemini 1.0 Pro and Gemini 1.0 Ultra), GPT-4 Turbo, Claude-v2, Mistral19,20 models (both 

centrally hosted and local), and LLaMA 2.21 Each model was evaluated on the validation 

question set over 10 independent replicates.

All 50 questions, answer choices, answer keys, and model prompts (zero-shot learning 

and few-shot learning prompts) are provided (Supplementary Appendix 2) along with 

model output corresponding to the zero-shot learning prompts (Supplementary Appendix 

3). Further details on statistical methods used in this study, local computational requirements 

(Table S1), prompt engineering (Fig. S1A), and impacts of fine-tuning (including medical 

fine-tuning; Fig. S1B)22,23 are reported in the Supplemental Materials.
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Results

OVERALL MODEL PERFORMANCE ON STANDARDIZED ONCOLOGY QUESTIONS

The accuracy of each model was assessed for three independent replicates (Fig. 1) across 

2044 questions. For each model across the three independent replicates, we observed 

a mean accuracy (minimum to maximum) of 25.6% (25.4 to 25.7%) for LLaMA 7B, 

27.8% (26.5 to 28.6%) for LLaMA 13B, 34.3% (33.4 to 35.0%) for LLaMA 33B, 38.5% 

(38.0 to 38.8%) for LLaMA 65B, 45.1% (43.9 to 45.9%) for PaLM 2, 51.8% (51.4 to 

52.5%) for GPT-3.5, 55.3% (54.5 to 55.7%) for Claude-v1, and 68.7% (68.6 to 68.8%) 

for GPT-4. For comparison, the random guess strategy had a mean accuracy of 25.2% 

across 100 replicates. Heterogeneity in performance between models was observed (analysis 

of variance, P<0.001). Pairwise comparisons revealed a difference between all models 

(Tukey honestly significant difference, Padjusted<0.01), with the exception of LLaMA 7B 

compared with LLaMA 13B (Padjusted=0.08) and LLaMA 7B compared with random 

guesses (Padjusted=1.00).

Within model class, accuracy improved monotonically as the number of parameters 

increased (as observed in the LLaMA and GPT model classes); however, this monotonic 

relationship was violated in comparisons between models, as PaLM 2 has 340B parameters, 

GPT-3.5 has 135B, and Claude-v1 has 52B.

MODEL PERFORMANCE RELATIVE TO TRAINEE PERFORMANCE

In a prior publication,18 the distribution of the human performance on the 2013 (mean, 

61.9%; SD, 8.2%) and 2014 (mean, 57.2%; SD, 7.6%) examinations was described. Using 

these data, LLaMA 65B, PaLM 2, GPT-3.5, Claude-v1, and GPT-4 were found to perform 

at the less than first, third, fifth, 16th, and 69th percentiles for the 2013 examination and the 

less than first, sixth, 14th, 23rd, and 89th percentiles for the 2014 examination, respectively.

VARIATION OF MODEL PERFORMANCE ACCORDING TO SUBJECT

Model performance varied as a function of subject area across all models (analysis of 

variance, all P<0.001) (Fig. 2), and there was a positive correlation between a model’s 

overall performance and subject area–specific performance (Pearson’s r=0.630; P<0.001). 

On the basis of this observation, exploratory analyses were conducted to evaluate model 

performance according to question subject. Except for LLaMA 65B (Student’s t-test, 

P=0.27), all other LLMs exhibited higher performance on the group of foundational 

topics (medical statistics, medical physics, and cancer biology) compared with clinical 

oncology subcategories (all, P≤0.02). The worst-performing clinical subjects were female-

predominant malignancies (breast and gynecologic) compared with other malignancies 

(P=0.11 for LLaMA 65B, P<0.01 for all other models).

SELF-ASSESSED CONFIDENCE

On the basis of the observation that the error rate of each LLM ranged from 31.3% (GPT-4) 

to 61.4% (LLaMA 65B), a set of analyses was constructed to determine strategies that could 

help end users identify subgroups of queries with lower error rates, beginning with LLM 

self-assessed confidence. To this end, accuracy as a function of self-appraised confidence 
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was evaluated (Fig. 3), and all models were observed to have self-appraised confidence 

scores with discriminatory capability (chi-square test, P<0.001) except for LLaMA 65B 

(P=0.99). Furthermore, all models with discriminatory power had an improved accuracy 

when reporting maximal self-assessed confidence (a score of 4 of 4) compared with overall 

accuracy (test of proportions, all P≤0.004). Finally, all models trended toward high self-

appraised confidence, with more than 94% of responses returning a confidence score of 3 or 

4.

PROMPT REPETITION

The technique of prompt repetition (i.e., independently repeating the same query multiple 

times) was investigated as another means by which end users could appraise their confidence 

in the accuracy of a model’s response (Fig. 4A). A significant proportion of cases failed 

to produce the same response for all three replicates: 75.5% for LLaMA 65B, 53.2% for 

PaLM 2, 26.4% for GPT-3.5, 38.0% for Claude-v1, and 16.3% for GPT-4. In general, 

as model performance increased, the proportion of queries for which a model provided 

a consistent correct answer (i.e., three of three correct) increased (Pearson’s r=0.988; 

P=0.002). Compared with the overall model accuracy, a higher accuracy (test of proportions, 

all P<0.001) was noted for the subset of responses in which there was consistency across 

all replicates (i.e., triplicate agreement), with the largest increase observed in LLaMA 65B 

(38.5 to 64.4%). Notably, a significant proportion of queries had triplicate agreement, and 

they were consistently incorrect (i.e., three of three of the same incorrect answer): 9.0% for 

LLaMA 65B, 18.2% for PaLM 2, 30.7% for GPT-3.5, 19.6% for Claude-v1, and 21.0% for 

GPT-4, representing a “fixed, false belief.” For context, random guesses on this task (across 

100 simulations) would result in an average rate of 4.7% (minimum, 3.8%; maximum, 5.8%) 

of consistently incorrect responses.

COMBINING STRATEGIES FOR IDENTIFYING MORE RELIABLE RESPONSES

We next evaluated the utility of the combination of these factors (model selection, self-

assessed confidence, and output consistency) for identifying cases in which model output 

was relatively more reliable, defined here as higher subgroup accuracy (Fig. 4B). The 

combination of these factors allowed for the identification of high-performing subgroups of 

queries in Claude-v1 and GPT-4, with observed accuracies of 81.7% (n=383) and 81.1% 

(n=1306), respectively. A significant interaction between the self-assessed confidence score 

and triplicate agreement was observed in all models (all interaction coefficients positive, 

P≤0.03) with the exception of LLaMA 65B (Pinteraction=0.956), characterizing the increase 

in accuracy at the intersection of high confidence and triplicate agreement.

VALIDATION OF PERFORMANCE WITH A NOVEL QUESTION SET

With our newly developed oncology question set, we evaluated an updated range of 

models across 10 replicates (Fig. 5), focusing on models that could be prompted with 

zero-shot learning. Heterogeneity was again observed in model responses, including in the 

model explanations, which have been provided (outputs from the first replicate for each 

model are in Supplementary Appendix 3). Altogether, these validation results confirm the 

previously discussed trends of performance across models. The newest centrally hosted 

models evaluated in this effort, GPT-4 Turbo and Gemini 1.0 Ultra, showed the highest 
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performance, with median accuracies of 80 and 79%, respectively. We also observed 

considerable improvement in local models, with Mixtral 8×7B Instruct exhibiting better 

performance than many centrally hosted models. The updated LLaMA 2 models also 

provided an opportunity to compare the differential impacts of prompt structure and fine-

tuning on performance (Fig. S1).

Discussion

OVERALL FINDINGS

The current investigation offers the most comprehensive description and head-to-head 

comparison yet of modern AI-based LLMs in oncology. The performances of Meta’s 

LLaMA 1, Google’s Bard/PaLM 2, Anthropic’s Claude-v1, and OpenAI’s GPT-3.5 and 

GPT-4 were evaluated on a standardized, comprehensive battery of oncology questions 

to benchmark these models for medical professionals and patients. A wide range of 

performance was observed on the tested metrics of accuracy, self-assessed confidence, 

and consistency of response across models. GPT-4 consistently outperformed other models, 

achieving the highest overall accuracy of 69%. GPT-4 was also the only model to perform 

above the 50th percentile of oncology trainees on the subset of questions for which 

human performance was available.18 On validation with a novel question set, we confirm 

these general trends, highlighting the state-of-the-art performance with GPT-4 Turbo and 

Gemini 1.0 Ultra. This analysis also evaluated local models, which can operate on local 

network systems, including those in hospitals, thereby improving security and facilitating 

more effective management of protected health information. Although no local model 

was competitive with the top-performing models, Mixtral 8×7B did exhibit an impressive 

performance compared with many centrally hosted models, highlighting the rapid evolution 

of local models that can handle protected health information. LLMs are augmented neural 

networks,24 primarily designed to predict the next word in a string of text.4,25 The output 

of these models may be further refined through RLHF, as was true for four of the five 

models under examination in the primary analysis (PaLM 2, Claude-v1, GPT-3.5, and 

GPT-4). Effective prompt engineering also plays a crucial role in guiding these models to 

generate more targeted and relevant outputs. Surprisingly, from this narrow focus, models 

can produce output that appears to replicate aspects of human intelligence5 and medical 

expertise6–10,12,13 as illustrated by the performance of the current state-of-the-art LLMs 

on oncology questions. However, our observation of persistently high error rates, even 

with end-user strategies meant to isolate high-performing subgroups, reveals the inherent 

limitations of LLMs in their current form to guide clinical practice.

TRAINED BIAS IN LLMs

Substantial differences in performance were observed according to subject category. The 

LLMs were trained through self-supervised learning on a database primarily sourced from 

the Internet. Except for LLaMA 65B, all models in the primary analysis exhibited superior 

accuracy on foundational topics (cancer biology, medical physics, and medical statistics) 

compared with clinical oncology. Within clinical oncology, these models showed inferior 

performance on female-predominant malignancies compared with all other malignancies. 

The consistency of subgroup performance across models suggests a common origin for this 
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inaccuracy, and one possible explanation could relate to medically inaccurate information 

being part of the training set. This is compatible with prior studies characterizing substantial 

rates of misinformation in these subdomains on the Internet,26,27 including a recent study 

showing that one third of Internet-based oncology articles contain misinformation.28

STRATEGIES TO IMPROVE RELIABILITY OF LLMs

Because even the best-performing models continued to exhibit a significant error rate 

(31.3% for GPT-4 in the primary analysis), our final objective was to describe methods 

by which medical professionals and patients might optimize their confidence in these AI 

systems. We attempted to explore two strategies available to end users to evaluate the 

accuracy of an AI’s response: LLM self-assessed confidence and consistency of response 

across replicates. Although either of these strategies can help identify higher-accuracy 

subgroups, the combination of maximal self-appraised confidence and triplicate agreement 

can identify subgroups in which accuracy exceeds 80% for some models.

During this exploration, two notable subsets of inaccurate responses were observed. The 

first consisted of incorrect responses delivered with high confidence, which we observed in 

27% (GPT-4) to 52% (PaLM 2) of responses among the models with meaningful confidence 

self-appraisal. The second comprised queries to which models consistently delivered the 

same incorrect answer in triplicate, representing a “fixed, false belief,” which was observed 

in 9% (LLaMA 65B) to 21% (GPT-4) of responses.

The existence of these phenomena identifies two possible pitfalls in the application 

of LLMs in clinical practice. First, these models almost always (>94%) exhibit high 

confidence disproportionate to their accuracy, consistent with the tendency for these 

models to present confabulated information with high confidence. Second, the existence 

of these “fixed, false beliefs” likely represents trained bias encoded into these models, 

further highlighted by the consistency across models in their poor performance on female-

predominant malignancies. Although these two pitfalls are not mutually exclusive, they 

represent independent limitations related to internal model behavior (overconfidence) and 

training bias (consistent inaccuracies). These may require independent solutions, including 

the implementation of retrieval-augmented generation systems, which use outside databases 

of ground truths that can be supplied to models through prompt engineering.

CLINICAL UTILITY OF LLMs

Validation against multiple choice examinations6–11 replicates one aspect of how clinical 

competency is evaluated in medical practice, but the scope of such assessment is narrow 

in determining whether these models are safe for clinical implementation. Clinicians are 

assessed in clinical settings extensively as part of their certification process, and, similarly, 

rigorous validation of LLMs in such settings will be essential to guarantee safety. We have 

thus far highlighted studies and data pertinent to this first aspect of clinical competency 

(examination knowledge), but evaluation of performance in clinical settings is equally 

imperative. There is a growing body of literature documenting the clinical utility of these 

models for tasks of diagnosis,29 management,30 and patient counseling31 in medicine. 

Benary et al.32 evaluated the use of LLMs as tools in oncology to personalize treatment 
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decisions and noted that although these models in their current form fail to achieve a level 

of performance shown by human experts, they still provided valuable recommendations 

that could complement established care. Although this growing body of literature provides 

promising examples for clinical utilization, widespread implementation will first require 

further validation of these tools in clinical settings, with appropriate safety monitoring.

Limitations

Although this study aimed to benchmark the current state-of-the-art AI models in oncology, 

the pace of innovation in the field will inevitably limit the generalizability of these results 

to future models. Our primary benchmark task used standardized questions, designed by 

experts on a broad range of oncology topics; however, it may still fail to represent the 

true complexity and ambiguity of clinical practice or capture the changes to practice over 

time. Although generalizing these findings to all of oncology may be limited because this 

benchmarking used examinations given to radiation oncologists, the subject material does 

include questions relevant to all oncologists. Furthermore, although this question bank is an 

imperfect evaluation of proficiency relevant to clinical practice, its use in this task attempts 

to replicate efforts to determine the proficiency of human oncology trainees. Therefore, 

any critique of the utility of this dataset as a benchmark for assessing LLM competency 

can be equally used to highlight the current limitations of such examinations to evaluate 

the competency of oncology trainees. These methodologic limitations are primarily driven 

by the lack of available, well-designed benchmarking tasks for this purpose, underscoring 

the critical need for collaboration with the oncology and medical communities to design 

standardized, consensus-based benchmarks to evaluate the proficiency of LLMs for clinical 

use.

In addition, although our methodology was designed to mitigate any bias in performance 

as a result of prompt engineering (Supplementary Appendix 1), recent work has shown that 

even small variations in a prompt can have a large impact on an LLM response.33 Base 

models (LLaMA 1, LLaMA 2 Base, and Mistral non-Instruct models) require a different 

prompting style (few-shot learning) than the comparators in this study (zero-shot learning), 

which can affect head-to-head comparisons of models. Utilization of the validation set on 

both base models and chat/instruct models for LLaMA 2 and Mistral allowed for a better 

understanding of how these differences can affect model performance (Fig. S1A). Future 

work will be required to identify the best way to prompt LLMs to optimize accuracy.

Finally, intrinsic to the nature of this research is a concern regarding the possible influence 

of data leakage, and to address this limitation, we conducted a validation study on a set 

of previously unseen questions. This concern was mitigated by the consistency in the trend 

in model performance observed on our novel validation set and in the primary analysis, 

reinforcing the robustness of our main conclusions.

Conclusions

LLMs currently available to medical professionals and patients exhibit a wide range of 

performance on clinical oncology questions. Some models appear to perform no better than 

random chance, whereas others may achieve a level of accuracy competitive with resident 
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physicians.18 Strategies such as confidence self-appraisal and prompt repetition show some 

promise in identifying subgroups of responses more likely to be correct, but their utility is 

currently limited.

Furthermore, we report observations consistent with overconfidence and “fixed, false 

beliefs” across models, which may limit their clinical utility as trustworthy tools. In this 

regard, one particularly noteworthy finding was the poor performance observed on prompts 

relating to female-predominant malignancies across models. This likely represents a trained 

bias that cannot be easily mitigated with prompt repetition or LLM self-assessed confidence. 

Such training biases emphasize the need for partnerships between developers and medical 

professionals to curate reliable training data. Given the enthusiasm to integrate LLMs into 

clinical practice, continued standardized evaluations of the strengths and limitations of these 

models will be critical to guide both patients and medical professionals in identifying 

appropriate use cases and building appropriate expectations for model performance in this 

clinical application.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overall Model Performance on Standardized Oncology Questions.
All models were evaluated on 2044 oncology questions, with each point representing one 

of three independent replicates on the full question set. Models were benchmarked against 

100 replicates of random guesses. The number of parameters in billions (B) for each 

model is listed in parentheses. *Of note, the number of parameters for generative pretrained 

transformer 4 (GPT-4) is not published, but it is likely more than 135B (GPT-3.5) and 

estimated by some to be on the order of 1000B.
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Figure 2. Variation of Model Performance According to Subject.
Performance stratified according to subject was evaluated for each model in the subset 

of questions with subject domain labels (n=1168). Overall, there is a correlation between 

global model performance and performance according to subject domain. Models were 

found to have better performance on queries in foundational concepts in oncology (cancer 

biology, medical physics, and medical statistics) than those pertaining to clinical oncology. 

Of clinical oncology queries, models exhibited worse performance in the domain of female-

predominant malignancies (breast and gynecologic origin) than the remainder of other 

clinical oncology inquiries. B denotes billion; and GPT, generative pretrained transformer.
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Figure 3. Self-Assessed Confidence Has Discriminatory Power in High-Performing Models.
In each question prompt, the models were asked to evaluate their confidence (from 1 to 

4) in the response, in which 1 represented minimal confidence (i.e., a random guess) and 

4 represented maximal confidence. The self-assessed confidence score had discriminatory 

power for PaLM 2, generative pretrained transformer 3.5 (GPT-3.5), Claude-v1, and GPT-4. 

B denotes billion.
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Figure 4. Artificial Intelligence Consistency and Self-Appraised Confidence Reporting Identifies 
Output with Higher Reliability.
For each question, the model was prompted to identify a correct answer and return a self-

assessed confidence score over three separate replicates. The distribution of consistency in 

response is shown, which demonstrates a notable subset of queries to which models respond 

with the same incorrect answer (Panel A). The performance of subgroups of prompts for 

each model based on whether the model output had maximal confidence (i.e., the large 

language model returned a confidence score of 4 of 4 for each of the three responses), 

triplicate agreement (i.e., the large language model returned the same response for each of 

the three replicates), or both is shown (Panel B). B denotes billion; and GPT, generative 

pretrained transformer.
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Figure 5. Model Performance on a Novel Validation Question Set.
A novel set of 50 oncology questions was developed to evaluate model performance 

independent of any risk of data leakage. Performance trends are consistent with the more 

comprehensive question set but further highlight improved performance with state-of-the-art 

models. Generative pretrained transformer 4 (GPT-4) Turbo and Gemini 1.0 Ultra exhibit 

the top performance for any centrally hosted model, whereas Mixtral 8×7B was the highest-

performing locally run model. All accuracy results come from models prompted with the 

zero-shot learning technique (no examples in the prompts). Every box plot represents the 

accuracy distribution across 10 independent model prompts. B denotes billion.
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