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Abstract
It is well accepted that repeatedly imagining oneself acting without any overt behavior can lead to learning. The prominent 
theory accounting for why imagery practice is effective, motor simulation theory, posits that imagined action and overt 
action are functionally equivalent, the exception being activation of the end effector. If, as motor simulation theory states, 
one can compile the goal, plan, motor program and outcome of an action during imagined action similar to overt action, then 
learning of novel skills via imagery should proceed in a manner equivalent to that of overt action. While the evidence on 
motor simulation theory is both plentiful and diverse, it does not explicitly account for differences in neural and behavioural 
findings between imagined and overt action. In this position paper, we briefly review theoretical accounts to date and present 
a perceptual–cognitive theory that accounts for often observed outcomes of imagery practice. We suggest that learning by 
way of imagery reflects perceptual-cognitive scaffolding, and that this ‘perceptual’ learning transfers into ‘motor’ learning 
(or not) depending on various factors. Based on this theory, we characterize consistently reported learning effects that occur 
with imagery practice, against the background of well-known physical practice effects and show that perceptual-cognitive 
scaffolding is well-suited to explain what is being learnt during imagery practice.
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To imagine an action such as a golf putt, to ‘see’ the ball, to 
‘feel’ the club, to ‘hear’ the club head-ball-impact, is one of 
many fascinating capacities of human beings. What is even 
more intriguing is that we can learn by way of imagined 
actions. Like mental imagery being a multisensory vicari-
ous experience (Lacey & Lawson, 2013), imagery in sport 
is a (re-) creation of experience in the absence of the actual 
sensory stimulus (Annett, 1995, 1996; Farah, 1984; Morris 
et al., 2005). Imagined action (vs. overt action)1 relates to 
the imagery of one’s own action without any overt behavior, 
and with the imager being the agent of the action (Jeannerod, 
1995; Munzert & Zentgraf, 2009). Imagery practice (i.e., 
mental practice; imagery training; action imagery practice) 
denotes the imagery of an action in a systematic and repeti-
tive manner, and physical practice relates to the systematic 
and repetitive use of overt action. While syntheses of evi-
dence to date have shown that we can learn from imagining 
motor actions without executing them, the mechanisms that 
lead to learning via imagined action are still being debated. 
The aim of the position paper is to delineate a perceptual-
cognitive theory for imagery practice effects. The new 
account helps to better understand imagery practice effects 
by explaining how imagined action impacts performance 
and learning. From a broader perspective, it serves to shed 
additional light on the relation between cognition and move-
ment, here between imagined action and the learning of a 
motor action.

Learning via imagined action – similar 
to that of overt action?

Imagery practice can improve motor performance and pro-
mote motor learning (e.g., Corbin, 1967; for reviews and 
meta-analyses, see Driskell et al., 1994; Feltz & Landers, 
1983; Feltz et al., 1988; Richardson, 1967; Simonsmeier 
et al., 2020; Toth et al., 2020). In this sense, imagery practice 
and physical practice are similar in that both can improve 
performance and induce learning: Meta-analyses have shown 
small to medium effect sizes for imagery practice (Driskell 
et al., 1994: 35 studies/62 effect sizes/d = 0.527; Toth et al., 
2020: 37 studies/99 effect sizes: d = 0.419/d = 0.264 [after 
publication bias correction]; Simonsmeier et al., 2020: 48 
studies/ 304 effect sizes/d = 0.416). Thus, if one imagines 
a motor action in a systematic manner, imagery practice is 

likely to bring about changes in performance and in some 
instances learning. However, imagery practice effects are 
usually lower in magnitude compared to physical practice 
effects (Corbin, 1967; Frank et al., 2014; Ingram et al., 
2019; Kraeutner et al., 2020b). In contrast, if performed 
in combination while controlling for the overall amount of 
practice, effects of combined imagery and physical practice 
on motor performance and motor learning are even greater 
than of physical practice alone (McBride & Rothstein, 1979; 
Simonsmeier et al., 2020).

Among the explanations why imagery practice may be 
effective (e.g., Jacobson, 1931; Sackett, 1934; Heuer, 1985, 
1989; Schack, 2006), motor simulation theory and has 
received strong support (Jeannerod, 1994, 2001). Central 
to motor simulation theory is the principle of equivalence 
between imagined and overt action (Finke, 1979; Jeannerod, 
1994, 1995; Johnson, 1982). Imagined action is suggested 
to be ‘functionally equivalent’ to overt action in that both 
states share similar processes and draw on the same action 
representation, with descending motor commands being 
inhibited in imagery (see Grospetre et al., 2016; Guillot 
et al., 2012; Kasess et al., 2008; Solomon et al., 2019; for 
a detailed account of mechanisms) and thus not leading to 
any observable action compared to overt action (Jeannerod, 
1995, 2001). Within this context, imagery is predicted to 
elicit neural activity in motor-related areas of the brain 
shared with overt action and, therefore, allows for learning. 
Consistent with this theory, many studies have shown simi-
lar brain activity in imagined and overt action, suggesting a 
‘structural equivalence’ between the two states (Burianova 
et al., 2013; Kraeutner et al., 2014); indeed, meta-analysis of 
neuroimaging experiments (Hetu et al., 2013) indicates that 
imagery activates frontal premotor and parietal regions of 
the brain in a similar way to overt action. In addition to the 
similarities predicted by motor simulation theory and given 
that imagery as a covert state does not involve an overt state 
of action, imagined action should differ from overt action 
in exactly the processes that accompany the overt stage of 
action and, therefore, are lacking during imagery (Munzert 
et al., 2009). Indeed, and in addition to neural similarities, 
differences in brain activation have been reported between 
imagined and overt action. For instance, Zabicki and col-
leagues (2017) found a similar structural geometry in brain 
activation for imagined and overt hand actions, but with the 
best model fit for low-to-moderate degree of similarity. In a 
recent meta-analysis, Hardwick and colleagues (2018) dem-
onstrated that the volume activated during imagined action 
was less than half of that during overt action and that regions 
related to action preparation were consistently recruited 
during imagined action, but not during overt action. Along 
these lines, activation of the primary motor cortex, present 
for overt action, is not consistently observed during imag-
ined action, and if present, is notably lower in magnitude 

1  Please note that in order to prevent potential confusion of terms, we 
refer to imagined vs. overt action in this manuscript, with both action 
states involving (quasi)planning and (quasi)execution stages. In other 
words, we consider execution stages as part of both imagined actions 
[imagined execution, no overt movement] and overt actions [real 
execution, overt movement]. Likewise, we refer to imagery practice 
(interchangeably used with imagery training, mental practice) and 
physical practice.
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(Hardwick et al., 2018; Hétu et al., 2013). These and other 
findings show that imagined action recruits partly similar, 
partly distinct brain areas (for reviews, see Hardwick et al., 
2018; Ladda et al., 2021).

In sum, although learning via imagined action is simi-
lar to learning via overt action in the sense that it induces 
action-related changes, learning via imagined action is dif-
ferent. First, as detailed above, while overlap with overt 
action exists, imagined action recruits different brain regions 
(for details on perceptual components of movement/ fronto-
parietal networks, see section ‘Evidence for perceptual-cog-
nitive scaffolding’). Second, although completing the same 
amount of practice, imagery practice is in most cases less 
effective in behavioral terms than physical practice. Third, 
when combining imagery practice and physical practice, 
the magnitude of behavioural effects outperforms that of 
physical practice. Superadditive effects like these cannot 
be explained by theories that consider imagined action and 
overt action equivalent. Collectively, this evidence indicates 
differences in underlying processes, neural underpinnings 
and behavioural outcomes of imagined and overt action. 
This raises the question as to whether unique processes char-
acterize the two states of action.

Understanding learning via imagined 
action—Theories to explain imagery 
practice effects

Theories that aim to explain imagery practice effects come 
from a variety of disciplines such as cognitive psychology 
(MacKay, 1981; Sackett, 1934), psychophysiology (Jacob-
son, 1931), neuroscience (Jeannerod, 1994) and movement 
science (Frank, 2014; Heuer, 1985, 1989; Schack, 2006). To 
date, it is commonly agreed that imagery practice effects are 
specific, and not only of motivational or of modelling nature 
(Heuer, 1989; Mendoza & Wichman, 1978). The theories 
and models that refer to the specific effect of imagery on 
the motor action system have focused on different aspects 
such as the nature of the task (cognitive vs. motor; Ryan 
& Simons, 1983), the role of executive functions (Glover 
et al., 2020), the location of effects (central vs. peripheral; 
Jacobson, 1931), the level of effect (effector-dependence 
vs. -independence: Dahm et al., 2022; Ingram et al., 2016; 
Kraeutner et al., 2017; Mizuguchi et al., 2014),or a shared 
representational format (Annett, 1996; Heuer, 1989; Jean-
nerod, 1995; Schack, 2004).

Aimed at formalizing the exact relation between cognitive 
processes and movement, here imagery and the learning of 
a motor action, approaches vary in the nature of the specific 
relation hypothesized between imagery and performance and 
imagery practice and learning. For instance, Heuer (1985, 
1989) elaborated on a correlational relationship between 

imagery and performance/learning. According to his multi-
ple representation perspective, humans can learn any repre-
sentational format. Whether imagery leads to motor learning 
crucially depends on whether the transformation between dif-
ferent representations is possible, that is, whether transforma-
tion rules between visuospatial and kinesthetic representations 
have been learnt yet (i.e., exist). More recently, motor simu-
lation theory (Jeannerod, 1994, 2001) suggests that learning 
by way of imagined action is possible to the extent to which 
an overlap in neural representations between imagined and 
overt action exists. Testing the idea of a higher order (less 
direct) relation against a first-order (direct) isomorphic relation 
between images and the percepts they represent (for details, 
see Shepard & Cooper, 1982), Coelho and colleagues (2012) 
showed that typical scheduling effects in physical practice do 
not hold for imagery practice. While variable (overt) practice 
of a golf putt was superior to constant (overt) practice, this 
did not hold for imagery practice, indicating subtle differences 
between imagined and overt action (and between images and 
related percepts), resulting in differences in learning by way 
of imagined vs. overt action.

Despite the longstanding history of imagery practice, the 
growing evidence in the field, and the variety of theories seek-
ing to explain imagery practice effects (for an overview, see 
e.g., Frank, 2014; Heuer, 1985, 1989; Kraeutner, 2019; Mor-
ris et al., 2005; Murphy, 1990; Murphy et al., 2008; Schack, 
2006), the debate about how imagery practice works persist 
until today. How does imagery impact performance, and what 
is the exact relation between cognitive processes and move-
ment, here between imagery practice and the learning of motor 
action?

Learning via imagined action 
through perceptual–cognitive scaffolding

In this position paper, we argue for a perceptual–cogni-
tive scaffolding approach and why it can explain learning-
related evidence to date. We suggest that learning by way 
of imagery reflects perceptual-cognitive scaffolding, and 
that this ‘perceptual’ learning transfers into ‘motor’ learn-
ing – or not – depending on various factors.

According to perceptual-cognitive approaches, actions 
are primarily guided by cognitively represented percep-
tual effects (e.g., e.g., Hoffmann et  al., 2004; Hommel 
et al., 2001; Jeannerod, 2001; Knuf et al., 2001; Kunde, 
2001; Schack, 2004). Ideomotor theory posits that a link 
between the action and its effects is established during learn-
ing (ideomotor theory: James, 1890; learning: Hommel & 
Elsner, 2009; Wulf & Prinz, 2001; Ziessler & Nattkem-
per, 2002; Ziessler et al., 2004). Along these lines, motor 
actions can be considered as being stored and represented 
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as perceptual-cognitive networks that guide action control 
(Schack, 2004, 2020).

Based on the assumption that both imagined and overt 
action draw on the same representation and involve similar 
albeit possibly distinct processes (Jeannerod, 1995; Munzert 
et al., 2009; Schack & Frank, 2019), imagery practice has 
been suggested to be effective because it draws on a percep-
tual-cognitive representation and refines the representational 
networks of action organization (Frank, 2014; Schack, 2006; 
Schack & Frank, 2019). According to the perceptual-cogni-
tive hypothesis (Schack, 2006), imagery practice is effective 
because it links cognitive representations to perceptual ones 
in a hierarchy of mental and sensorimotor levels of action 
organization (cf. cognitive action architecture approach/
CAA-A; for an overview, see Schack, 2004, 2020). While 
the perceptual-cognitive hypothesis emphasizes the central 
role of representations, it remains unclear whether imagery 
and execution are similar or different in driving learning 
(for proposed differential effect within action hierarchy; see, 
Frank, 2014). To address this gap, we suggest perceptual-
cognitive scaffolding as core process that drives the learning 
by way of imagined action.

During imagery practice, a perceptual-cognitive action 
representation is activated, manipulated and stabilized 
(Farah, 1984; Schack & Frank, 2019). Accordingly, and 
assuming a close linkage between anticipated action effects 
and imagery (Bach et al. in this issue), learning by way of 
imagined action is possible because repeated anticipation 
of action effects during goal-directed imagined action leads 
to gathering, structuring and fostering of (quasi2-)action 
effects. This perceptual-cognitive scaffolding, in turn, helps 
to guide future action.3 Perceptual-cognitive scaffolding 
thus emphasizes the process of actively building a cogni-
tive scaffold from action-related quasi-perceptual effects. 
During this process, the imager both recreates effects from 
his/ her experience and creates/estimates effects based on 
his/her experience. Based on perceptual-cognitive represen-
tations in long-term memory, quasi-perceptual effects are 
being manipulated in working memory whilst imagining 
in a goal-directed manner, and this manipulation leads to 
changes in perceptual-cognitive representations in long-term 
memory again. Given that this assembling of effects is not 

based on overt action and real experience (as it is during 
execution), scaffolding denotes the tentative nature of set-
ting up and shaping the learner’s representation through this 
action-related and goal-directed process. This process may 
or may not involve (quasi-) feedback from imagined action 
(for a discussion, see Rieger et al. in this issue). The result-
ing scaffold may not be the final and most appropriate one 
for a given action, but helps the learner as an estimate, a 
frame or a model, for future (overt) action control.

A perceptual-cognitive scaffold is thus a platform or foun-
dation that contains information of (quasi-)action effects/
anticipated (quasi-)sensory consequences for which motor 
commands can then be readily produced. The process of 
scaffolding thus represents the gathering, structuring and 
fostering of cognitively represented perceptual effects of the 
action which results in a refined representation that guides 
one’s actions. Importantly, and in contrast to the program-
ming hypothesis (Heuer, 1985, 1989), learning by way 
of imagery may not be caused by specification of motor 
commands in the first place, but rather by specification of 
perceptual effects during imagery. This repeated imagery/ 
anticipation of action effects fosters action-related effects 
and leads to perceptual-cognitive scaffolding, which guides 
future action and can lead to improved behavior in the sense 
of more successful motor planning and execution.

Whether or not this perceptual-cognitive scaffolding 
directly transfers to improved overt action should depend on 
whether the link between the action and its effects exists and 
how strong the link is. For instance, in the case of unskilled 
action, perceptual-cognitive scaffolding should not transfer 
into improved overt action, due to a missing link between an 
action and its imagined effects. From an effect-based view 
of action control, only if representations stored in long-term 
memory are associated with the relevant motor activities 
that reliably produce the intended effects would learning by 
way of imagery become evident as improvements in overt 
behavior. This may of course as well be the case, if one 
draws on experience of similar tasks, and thus representa-
tions of related and transferable actions (e.g., imagining to 
type in an unfamiliar style may draw on the experience one 
has with typing in the usual typing style; Rieger, 2012). Such 
transfer effects can explain why novices still can show some 
minor improvement in overt action, as some aspects of the 
action to be learnt can be transferred and built from related 
experience.

From a perceptual-cognitive scaffolding point of view, the 
following should be observed: (1) Imagery practice effects 
should depend on the type of task, with cognitive tasks prof-
iting more from perceptual-cognitive scaffolding, as little 
to no transfer to motor levels of action control is necessary; 
(2) Imagery practice effects should depend on skill level; 
it should be more difficult to learn truly motor tasks from 
perceptual-cognitive scaffolding in cases when the imager 

2  Quasi-perceptual effects during imagery denote effects that are 
being reconstructed from memorial information (i.e., imagined 
effects), in contrast to effects that are being perceived during overt 
action (i.e., perceived effects).
3  In contrast to Heuer’s view (1985, 1989) that imagery practice from 
an ideomotor view can be explained by the minimal peripheral effects 
of imagery in the muscles (and thus is not a valid explanation), we 
highlight an ideomotor account to be currently the most appropriate 
explanation to explain imagery practice effects through its focus on 
action effects, and the guiding role of perceptual-cognitive aspects 
during goal-directed action.
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has no overt, physical experience (and thus no representa-
tion of kinesthetic aspects, the feel of the movement, bodily 
effects of the action). Imagery should not affect performance 
in the case of true novices. It should though be effective for 
imagers with experience, as experts, for instance, know the 
relation between an action and its effects, and thus should 
be able to imagine appropriate effects that cause functional 
changes in action representation; (3) Transfer effects from 
tasks that share action effects and thus perceptual-cognitive 
scaffolds should be possible; similarly, performance after 
imagery practice should decline if perceptual components 
are changed in a perceptual transfer task; (4) Imagery 
instructions focusing on the most relevant perceptual aspects 
of the task to be learnt should boost practice effects; (5) If 
imagery practice and physical practice are different, then 
combinations should lead to superadditive effects; similarly, 
scheduling effects observed in physical practice must not 
necessarily hold for imagery practice (for more details, see 
Section ‘When is imagery more or less effective?’).

Evidence for perceptual‑cognitive 
scaffolding during imagery practice

Research conducted in the realm of the cognitive action 
architecture approach (CAA-A; for a review, see Schack, 
2020; Schack et al., 2014) supports the idea of perceptual-
cognitive scaffolding and related changes in action repre-
sentation. Based on the finding that experts hold structured 
representations with functional groupings of action-related 
perceptual-cognitive sub-units (Bläsing et  al., 2009; 
Schack & Mechsner, 2006), novices' unstructured rep-
resentations functionally change during motor learning 
(Frank et al., 2013). Novices who repeatedly executed the 
golf putt over the course of 3 days held structured action 
representations with functional groupings after practice. 
Specifically, their representations revealed a structure 
that reflected key parts of movement phases pertaining 
to the functional and biomechanical demands of the task 
(e.g., preparation, clubhead-ball impact, and an attenu-
ation phase; Frank, 2016; Frank et al., 2013). Likewise, 
imagery practice has been shown to change perceptual-
cognitive representation structures in long-term mem-
ory (for an overview, see Frank & Schack, 2017). When 
novices practiced by way of imagery, their perceptual-
cognitive representation structures were more similar to 
a functional structure compared to novices who did not 
incorporate imagery (Frank et al., 2014, 2016), indicat-
ing that a perceptual-cognitive scaffold has developed. 
However, imagery practice and related representational 
changes do not necessarily transfer into changes in motor 
behavior (until overtly executing a task) due to a missing 
link between an action and its effects in novices.

Further evidence comes from research on implicit 
sequence learning. Boe and colleagues have shown that 
learning via imagery relies more on perceptual than on 
motor aspects of the action (e.g., Ingram et  al., 2016, 
Ingram, 2019; Kraeutner et al., 2017). Testing the hypoth-
esis that learning via imagined action may be based on 
perceptual rather than motor learning, Ingram and col-
leagues (2016) compared mental to physical practice and 
the transfer of learning when altering perceptual or motor 
aspects of the task. Alongside of their hypothesis, they 
found that altering the sensory cue (i.e., visual vs. audi-
tory) had a greater disruptive effect on reaction times 
after imagery practice compared to physical practice. 
This indicates that performance improvements via imag-
ined action may rely more on perceptual learning. Using 
the same implicit sequence learning paradigm, Kraeutner, 
MacKenzie and colleagues (2016) reported that while the 
magnitude of the difference between random and repeated 
sequence elements was similar following practice via 
imagined and overt action, a general effect of practice 
via overt action was observed such that reaction times to 
both random and repeated sequence elements was faster 
than that observed following practice via imagined action. 
That a general effect of practice was found for overt action 
but not imagery indicates that imagery involves more per-
ceptual learning, as mapping of a perceptual stimulus to 
a motor response (i.e., stimulus–response mapping) via 
imagined action was as effective as in overt action, but 
no effect on the motor component of performance was 
observed for imagined action, whereas such an effect was 
observed for overt action. Evidence for perceptual learning 
in action imagery was also found with an explicit sequence 
learning task using intermanual transfer tests (Dahm et al., 
2022). In this study, participants learned to sequentially 
move with one finger to ten targets, which were visible 
the whole time in four practice sessions. In both imagery 
practice and physical practice, movement times were sig-
nificantly shorter in the practice sequence than in the other 
sequence in the transfer hand, which indicates effector-
independent visual-spatial learning. Further, in physical 
practice, but not in action imagery practice, movement 
times were significantly shorter in the practice hand than 
in the transfer hand, indicating effector-dependent learning 
in physical practice only.

Neuroscientific evidence to date indicates that changes 
in action representation primarily relate to perceptual-cog-
nitive rather than motor aspects (Avanzino et al., 2015; 
Jackson et al., 2003; Olsson et al., 2008; Pascual-Leone 
et al., 1995; Ruffino et al., 2019; Zhang et al., 2014). For 
instance, Kraeutner and colleagues (2022), using resting 
state functional magnetic resonance imaging to exam-
ine changes in brain activity occurring during learning, 
showed that imagery practice drives greater functional 
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changes in a frontoparietal network relative to physical 
practice. Using a finger tapping task, Olsson et al. (2008) 
found increased activation in brain regions specific to the 
type of practice used, as revealed by changes in motor 
regions after physical practice and changes in visual 
regions after imagery practice. Interestingly, combined 
mental and physical practice led to improved transfer 
effects on the performance level that were associated with 
activation in the cerebellum. They concluded that learn-
ing via imagined action may result in the generation of 
abstract representations and that these cognitive changes 
may only transform into motor programs through cerebel-
lum activation when combined with physical practice.

Of relevance to the notion of perceptual-cognitive 
rather than motoric aspects of action resulting from 
imagery is the importance of fronto-parietal networks, 
critical to more transformative and visuospatial processes 
that support motor performance, to imagery performance 
and learning. Stemming from pioneering work from Sirigu 
and colleagues (1996) who showed impairment in the abil-
ity to generate a representation of hand following parietal 
cortex damage, numerous studies have shown fronto-pari-
etal (Oostra et al., 2016) or parietal (McInnes et al., 2015) 
lesions to impair imagery performance. Moreover, inhibi-
tion of the inferior parietal lobe (involved in perceptual 
integration and visuomotor processes), but not primary 
motor cortex (attributed to core motor processes including 
outputting the motor command to the effectors), by non-
invasive brain stimulation (transcranial magnetic stimu-
lation, TMS) impairs imagery performance and learning 
of novel sequences by imagined action, but not physical 
performance (Kraeutner et al., 2016a, 2016b, 2017, 2019). 
Further, the role of the IPL in imagery has been demon-
strated in mental rotation tasks. Related work (Hamada 
et al., 2018; Kosslyn et al., 1998) showed greater activa-
tion in posterior parietal regions when performing mental 
rotation of hands (for which imagined action is required 
to solve the problems related to the orientation of hands 
presented on a screen) vs. mental rotation of objects (e.g., 
cubes and cars, for which imagined action is not required). 
While the greater activation and reliance on fronto-pari-
etal regions in imagined action relative to overt action is 
attributable in part to the generation of an image, the evi-
dence presented above supports the notion that imagery 
processes are multidimensional (i.e., beyond just the gen-
eration of an image, but also its maintenance and manipu-
lation; Cumming & Eaves, 2018; Kraeutner et. al., 2020c; 
Ptak et al., 2017). Further, that fronto-parietal networks 
are modulated by imagery-based practice (see Kraeutner 
et. al., 2022) suggests imagery is affecting processing that 
occurs at the perceptual-cognitive level.

In sum, increasing evidence indicates that changes take 
place on perceptual-cognitive levels of motor action, both in 

learning of complex action as well as in sequence learning. 
While the principle of functional equivalence and the motor 
simulation theory cannot fully explain differences in learn-
ing as a result of imagery practice or physical practice, these 
differences can be explained through a perceptual-cognitive 
scaffolding lens.

When is imagery practice more 
or less effective? Revisiting influential 
factors from a perceptual‑cognitive 
scaffolding perspective

Empirical findings from imagery research to date have 
repeatedly shown that imagery practice effects depend on 
various factors such as task, instruction, skill level, and 
scheduling. In the following, we briefly review factors that 
influence imagery practice effects and interpret the diver-
sity of findings about learning by way of imagined action 
from a perceptual-cognitive scaffolding perspective.

(1) On the influence of the task to be learnt: Imagery 
practice has proven to be more effective for ‘cognitive’ 
tasks; for ‘motor’ tasks, imagery practice leads to func-
tional changes on perceptual-cognitive levels of action 
organization.

The nature of the task used for imagery practice and thus 
the task to be learnt varies tremendously across studies, 
being categorized into cognitive tasks (e.g., Sackett, 1934) 
vs. motor tasks (Jacobson, 1931; for cognitive-motor hypoth-
esis, see Ryan & Simons, 1983), coordination tasks (e.g., 
White & Hardy, 1995) vs. strength tasks (e.g., Reiser, 2005), 
and single tasks (e.g., Mendoza & Wichman, 1978) vs. 
sequential tasks (Wohldmann et al., 2007). Imagery is more 
effective for cognitive tasks compared to motor tasks (e.g., 
Driskell et al., 1994; Minas, 1978, 1980; Ryan & Simons, 
1981, 1983). For instance, investigating the cognitive-motor 
hypothesis, Ryan and Simons (1981, 1983) compared mental 
and physical practice effects in motor tasks high in motor 
components and tasks high in cognitive components (e.g., 
balance vs. maze task; maze task with high and low motor 
component) and found that practice effects did not differ in 
tasks with high cognitive demands, while physical practice 
was superior to mental practice in tasks with high motor 
demands. Along these lines, imagery practice has proven 
to be effective in sequence learning (Dahm et al., 2022; 
Jackson et al., 2003; Kraeutner et al., 2016a,2016b; Land 
et al., 2016; Wohldmann et al., 2007, 2008), and sometimes 
even more effective than physical practice (e.g., Wohldmann 
et al., 2008). While imagery practice of coordination tasks 
can affect kinematics as well (Gatti et al., 2013; Gentili 
et al., 2010; Kraeutner et al., 2020b), it seems to particularly 
improve perceptual-cognitive aspects of action control (e.g., 
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memory: Frank et al., 2014; planning: Frank et al., 2016; for 
a review, see Moran & O’Shea, 2020). Finally, strength tasks 
can profit from imagery practice suggesting that improve-
ments particularly relate to central improvements and cogni-
tive elements of strength tasks (Lebon et al., 2010; Reiser 
et al., 2011; Yue & Cole, 1992).

From a perceptual-cognitive scaffolding perspective, 
imagery practice is superior for tasks with a high cognitive 
component, because scaffolding through repeated action 
effect anticipation directly improves task performance, since 
successful task performance primarily depends on cognitive 
aspects, while the motor aspects of the task are trivial (or 
learnt). Instead, for complex tasks with high motor compo-
nents that require coordination between body parts or new 
coordination patterns (e.g., toe abduction; Mulder et al., 
2004), the perceptual-cognitive scaffolding does not neces-
sarily lead to changes in overt behavior, and leads to motor 
learning only if a link between anticipated effects and the 
related coordination pattern exists (see as well next point).

(2) On the influence of the imager’s skill level: Imagery 
is more effective in terms of motor performance for imag-
ers that have some experience with the task, but functional 
changes on perceptual-cognitive levels of action organiza-
tion can be found in novices.

Although evidence exists that imagery practice can be 
effective both in novices and skilled athletes (Blair, 1989 in 
Hall et al., 1992; Suinn, 1980; Toth et al., 2020; Wrisberg & 
Ragsdale, 1979), meta-analyses indicate that the impact of 
imagery on performance and learning is more effective when 
the imager has some experience with the task (Driskell et al., 
1994; Toth et al., 2020). The majority of studies comparing 
imagery practice to physical practice in novices report small 
to no effects for imagery practice relative to those resulting 
from practice via overt action (Frank et al., 2014; Ingram 
et al., 2019; Kraeutner et al., 2020b; Ruffino et al., 2021; for 
a review, see Simonsmeier et al., 2020). This shows that, 
when imagery practice is performed in isolation of overt 
action, the magnitude of overt learning and/or performance 
improvements is minimal. Finally, it has been shown that in 
case of true novices, imagery practice does not lead to any 
motor performance gains. To rule out any transfer effects 
from similar tasks, Mulder and colleagues (2004) used a toe 
abduction task which was completely new for participants. 
Their findings nicely illustrate that imagery practice has no 
effect on motor performance when the imager has absolutely 
no prior experience with the task.

From a neuroimaging perspective, prior work has shown 
that expertise modulates imagery-based brain activation pat-
terns (Chang et al., 2010; Kraeutner et al., 2018; Milton 
et al., 2007); more diffuse patterns of activity were observed 
when skilled athletes imagined a sports-specific skill incon-
gruent with their expertise (e.g., a volleyball player imag-
ining a basketball free throw) than when they imagined a 

sports-specific skill congruent with their expertise (e.g., a 
volleyball player imagining an overhand serve). Here, these 
more focal patterns were attributed to experts being able to 
access a well-established representation of the skill during 
imagery (relating back to experts’ elaborate representation 
structures, see Schack & Mechsner, 2006), requiring less 
cognitive resources to generate/access the representation 
and thus greater perceptual fluency of the action (Kraeutner 
et al., 2018; Milton et al., 2007).

While imagery does not lead to any or only little improve-
ment of motor performance of a task (Mulder et al., 2004; 
Toth et al., 2020), studies looking at underlying perceptual-
cognitive changes show that novices develop functional rep-
resentational networks of perceptual-cognitive units during 
imagery practice that do not necessarily transfer into better 
motor performance, and thus do not (yet) become visible in 
terms of improvements in overt action (Frank et al., 2014). 
For instance, Frank and colleagues (2014) have shown 
that three sessions of imagery practice led to more elabo-
rate representation structures of the golf putt in novices’ 
memory, whilst this cognitive advantage did not transfer 
into improved motor performance during this early stage 
of learning and without any task execution. Interestingly, 
other work using serial reaction time(-like) tasks (i.e., tasks 
with high cognitive components) in novice performers have 
shown practice via imagery to result in improvements in 
performance like that observed for practice via overt action 
(Dahm et al., 2022; Kraeutner et al., 2016a,  2016b). Con-
sidering this finding alongside those of Frank and colleagues 
(2014), who showed imagery practice was inferior to physi-
cal practice for tasks with high motor components, suggests 
imagery practice may be particularly effective in facilitating 
perceptual changes (as opposed to movement per se) in tasks 
with high motor components, especially when the imager 
has no prior experience.

The superiority of higher level of experience with the task 
can be explained, as the perceptual-cognitive scaffold used 
during imagery is already linked to the action itself, trans-
ferring cognitive into motor improvements. Instead, novices 
start building a perceptual-cognitive scaffold as a result of 
imagery practice, while this is not yet linked to their motor 
repertoire and thus requires task execution to be adjusted 
and to come into effect.

(3) On transfer effects. Transfer after imagery practice 
is possible and sometimes greater compared to physical 
practice; changing perceptual components in transfer tasks 
particularly impairs learning by way of imagery practice.

Work employing transfer tasks further suggests that 
imagined action induces a perceptual-cognitive scaffold. Per 
the motor simulation theory, wherein imagined and overt 
action are functionally equivalent, performance on trans-
fer tasks should also be similar. Yet, this is not always the 
case. Prior research on transfer effects has suggested that 
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imagery practice engenders a representation of movement 
that is independent of effector (i.e., effector independent 
learning) relative to physical practice (Healy et al., 2012; 
Wohldmann et al., 2008). For instance, Wohldmann and 
colleagues (2008, Exp. 2) found that transfer to the unprac-
ticed hand was more pronounced in imagery practice than in 
physical practice, highlighting what they called the “mental 
practice superiority effect”. Considering that representations 
are more effector-independent after imagery practice than 
after physical practice, it might be that they are even more 
flexible after imagery practice than after physical practice. 
Such tasks have been used to show that imagery practice 
leads to greater inter-manual transfer than physical prac-
tice (Land et al., 2016; Wohldmann et al., 2008). However, 
imagery practice does not always result in superior transfer, 
and sometimes the effects are similar to physical practice 
(Dahm et al., 2022), which may depend on the specific task 
and/or effectors involved.

In works such as those described above, the task goal 
and perceptual components remained the same, although 
the effector used to perform the task is changed. In contrast, 
performance on perceptual transfer tasks, i.e., tasks in which 
the effector used to perform the task, and thus the motor 
command, remain the same but the perceptual components 
and requirements of the task have changed, is disrupted fol-
lowing imagery practice vs. physical practice (Ingram et al., 
2016). For instance, Ingram and colleagues (2016) manipu-
lated either the effector or the perceptual cue, showing that 
a change in perceptual cue impacted performance following 
imagery practice greater than a change in effector, with the 
opposite finding observed for performance following train-
ing via overt action. This further supports that imagery prac-
tice helps establish a perceptual-cognitive scaffold of the 
task to be learnt, and if the perceptual components of the 
scaffold do not correspond to the perceptual components 
of the task to be performed (i.e., in the case of a perceptual 
transfer task), then performance is disrupted.

Taken together, this evidence supports the notion of a 
perceptual-cognitive scaffold: transfer is possible particu-
larly when tasks share action effects, and such effects are 
more readily transferred from one effector to another.

 (4) On the influence imagery instruction. Imagery 
practice is more effective when imagined from a task-rel-
evant perspective and when focusing on the task-relevant 
modalities.

Looking at instructions how to perform imagery dur-
ing imagery practice, both the perspective from which we 
imagine and the (quasi)sensory modality we focus on during 
imagery of a motor action, influence the impact imagery 
practice can have on performance and learning (Hall et al., 
1992; Mahoney & Avener, 1977; White & Hardy, 1995; for 
a review, see Morris et al., 2005).

Findings from neuroscience indicate that an internal per-
spective (‘looking through one’s own eyes’) recruits more 
motor-related areas compared to an external perspective 
(‘looking from a camera’s perspective’) (Hétu et al., 2013; 
Mizuguchi et al., 2016; Stinear et al., 2018). Along these 
lines and according to applied models, it has been suggested 
that one should imagine from one’s own perspective (Hol-
mes & Collins, 2001). Evidence from studies comparing 
perspective across different tasks indicates that the prefer-
ence and impact of the perspective depends highly on the 
sport and the task (e.g., Spittle & Morris, 2012; White & 
Hardy, 1995).

While imagery is multimodal (Lacey & Lawson, 2013; 
for details on multimodal action imagery, see Krüger 
et al. 2022), visual and kinesthetic aspects of the imagined 
action are of particular importance when it comes to move-
ment (Cumming & Williams, 2012). Kinesthetic imagery 
produces more muscular activity (Harris & Robinson, 1986) 
and recruits more motor-related areas compared to visual 
imagery (Guillot et al., 2009; Stinear et al., 2005), which 
may be indicative that imagining the kinesthetic aspects of 
a motor action is superior to any other modality of imagery 
when it comes to performing or learning a motor action. 
Evidence exists, however, that the impact of modality during 
imagery practice depends on the modalities of the task to be 
learnt (Féry, 2003; Toussaint et al., 2010). For instance, in 
a visual-spatial drawing task performance was better after 
visual imagery practice than after kinesthetic imagery prac-
tice (Féry, 2003, Exp. 1), while in a bimanual coordination 
task participants’ performance was better after kinesthetic 
imagery practice than after visual imagery practice (Féry, 
2003, Exp. 2).

The superiority of perspective and modalities critical for 
the task to be learnt can be explained from an effect-based 
perspective, as imagery leads to perceptual-cognitive scaf-
folding of multimodal action effects, with the scaffold being 
naturally constructed from the task-relevant perceptual com-
ponents. Imagery practice therefore is most effective when 
it includes the task-relevant modalities imagined from an 
appropriate perspective.

(5) On the influence of combinations of imagined and 
overt action for practice and practice schedules. While 
imagery practice does not adhere to scheduling principles 
known from physical practice, it can add to learning if 
combined with physical practice.

Motor learning research shows that practicing in a varia-
ble manner (e.g., golf putts of different length) leads to better 
learning than practicing in a specific manner (e.g., golf putts 
of same length). Similarly, random practice (e.g., practicing 
different putt lengths randomly mixed) is more beneficial 
than blocked practice (e.g., practicing different putt lengths 
by practicing the short one first for a block of trials, then the 
long one etc.; Schmidt et al., 2019). Such scheduling effects 
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after physical practice, could not been found after imagery 
practice, neither for task variability (Coelho et al., 2012) nor 
for random practice (Overdorf et al., 2004), pointing again 
to differences in the two types of learning.

Furthermore, combinations of imagery practice and phys-
ical practice can lead to similar or even greater improve-
ments in motor performance compared to physical prac-
tice alone, even when the number of practice trials is held 
constant (McBride & Rothstein, 1979; Simonsmeier et al., 
2020). From testing different rates of imagery practice rela-
tive to physical practice in a grasping task, imagery prac-
tice has proven as beneficial as overt practice when learners 
imagined as many as (50%) or even more (75%) trials rela-
tive to overt trials during practice, particularly in more com-
plex tasks (Allami et al., 2008). Preliminary work seeking 
to leverage the more perceptual nature of imagined action 
reported front-loading 5 days of blocked imagery prac-
tice prior to 5 days of physical practice resulted in greater 
performance improvements compared to the reverse order 
(Kraeutner et al., 2020a). This ordering effect of imagery 
practice preceding physical practice suggests that forming 
a perceptual-cognitive scaffold via imagery prior to overt 
action may facilitate learning.

Finally, dynamic forms of imagery (dynamic motor 
imagery/ dMI; for a review, see Guillot et al., 2021) in com-
parison to static forms of imagery without any overt action 
has proven beneficial for performance and learning: It may 
be that moving during imagery helps activate stored action 
effects, and as such might add to representational refinement, 
possibly by linking the (minimal) action to its (imagined) 
effects. In sum, both superadditive effects from combina-
tions of imagery and physical practice and differences in 
scheduling effects between imagery practice and physical 
practice cannot be explained by theories that consider imag-
ined action and overt action equivalent. This again points to 
a different role for imagery practice in the learning of motor 
actions.

From an effect-based point of view on the combined prac-
tice, the perceptual-cognitive scaffold built through action 
effect anticipation during imagery practice is fed with actual 
feedback from overt action during physical practice. In this 
way, achieved effects perceived through feedback after phys-
ical practice can be linked to the goal-oriented perceptual-
cognitive scaffold (Frank, 2014; Frank et al., 2014). Instead, 
Practice trials without any actual feedback help novices to 
focus on goal-oriented action effect anticipation, and thus 
to build a functional perceptual-cognitive scaffold during 
imagery practice (Frank, 2014). Accordingly, scheduling 
effects from physical practice research cannot be found after 
imagery practice, as these require and are explained by mak-
ing use of constant actual feedback.

Understanding learning via imagery – Quo 
vadis?

In this position paper, we advocate a perceptual-cognitive 
approach to imagery practice effects and suggest perceptual-
cognitive scaffolding as a potential mechanism that drives 
learning by way of imagery.

According to the perceptual-cognitive scaffolding idea 
proposed, action effects are being imagined by anticipat-
ing sensory consequences of the action during imagery. If 
performed repeatedly during imagery practice, this imagery 
of action effects leads to scaffolding of anticipated action 
effects, being stored as part of one’s action representation in 
long-term memory to guide future action. This ‘perceptual’ 
learning (i.e., perceptual-cognitive scaffolding) transfers 
into ‘motor’ learning (i.e., changes in overt behavior) – or 
not – depending on various factors such as type of task, 
skill level, imagery perspective and modality, or transfer (for 
details, see rationales on influential factors (1)–(5)).

While the perceptual-cognitive scaffolding hypothesis is 
grounded in evidence covering a wide range of phenomena 
observed in imagery practice, future research is required to 
further develop and test this idea. Specifically, open ques-
tions to be addressed range from the role of the following:(1) 
feedback to drive perceptual-cognitive scaffolding (e.g., pre-
diction of action consequences; Rieger et al. in this issue); 
(2) executive functions during perceptual-cognitive scaffold-
ing (Glover & Baran, 2017), (3) simulation in perceptual-
cognitive scaffolding (Jeannerod, 2001); (4) inverse and/ or 
forward models during imagery and imagery practice (Bach 
et al., 2022; Rieger et al. in this issue); to (5) the manipu-
lation of aspects of the movement representation such as 
its (multi)sensory quality of imagery (for a review, see 
Krüger et al., 2022), and (6) the exploration of superaddi-
tive effects of action observation as a truly sensory format 
to the imagery process(see Eaves et al., 2022).
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