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Abstract

Facial morphs created between two identities resemble both of the faces used to create the morph. 

Consequently, humans and machines are prone to mistake morphs made from two identities for 

either of the faces used to create the morph. This vulnerability has been exploited in “morph 

attacks” in security scenarios. Here, we asked whether the “other-race effect” (ORE)—the human 

advantage for identifying own- vs. other-race faces—exacerbates morph attack susceptibility for 

humans. We also asked whether face-identification performance in a deep convolutional neural 

network (DCNN) is affected by the race of morphed faces. Caucasian (CA) and East-Asian (EA) 

participants performed a face-identity matching task on pairs of CA and EA face images in 

two conditions. In the morph condition, different-identity pairs consisted of an image of identity 

“A” and a 50/50 morph between images of identity “A” and “B”. In the baseline condition, 

morphs of different identities never appeared. As expected, morphs were identified mistakenly 

more often than original face images. Of primary interest, morph identification was substantially 

worse for cross-race faces than for own-race faces. Similar to humans, the DCNN performed 

more accurately for original face images than for morphed image pairs. Notably, the deep network 

proved substantially more accurate than humans in both cases. The results point to the possibility 

that DCNNs might be useful for improving face identification accuracy when morphed faces are 

presented. They also indicate the significance of the race of a face in morph attack susceptibility in 

applied settings.
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1 INTRODUCTION

Biometrics-based identification and verification systems are deployed widely for a range 

of security applications, such as border control. AutomatedBorderControl(ABC) e-gates 

commonly employ face-recognition systems to capture a live image of a traveler to automate 

passport image authentication using face-image matching [8]. If this fails at the live 

face-recognition stage, the documentation can undergo secondary identity verification by 

a human border control guard. Accurate identity verification and face matching of travel 

documentation are critical to determining border-crossing eligibility. This type of face 

identity matching task with unfamiliar faces is difficult for both human recognizers, such 

as border control guards, and commercially deployed face-recognition systems [13, 30–32]. 

The challenges of identity-matching when faces are unfamiliar create a security vulnerability 

that can be exploited to bypass ABC e-gates through a face-morphing attack.

Face morphs have emerged as a new form of identity fraud [7, 28]. In a face-morphing 

attack, a morphed image can be created by blending face images of two or more identities. 

For instance, a morphed image containing a 50/50 average of two identities can be 

submitted for inclusion in official travel documentation. The live face recognition system 

may then erroneously verify two different individuals for the same passport image. In an 

applied setting, criminal actors could morph their faces with a similar-looking noncriminal 

accomplice and subvert ABC e-gates, due to the resemblance of the live face image to the 

morph. Face-morphing attacks have been determined to be a feasible method of deceiving 

face-recognition systems at ABC e-gates [7].

Human behavioral studies also indicate that people are susceptible to morph attacks 

[20, 31, 32]. For example, in one study [31], when participants were given a face-

matching task without being warned about computer-generated morphs, 50/50 morphs were 

accepted as genuine identities at high rates (68 percent). When participants were warned 

about the presence of morphed images, the false acceptance rate of 50/50 morphs was 

reduced significantly (21 percent) [31]. Moreover, training to identify image artifacts that 

resulted from morph generation (e.g., overlapping hairlines) improved identity-matching 

performance [32]. The combined effects of morph detection guidance and training led to 

higher morph identification rates than just morph detection guidance alone [32], although 

this performance might have been due, in part, to artifact detection [20]. Additionally, 

individuals who already performed well with distinguishing between two similar-looking 

faces had better morph identification performance [32].

To address the limitations of morph detection, machine learning–based approaches, 

including some based on Deep-ConvolutionalNeural Networks (DCNNs), have been 

leveraged to automate face-morph detection. One early study utilized micro-texture feature 

extraction and a linear Support Vector Machine (SVM) to determine if a given image was a 
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morph [26]. In comparison to other feature extraction-based methods such as Local Binary 
Patterns-SVM (LBP-SVM) and Local Phase Quantisation-SVM (LPQ-SVM), the SVM 

used in this study outperformed previous algorithms. Another study combined the features 

of two DCNNs, VGG-19 and AlexNet, to explore how transfer learning can impact morph 

detection in digital and print-scanned images [27]. In comparison to the methods used in 

previous work [26], such as LBP-SVM and LPQ-SVM, the combined DCNNs performed 

better on this task. Additionally, a multiple scales attention convolutional neural network 
(MSA-CNN) trained on morph artifacts outperformed other networks like VGG-19 [21] and 

ResNet18 [38]. Although these algorithms performed relatively well, it is hard to compare 

performance due to variability in network designs and morph quality.

As morphing software rapidly improves to produce higher quality images, morph 

recognition could become even more challenging, due to the reduction of obvious artifacts 

(e.g., overlapping hairlines). In one recent study [20], humans and a VGG-based DCNN 

were tasked with matching identities in pairs of images that included high-quality morphs. 

These high-quality morphs were designed to limit artifacts in the morphing process. Morphs 

were defined as 50/50 combinations of two identities—one of the identities in the morphed 

image matched the identity of the other face in the pair. Both humans and machines 

performed poorly at this task.

Individual variations in susceptibility to morph attacks may be impacted further by the 

difficulties associated with cross-race face identification (e.g., [5], [16], and [36]). The 

other-race effect (ORE) describes the findings that humans recognize faces of their “own” 

race more accurately than faces of other races [16, 18]. Demographic factors such as 

the race of a face also affect the performance of face-recognition algorithms such as 

DCNNs [4, 6, 9, 12]. Although there are no consistent findings on how race impacts 

algorithm accuracy, there is clear evidence that algorithm performance can be affected 

by race-based demographic differences (e.g., [4] and [9]). In 2019, algorithms submitted 

to the FaceRecognitionVendorTest(FRVT) showed evidence of demographic differences 

in face-recognition performance [9]. For example, an algorithm trained on a dataset of 

immigration application photos had higher false positive rates (erroneous matching of two 

similar-looking people) for West and East African and East-Asian populations than for 

Eastern European populations.

Concerns about algorithm performance across variable demographics are exacerbated in 

the case of morph attacks, especially in airport or border control settings. The high-quality 

morphs used in [20] included some diverse faces (6 African-American/Black, 16 East Asian, 

16 South Asian, and 16 Caucasian). The VGG algorithm used in that study was less accurate 

at identifying morphed images of Black faces than morphed images of East Asian, South 

Asian, and White faces. Human identification accuracy as a function of the racial category 

of the face was not reported. Although the differences in algorithm performance reported by 

[20] are of interest, the number/balance of faces across race categories was not controlled 

enough to provide a direct test of the role of race in the identification of morphed images.

The goal of this study was to understand how the ORE influences morph attack 

susceptibility for both humans and a DCNN algorithm. To directly examine this effect, East-
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Asian(EA) and Caucasian(CA) participants were recruited to complete a face-matching 

test. The stimuli we used consisted of original images of EA and CA faces and 50-percent 

morphs of same-race faces (CA-CA and EA-EA morphs). Participants were asked to 

determine if the faces pictured in image pairs showed the same person or different people. 

We compared face-matching performance for same-race and other-race morphs and non-

morphs (baseline). Participants were unaware that morphed images were present in the 

test. On the computational side, to compare human and machine performance, a DCNN 

[29] performed the same task as humans on the same stimuli. To minimize the possibility 

that morphed images could be perceived as “fake”, we presented only the cropped internal 

regions of the face. The elimination of the external face detail (hair, etc.) also removes 

identity cues that have been accessible to humans in previous studies. Because most 

machine-based face-identification algorithms work only on the internal face, this study puts 

the machine-human comparison on a more equal footing than previous comparisons.

2 HUMAN FACE-IDENTIFICATION EXPERIMENT

2.1 Methods

2.1.1 Design.—The experimental design included three independent variables: 

participant race (Caucasian, East Asian), face-image race (Caucasian, East Asian), and face-

image type (morph, baseline). The latter two varied within-subjects. Accuracy at matching 

face identity was measured as the area under the receiver operating curve (AUC).

2.1.2 Participants.—A total of 74 students from the University of Texas at Dallas 

(UTD) participated in this study. The study was conducted virtually, using Microsoft Teams, 

due to the social-distancing measures put into practice during the COVID-19 pandemic. 

Students were recruited using the UTD online sign-up system (SONA) and received one 

course credit as compensation for their participation. All participants were required to be 

18 years of age or older, self-identify as Caucasian or East Asian, and have normal or 

corrected-to-normal vision.

Race and ethnicity eligibility was determined via a recruitment survey generated on 

Qualtrics [25]. Specifically, the recruitment survey was linked in the experimental 

description on SONA. The recruitment survey was completed anonymously as follows: 

The first section of the survey included the consent form for the study. Participants who 

agreed to participate in the study proceeded with the self-identification question. In the 

self-identification question, participants were asked which of the following best described 

their race or ethnic group: (a) East Asian [Thai, Macanese, Japanese, Vietnamese, Chinese, 

Korean, Taiwanese, Mongolian, and Hong Kong heritage], (b) White/Caucasian [Anglo/

European descent], (c) Other Asian, (d) Native American or Alaska Native, (e) Native 

Hawaiian or Other Pacific Islander, or (f) Other. Participants who selected East Asian or 

Caucasian proceeded with the final section of the survey. The last section of the survey 

instructed the participants that the experiment required the installation of MS Teams on a 

computer (phones and tablets were not permitted for the experiment). Upon agreeing to 

complete the experiment using MS Teams on a computer, participants were provided with 

an invitation code that allowed them to enroll in the experiment via SONA. After enrolling, 
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participants were provided with a link to the SONA experiment corresponding to their 

demographic group as self-reported in the self-identification question (i.e., a link for either 

East-Asian participants or Caucasian participants).

Fourteen participants were excluded due to internet connection instability (data collection 

impediment). The final data included 60 participants. Note that participant recruitment 

ended when the final data included 30 East-Asian participants (20 female, 10 male, 18–27 

years old, average age 20.87) and 30 Caucasian participants (22 female, 8 male, 18–38 years 

old, average age 22.28). For the survey question “Have you lived in the United States your 

whole life?”, 21 of 30 EA participants responded “yes” (9 of 30 EA participants responded 

“no”), and 25 of 30 CA participants responded “yes” (5 of 30 CA participants responded 

“no”).

A power analysis using PANGEA [37] indicated that a total of 60 participants would be 

sufficient to obtain a power of 0.839 for a medium effect size (d = .5). This power analysis 

was computed to detect a two-way interaction between face-image race (within-subject, East 

Asian vs Caucasian) and face-image type (within-subject, Baseline vs Morph).1

2.1.3 Stimuli.—A total of 64 face-image pairs were used in this experiment. Each face-

image pair was assigned to the morph condition (16 East Asian pairs, 16 Caucasian pairs) 

or the baseline condition (16 East Asian pairs, 16 Caucasian pairs). The Caucasian and 

East-Asian groups contained 8 male pairs and 8 female pairs. Both conditions (morph and 

baseline) included 16 same-identity pairs (two images of the same identity) and 16 different-

identity pairs (two images of different identities of the same race, gender, and age group). 

For each condition, different-identity items were created by randomly pairing same-race 

and same-gender identities. Additionally, all different-identity image pairs were verified 

manually to ensure that they contained identities matching in age group. It is important to 

note that different-identity pairs were not created based on similarity measures.

In the morph condition, different-identity pairs included one unedited image (identity A, 

image 1) and one 50/50 morph between one image of the same identity (identity A, image 

2) and one image of a different identity (identity B, image 1). Same-identity pairs were 

created using one unedited image (identity A, image 1) and one 50/50 morph between two 

different images of the same identity (identity A, image 2 and image 3). We used morphs in 

the same-identity pairs to support the Signal Detection Model measures, which require both 

same- and different-identity pairs in each condition. This ensured also that the performance 

observed in the morph condition was derived from people’s ability to distinguish same- 

and different-identity pairs, rather than morphed and non-morphed images. In the baseline 

condition, same-identity pairs were created using one unedited image (identity A, image 1) 

and one cropped image of the same identity (identity A, image 2). Different-identity pairs 

included one unedited image (identity A, image 1) and one cropped image of a different 

1Note that the design of the power analysis conducted prior to data collection was inaccurate to estimate the sample size required 
to detect a three-way interaction. A secondary analysis was computed to detect a three-way interaction between participant race 
(between-subject, East Asian vs Caucasian), face-image race (within-subject, East Asian vs Caucasian) and face-image type (within-
subject, Baseline vs Morph). Results confirm that a total of 60 participants (30 per participant race group) is sufficient to obtain a 
power of 0.839 for a medium effect size (d = 0.5).
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person (identity B, image 1). See Figure A1 for an example of the stimulus pairs for each 

condition.

All morphed images were cropped around the face to minimize morph artifacts. The 

algorithm tested in this experiment operates on the internal face. To do a true machine 

comparison, these morph artifacts were excluded so the observers were limited to landmarks 

that a facial recognition system uses (eyes, nose, facial structure, etc.). Image-morphing 

software cannot adequately account for hair across different images. When including hair in 

a morphed image, the hair either will become blurred or must be added/rendered after the 

fact so that it appears photo-realistic.

Images were selected from the Notre Dame Database [33] and showed faces viewed from 

the front with neutral expressions. The race and gender of the faces in each pair were 

balanced across the conditions. In each face-image pair, the unedited images consisted 

of images captured in an uncontrolled illumination setting. All image manipulations 

(morphing and cropping) were executed on images captured under controlled illumination 

and performed using the Face Morpher Github repository [39]. Additionally, all morphed 

images underwent further editing with Photoshop and Gimp to remove artifacts (e.g., second 

irises, smooth appearance, overlapping noses, etc.). Following morphing and cropping, 

images underwent sharpening in Photoshop to reduce blurred complexions.

2.1.4 Remote Testing Protocol.—In order to comply with the COVID-19 social-

distancing requirements, human data collection was carried out virtually. The experiment 

was conducted online using the remote-control features available on Microsoft Teams. 

Participants were required to complete the experiment on a personal computer. Other devices 

such as phones or tablets were not permitted for study participation. Aspects pertaining to 

the participants’ environment (e.g., lighting, noise, distraction, etc.) were not controlled. 

All human data were stored locally on the experimenter’s computer. The experiment was 

conducted using PsychoPy v1.84.2 [22]. All participants used Qualtrics survey software to 

complete the Self-identification survey.

2.2 Procedure

2.2.1 Face-Matching Task.—All eligible participants received an invitation link to 

participate in a conference call with the experimenter. The face-matching task was 

administered virtually using Microsoft Teams. The experiment was conducted locally on the 

experimenter’s computer. During the experimental session, the subject was given permission 

to view the experimenters’ screen (via screen sharing) and control the experimenters’ mouse 

and keyboard remotely. After giving informed control, the participant proceeded with the 

face-matching task.

The face-matching test included a total of 64 trials (Figure A1(B)). The face-image pairs 

in each condition (face-image race, face-image type) were presented in a randomized order. 

Information pertaining to the experimental conditions (face-image race and face-image type) 

was not revealed explicitly. On each trial, a face-image pair was presented on the screen. The 

participants were instructed to determine whether the two images were of the same identity 

or different identities. Responses were collected using a 5-point certainty scale (1: Sure they 
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are the same; 2: Think they are the same; 3: Do not know; 4: Think they are not the same; 5: 

Sure they are not the same). Participants did not have a response time limit and the stimuli 

remained on the screen until a response was entered.

After completing the face-matching task, the subject was instructed to complete a short 

demographic survey (see Appendix, Figure A.1).2

2.3 Results

Data were analyzed using a 2 (participant race: East Asian vs Caucasian) × 2 (face-image 

race: East Asian vs Caucasian) × 2 (face-image type: Baseline vs Morph) mixed-model 

ANOVA. Face-image race and face-image type were submitted as within-subjects factors 

and participant race was submitted as a between-subjects factor. The dependent variable 

(face-matching accuracy) was measured as the AUC. The AUC was computed based on 

a construction of the receiver operating characteristic (ROC) curve, using the standard 

method described in [15] for Likert scale data. This uses rating scale points from the Likert 

as criteria at which hit and false alarm rates can be computed and integrated for the creation 

of the ROC, thereby supporting the computation of an AUC.

In what follows, we report multiple interactions, including a three-factor interaction among 

participant race, face-image race, and face-image type. For clarity and completeness, we 

begin with lower-order effects. As always, interpretations of lower-order effects are tentative 

and subject to change in the presence of higher-order interactions. As expected, participants 

performed more accurately for the baseline image pairs (M = 0.841, SE = 0.012, 95% CI 

[0.818, 0.865]) than the morphed image pairs (M = 0.725, SE = 0.011, 95% CI [0.703, 

0.746]) (see Figure A2). Specifically, there was a main effect of face-image type (F(1,58) = 

77.283, MSe = 0.011, p <.001, ηp
2 = 0.571). No other main effects were significant.

There was a significant two-way interaction between participant race and face-image race. 

When averaged across the two image types (morphed and baseline), Caucasian participants 

were more accurate at identifying Caucasian face pairs (M = 0.811, SE = 0.015, 95% CI 

[0.780, 0.842]) than East-Asian face pairs (M = 0.773, SE = 0.016, 95% CI [0.741, 0.806]), 

and East-Asian participants performed similarly for East-Asian face pairs (M = 0.781, SE = 

0.016, 95% CI [0.748, 0.813]) and Caucasian face pairs (M = 0.767, SE = 0.015, 95% CI 

[0.736,0.798]). Although this would seem to suggest that only Caucasian participants show 

the ORE, an interpretation of the two-way analysis must await an analysis of the three-way 

interaction. No other two-factor interactions were significant.

Of primary interest for this study, there was a three-way interaction between participant 

race, face-image race, and face-image type (F(1,58) = 4.49, MSe = 0.0073, p = 0.038, 

ηp
2 = 0.07). Figure A2 shows that both the East-Asian and Caucasian participants fared 

equally well on East-Asian and Caucasian face pairs in the baseline condition. In the morph 

condition, however, there was an ORE such that East Asians performed more accurately on 

the East-Asian morph pairs and Caucasians performed more accurately on the Caucasian 

2Participant selection (eligibility) was not determined by the recruitment survey
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morph pairs. In other words, the two-factor interaction we found between the race of the 

participants and face was driven by the difficulties participants had with other-race morphs.

In summary, the human experiment replicates the well-documented difficulties people have 

in matching face identities with morphed stimuli [20, 31]. Notably, we did not find an ORE 

in the baseline condition–only in the morph condition, as was evident from the pattern 

of means in the three-factor interaction. It is unclear why we did not find a standard 

ORE in the baseline condition. One possible factor in the lack of an ORE in the baseline 

condition is that the local population of students in Dallas is highly diverse and so students 

would be in constant contact with people of many races.3 A second factor is that, because 

the majority of both East Asian (70%) and Caucasian (83.33 %) participants sampled in 

the present study reported living in the United States their whole life, both groups of 

participants may have experienced similar “face diets” and may therefore perform similarly 

when identifying face images of different races [19]. A third factor is that performance in the 

baseline condition was quite accurate. It may be that the ORE is most easily seen in more 

challenging conditions, such as with morphs. The finding of a crossover interaction in the 

morph, but not the baseline condition, is consistent with this interpretation. However, it is 

not possible to know for sure why we did not find the classic ORE in the baseline condition. 

Notwithstanding, the results indicate the additional challenge of face identification with 

other-race morphs.

Additionally, accuracy for same-identity pairs was measured for all conditions (face-image 

type and face-image race). Accuracy was determined by the proportion of correct responses 

(“Sure they are the same” or “Think they are the same”) endorsed to same-identity items. 

The data were submitted to a 2 (participant race: East Asian vs Caucasian) × 2 (face-image 

race: East Asian vs Caucasian) × 2 (face-image type: Baseline vs Morph) mixed-model 

ANOVA. Face-image race and face-image type were submitted as within-subjects factors 

and participant race was submitted as a between-subjects factor. Accuracy (proportion 

correct) was treated as the dependent variable. The results did not reveal any significant 

effect or interaction. Specifically, accuracy was not significantly different for same-identity 

image pairs in either face-image type condition (Baseline vs Morph) or face-image race 

condition (East Asian vs Caucasian).

3 DCNN EXPERIMENTS

3.1 Methods

3.1.1 Network Architecture.—We used a recent high-performing (cf. [17]) DCNN [29] 

based on the ResNet-101 architecture [11]. The network contains 101 layers and was trained 

using the Universe face dataset [1, 29]. When introduced, the dataset was not named [1], 

but it has been referred to in subsequent publications as the “Universe” dataset (e.g., [29]). 

It is a compilation of three smaller face-image datasets (UMDFaces [2], UMDVideos [1], 

and MS-Celeb-1M [10]), with no additional images added beyond those in the original 

three datasets. However, a semi-automated hierarchical clustering method [14] was used to 

remove incorrectly labeled images from the MS-Celeb-1M dataset. In total, the Universe 

3 https://ospa.utdallas.edu/common-data-set/ 
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dataset contains 5,714,444 images of 58,020 identities. The images within this dataset are 

sampled to include considerable variation in image parameters (e.g., pose, illumination, 

resolution, etc.) across face images of a given identity [1, 3]. However, the demographic 

information of the identities comprising the dataset is not known. During training, the 

network used Crystal Loss with the alpha parameter set to 50. Skip connections are used 

throughout the 101-layered network to retain the amplitude of the error signal. After training 

was complete, the final fully-connected layer of the network was removed and the output 

from the penultimate layer (containing 512 units) was used to generate identity descriptors.

We chose this network because it has been used in previous human-machine comparisons 

with both expert professional forensic face examiners and untrained participants [24]. The 

network performed more accurately than untrained participants and performed at the level 

of professional forensic face examiners on a challenging face-identification task with a 

majority of CA faces. In addition, this network has been shown to maintain high accuracy 

even across considerable variability in pose, illumination, and expression [17]. The network 

has been used also to test performance differences between CA and EA faces [4]. In the 

multi-race tests, overall network performance (AUC) was roughly comparable for EA and 

CA faces. However, at the low false alarm rates commonly used in security applications, 

CA faces were identified more accurately than EA faces. Finally, the results produced by 

DCNNs based on a ResNet-101 architecture have been shown to possess high similarity 

to perceptual responses recorded in the human brain, as measured using the “BrainScore” 

metric [34, 35]. Combined, all of these factors contributed to our selection of the network 

used in the present study as an appropriate network for our research.

3.1.2 Procedure.—Each of the face images used in the human experiment was 

processed through the DCNN to produce face-image descriptors. All face images were 

successfully detected and processed by the network regardless of whether the image was 

manipulated (i.e., edited or morphed).

For each image pair in the human experiment, the cosine similarity (i.e., normalized dot 

product) between image descriptors was computed. Higher similarity scores were assumed 

to indicate a higher likelihood that the images showed the same identity. To assess network 

accuracy, an AUC was computed from distributions of similarity scores for the same- and 

different-identity pairs in each condition.

3.2 Results

For image pairs in the baseline (i.e., non-morphed) condition, DCNN face-identification 

accuracy was perfect (AUC = 1.0, see Figure A3 left). For image pairs in the morph 

condition, DCNN face-identification accuracy was substantially lower (AUC = 0.891, see 

Figure A3 right). The decrease in DCNN identification accuracy was more pronounced 

for Caucasian images (baseline AUC = 1.0; morph AUC = 0.859) than East-Asian images 

(baseline AUC = 1.0; morph AUC = 0.922).

In summary, the DCNN performed perfectly on the baseline image pairs and less accurately 

on the morphed image pairs. Furthermore, the DCNN showed an accuracy advantage for EA 

over CA morph pairs.

MALLICK et al. Page 9

ACM Trans Appl Percept. Author manuscript; available in PMC 2024 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4 SUMMARY: HUMAN AND MACHINE PERFORMANCE

Both humans and machines showed an advantage for recognizing baseline over morphed 

images, consistent with previous studies [31]. Human participants showed an ORE in the 

morph condition, but not in the baseline condition. Although the DCNN was not tested for 

a cross-over ORE, the performance of the network was analyzed as a function of the race 

of the morphed faces. Overall, the performance of the DCNN surpassed humans on both 

baseline and morphed image pairs.

5 DISCUSSION

The principles underlying the ORE in humans have been well studied [16, 18]. In response 

to the emerging security threat posed by face morphs, we analyzed the influence of 

participant and stimulus race on morph attack susceptibility in humans and a DCNN. The 

present findings expand our understanding of how participant and stimulus race combined 

influence face identification in a morph-attack scenario. Our human behavioral results 

demonstrate that these factors combine to exacerbate the problem of face identification 

when images are morphed. Specifically, morphs pose a particularly strong challenge to an 

observer of a different race than the morph. The DCNN used in this study also performed 

more accurately than human participants in all cases. Thus, despite its reduced performance 

for morphed image pairs, and the differences in accuracy for EA and CA faces, the DCNN 

was always the more accurate face identification “system”. The findings from this study 

have significant implications for understanding how race could bias human and algorithmic 

decision-making in border control scenarios. We consider each of these implications in turn.

This is the first study to assess systematically the role of participant race and face-image 

race on morph identification. This was accomplished by conducting a complete cross-over 

design. Thus, Caucasian and East-Asian participants were tested on CA and EA face-

image pairs. The present study provides evidence that for morphed images, morph-attack 

susceptibility is increased when the observer and face are of different races. In addition to 

the use of a cross-over design, the present study provides a more direct test of the role of 

race in the identification of morphs for humans and machines. First, we controlled for the 

possibility that people could detect artifacts in morphed images by cropping the faces to 

include only the internal face. This also made for a more equitable comparison between 

the DCNN, which works only on the internal face, and humans. Second, we removed 

face-image artifacts (e.g., overlapping irises, smooth complexions) that were introduced 

during the morphing process. Additionally, this study used morphed image pairs for same-

identity comparisons to ensure a common ground truth between same- and different-identity 

comparisons.

The finding that DCNN performance was more accurate for East-Asian than Caucasian 

morphed-image pairs underscores the unpredictability of algorithms for faces of different 

races. Although it is clear that the performance of DCNNs are affected by demographics, 

the source of these effects is less clear and remains an active and open area of research 

[4, 9]. Previous studies have indicated that algorithms that originated in China tended to 

have lower false positive rates on East-Asian faces, although it is not clear whether this 
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difference resulted from training, optimization, or some other unknown parameter of the 

algorithms [9]. This type of race bias has been demonstrated also in pre-DCNN algorithms. 

Earlier algorithms developed in Western countries (e.g., France, Germany, the United States) 

performed more accurately on Caucasian faces, whereas algorithms developed in East Asian 

countries (e.g., China, Japan, Korea) performed more accurately on East-Asian faces. Again, 

however, the source of the effects is not known [23]. In the current study, differences in the 

performance of the DCNN on EA and CA faces could likewise have resulted from a variety 

of factors, including imbalances in the training set composition (age, race, etc.), as well as 

image quality differences [4, 9]. Notwithstanding the demographic effects, the DCNN used 

in this study fared far better than humans on both baseline and morphed images.

This study lays the groundwork to conduct future assessments for how the observer race 

and face race could affect morph identification across multiple races. One limitation of this 

experiment is the consideration of only two racial groups, a limit that can be overcome 

in future work by expanding the range of racial diversity of participants and face images. 

Concomitantly, there is a wide diversity of demographic effects in DCNNs [9]. Thus, it 

is incumbent on algorithm users to carefully test and validate the performance of specific 

algorithms for morphs of different race faces intended for particular applications (e.g., 

airports in different locations around the world).

The results show that the ORE exacerbates the difficulties associated with morph 

identification. As fraudsters find new and creative ways of bypassing ABC e-gates, this 

study elucidates a path forward to mitigate the incidence of morph attacks by investigating 

how race influences humans and algorithms. The findings have implications for national 

and international security measures and underscore the complexities of morphed face 

identification by humans and algorithms.
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A: APPENDIX

Fig. A.1. 
Demographic survey.
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Fig. A1. 
(A) Morph condition: Face-image pairs included one unedited image and one cropped 50/50 

face morph. The face morphs were created by blending two images of the same identity (n = 

16) or blending two images of different identities (n = 16). Baseline condition: Face-image 

pairs included one unedited image and one cropped image of the same identity (n = 16) or 

one cropped image of a different identity (n = 16). (B) Example of a face-matching trial.
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Fig. A2. 
Face-identity matching results. Performance was more accurate for baseline pairs (purple 

and blue bars) than morph pairs (green and yellow bars). Notably, other-race morph pairs 

proved especially difficult for both East-Asian and Caucasian participants (green and yellow 

bars).
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Fig. A3. 
DCNN-based identification accuracy for Caucasian and East-Asian face-image pairs. 

Accuracy was lower for morphed image pairs in comparison to baseline image pairs, and 

lower for Caucasian morphed image pairs than East-Asian morphed image pairs.
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