
Vol.:(0123456789)

Drugs in R&D (2024) 24:155–167 
https://doi.org/10.1007/s40268-024-00459-5

ORIGINAL RESEARCH ARTICLE

Retrospective Assessment of Translational 
Pharmacokinetic–Pharmacodynamic Modeling Performance: A Case 
Study with Apitolisib, a Dual PI3K/mTOR Inhibitor

Anita Moein1,2 · Jin Y. Jin2 · Matthew R. Wright2 · Bruno Alicke2 · Harvey Wong1

Accepted: 7 March 2024 / Published online: 3 May 2024 
© The Author(s) 2024

Abstract
Background and Objectives  Despite significant progress in biomedical research, the rate of success in oncology drug devel-
opment remains inferior to that of other therapeutic fields. Mechanistic models provide comprehensive understanding of the 
therapeutic effects of drugs, which is crucial for designing effective clinical trials. This study was performed to acquire a 
better understanding of PI3K–AKT–TOR pathway modulation and preclinical to clinical translational bridging for a specific 
compound, apitolisib (PI3K/mTOR inhibitor), by developing integrated mechanistic models.
Methods  Integrated pharmacokinetic (PK)–pharmacodynamic (PD)–efficacy models were developed for xenografts bearing 
human renal cell adenocarcinoma and for patients with solid tumors (phase 1 studies) to characterize relationships between 
exposure of apitolisib, modulation of the phosphorylated Akt (pAkt) biomarker triggered by inhibition of the PI3K–AKT–
mTOR pathway, and tumor response.
Results  Both clinical and preclinical integrated models show a steep sigmoid curve linking pAkt inhibition to tumor growth 
inhibition and quantified that a minimum of 35–45% pAkt modulation is required for tumor shrinkage in patients, based on 
platelet-rich plasma surrogate matrix and in xenografts based on tumor tissue matrix. Based on this relationship between 
targeted pAkt modulation and tumor shrinkage rate, it appeared that a constant pAkt inhibition of 61% and 65%, respectively, 
would be necessary to achieve tumor stasis in xenografts and patients.
Conclusions  These results help when it comes to evaluating the translatability of the preclinical analysis to the clinical target, 
and provide information that will enhance the value of future preclinical translational dose-finding and dose-optimization 
studies to accelerate clinical drug development.
Trial Registry  ClinicalTrials.gov NCT00854152 and NCT00854126.
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1  Introduction

Despite significant progress in biomedical research, which 
led to a greater understanding of the molecular mechanisms 
of carcinogenesis and cancer growth, the rate of success in 
oncology drug development remains inferior to that of other 
therapeutic fields [1]. The PI3K–AKT–mTOR signaling 

pathway plays a critical role in cell growth, survival, and 
metabolism and is abnormally expressed in many types of 
cancers [2]. Despite significant resources invested in devel-
oping PI3K-targeted drugs, the number of approved inhibi-
tors remains limited. Many trials evaluating these drugs have 
failed at various stages of clinical development [3] or even 
post-approval [4], making it necessary to improve the dose-
finding and dose-optimization approach to maximize both 
safety and efficacy when targeting this pathway.

Dose-finding trials for cytotoxic chemotherapy drugs 
used to treat cancer have historically been designed to 
determine the maximum tolerated dose (MTD). In contrast, 
most modern oncology drugs are targeted therapies, such 
as targeted kinase inhibitors, which are designed to modu-
late specific targets with the resulting effect of suppress-
ing molecular pathway(s) driving an oncologic disease [5]. 

http://crossmark.crossref.org/dialog/?doi=10.1007/s40268-024-00459-5&domain=pdf
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Key Points 

Apitolisib (PI3K/mTOR inhibitor) was used to develop 
integrated mechanistic models to characterize relation-
ships between drug exposure, pAkt biomarker modula-
tion, and tumor response in both preclinical xenografts 
and clinical phase 1 studies.

Both clinical and preclinical integrated models show a 
steep sigmoid curve linking pAkt inhibition to tumor 
growth inhibition and quantify that a minimum 35–45% 
of pAkt modulation is needed for tumor shrinkage in 
patients and in xenografts.

Translational PK–PD modeling is a powerful tool for 
understanding how anticancer drugs interact with cancer 
signaling pathways. Current translational analyses 
enhance the value of preclinical studies in accelerating 
clinical drug development and improving future clinical 
trial designs and interpretations.

Hence, these targeted therapies are considered “safer” com-
pared with commonly used cytotoxic drugs and can often 
achieve maximal therapeutic effects at doses well below the 
MTD [5]. As a result, the Food and Drug Administration 
(FDA) created the Project Optimizing Patient Treatment 
through Integrative Multiomics Use (OPTIMUS), which 
is a research initiative aimed at developing new methods 
to use multiomics data (such as genomics, proteomics, and 
metabolomics) to improve the selection and dosing of cancer 
therapies [6]. The goal of the FDA project is to incorporate 
new biomarkers that can be used to predict how a patient 
will respond to a particular treatment and to move forward 
with a dose-finding and dose-optimization paradigm across 
oncology that emphasizes selection of a dose or doses that 
maximize not only the efficacy of a drug but its safety and 
tolerability, as well [6]. Quantitative integrated analyses that 
bridge preclinical research and clinical trials play a crucial 
role in regulatory decision-making, offering supportive evi-
dence of efficacy when optimizing therapeutic outcomes.

Integrated pharmacokinetic (PK)–pharmacodynamic 
(PD)–efficacy models are mathematical models that inte-
grate information from pharmacokinetics, the pharmacody-
namic biomarker, and efficacy to predict the relationship 
between drug concentration, target modulation, and the 
therapeutic response [7, 8]. The PK portion of these models 
describes how the body absorbs, metabolizes, distributes, 
and excretes a drug to provide information on how the drug 
concentration changes over time in the body. The PD portion 
of these models provides information on how the drug con-
centration alters biological target modulation, for example, 

the inhibition of a target protein. The efficacy portion of 
these models describes the relationship between the biologi-
cal target modulation and the therapeutic outcome, for exam-
ple, how the drug’s effects on the target protein translate 
into treatment outcomes, such as tumor shrinkage. Integrated 
PK–PD–efficacy models are important tools in translational 
drug development to bridge preclinical and clinical studies, 
as they allow researchers to predict the efficacious dose and 
to optimize dosing regimens. Despite the increased use of 
translational PK–PD modeling, there are few to no reported 
cases of a systematic examination of performance of transla-
tional PK–PD modeling using preclinical data on predicting 
patient response. In this study, we retrospectively employ 
an integrated PK–PD–efficacy-model approach to explore 
the exposure–response relationship of apitolisib in both pre-
clinical and initial clinical phases to investigate relationships 
between drug exposure, biomarker modulation, and efficacy 
for apitolisib in xenograft mice and patients with cancer in 
phase 1 trials.

Phosphorylated Akt (pAkt) is a key PD biomarker in the 
PI3K–AKT–mTOR pathway, which is frequently dysregu-
lated and hyperactivated in cancer cells [9]. Akt phospho-
rylates and activates downstream targets involved in cell 
survival, proliferation, and protein synthesis. For instance, 
it can activate the mammalian target of rapamycin (mTOR), 
a critical regulator of protein synthesis and cell growth [2]. 
The detection and measurement of pAkt levels serve as a 
biomarker to assess the activation status of this pathway 
[10, 11]. Apitolisib is a potent, selective dual inhibitor of 
PI3K and mTOR. Apitolisib has broad activity in xenograft 
efficacy tumor models [12], which is also demonstrated by 
collected pAkt protein. Clinical studies, reported previously 
by Dolly et al., have further established the PD evidence of 
apitolisib target modulation. Significant reductions in PI3K 
inhibition of ≥ 90% was observed in platelet-rich plasma PD 
markers, including pAkt at doses ≥ 16 mg in patients [13].

Dose optimization of targeted drugs can be informed 
by translational pharmacodynamic biomarkers that aim to 
define the degree of target and pathway modulation required 
for efficacy [10]. The suitability of these PD biomarkers is 
typically assessed and characterized at preclinical stages 
of drug development, providing an understanding of the 
relationship between drug concentrations and biomarker 
response as well as the biological relationship between 
modulation of the biomarker and downstream therapeutic 
effect. Often, in oncology, preclinical information regarding 
PD biomarker modulation is obtained from tumor tissue (site 
of action). Tumor tissue biomarkers provide a direct look 
at the extent and duration of target modulation. In contrast, 
in the clinic, collection of plasma biomarkers is far more 
common and serves as a surrogate of target modulation in 
a tumor. In this study, we aim to (1) develop an integrated 
PK–PD–efficacy model in xenograft mice to characterize 
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both apitolisib’s ability to modulate pAkt in tumor tissue and 
to inhibit tumor growth; (2) utilize the same modeling meth-
odology to characterize apitolisib PK, surrogate PD (pAkt 
modulation/response) in plasma, and efficacy (tumor growth 
inhibition) in patients with cancer in phase 1 clinical trials; 
and (3) evaluate the translatability of the preclinical analysis 
in xenografts to observations in patients with cancer. These 
objectives provide information that will enhance the value 
of future clinical and preclinical translational dose-finding 
and dose-optimization studies.

2 � Methods

2.1 � Xenograft Dataset

Mean plasma concentration–time profiles of apitolisib in 
nude mice after oral administration of 1, 5, and 10 mg/kg 
doses, composed of plasma concentrations from samples 
collected pre-dose and at 0.083, 0.25, 0.5, 1, 3, 6, 9, and 24 h 
post-dose (n = 27 mice per dose group), were previously 
published [14] and were used to provide pharmacokinetics 
(PK) for xenograft mice in this analysis.

The efficacy evaluation of apitolisib was conducted in 
female beige nude XID (bg.nu.xid Harlan) mice bearing sub-
cutaneous 786-O human renal cell adenocarcinoma (RCC) 
xenografts. Mice were housed and maintained according to 
the animal use guidelines of Genentech, Inc, conforming 
to California state legal and ethical practices. Mice were 
inoculated subcutaneously in the right lateral thorax with 
tumor fragments from donor mice. The right flank was used 
to gain access to the subcutaneous space and deposit the 
tumor fragment. As tumors reach a volume in the range 
of 100–300 mm3, mice with similarly sized tumors were 
separated into groups. The mean tumor volume (TV) across 
all groups was 181 mm3 at the initiation of dosing. Api-
tolisib was administered once a day (QD) orally (PO) in 
200 µL MCT (0.5% methylcellulose and 0.2% Tween 80) for 
17 days. The apitolisib doses administered were the vehicle 
plus 0.008, 0.026, 0.085, 0.256, 1, 2.5, 5, 7, 8.5, 10, and 
11 mg/kg (n = 6 per group). Tumor volume measurements 
were collected for each mouse pre-dose and at 72, 96, 168, 
240, 264, 336, and 408 h from each treatment groups. Mice 
were euthanized if they lost greater than 20% from their ini-
tial body weight or if the tumors exceeded 2000 mm3. Tumor 
volumes (TV) were determined using digital calipers (Fred 
V. Fowler Company, Inc.) using Eq. 1:

The apitolisib preclinical PK–PD study where the pAkt 
biomarker was collected was also conducted in female beige 
nude XID (bg.nu.xid Harlan) mice bearing subcutaneous 

(1)TV
(

mm3
)

= length × width2 × 0.5

786-O human renal cell adenocarcinoma xenografts. To 
evaluate pAkt modulation in 786-O xenografts, tumor cells 
were implanted as described previously for the efficacy stud-
ies. Mice were divided into four dose groups and received 
a single oral dose of vehicle (MCT), 0.3, 3, or 10 mg/kg 
apitolisib in 200 µL of MCT. Tumors were collected at 0.5, 
2, 6, 12, 18, and 24 h post-dose from treatment groups (n = 3 
per time point), and at 2, 6, and 12 h from the vehicle group 
(n = 6 per time point). Meso Scale Discovery (MSD) assay 
was used to quantify pAkt (serine 473) levels in tumor tis-
sues, and %pAkt, defined as %pAkt relative to control (i.e., 
baseline), was calculated using Eq. 2:

where pAkt is the level of pAkt measured at a specific time 
point and pAkt0 is the pAkt at baseline, where there is no 
drug present. By definition, the %pAkt at control baseline is 
100% according to Eq. 2.

2.2 � Clinical Trials Dataset

Two phase 1 dose-escalation studies using 3 + 3 design 
were conducted in patients with advanced solid tumors or 
non-Hodgkin’s lymphoma [13]. Apitolisib was adminis-
tered orally on day 1, followed by 1 week of washout. It 
was then dosed daily (QD) for 28 days (1 cycle), QD on 
a 3-weeks-on/1-week-off schedule, or once weekly (QW) 
for 28 days. Apitolisib doses that were administered are 
as follows: 30, 40, and 50 mg QD; 2, 4, 8, 16, 32, 40, 
50, and 70 mg QD on a 3-weeks-on/1-week-off schedule; 
or 6, 12, 25, 50, 100, 150, and 200 mg QW. Trials were 
approved by the institutional review board or independent 
ethics committee. All patients provided written informed 
consent.

PK sampling was done in the first cycle on day 1 (pre-
dose, 0.5, 1, 2, 3, 4, and 8 h post-dose), on days 2 (24 h 
post-dose) and 3 (48 h post-dose), on day 8 (pre-dose and 
2 h post-dose), on day 15 (pre-dose and 0.5, 1, 2, 3, 4, and 
8 h post-dose), and on days 22 and 29 (predose and 2 h 
post-dose); and on the first day (pre-dose) of each cycle 
thereafter. Blood samples for the surrogate PD marker 
(pAkt) were collected pre-dose and 1, 3, 8, and 24 h post-
dose on day 1 to evaluate platelet-rich plasma (PRP). 
Apitolisib plasma concentrations were quantified using 
a liquid chromatography (LC)–mass spectrometry (MS)/
MS assay with a lower limit of quantification (LLOQ) 
of 0.5 ng/mL (Tandem Labs, Inc., Salt Lake City, UT). 
Changes in pAkt in PRP in subset of patients (n = 37) 
were measured using the Meso Scale Discovery (MSD) 
assay, and the percent change in pAkt relative to baseline 
was calculated (Eq. 2).

(2)%pAkt =
pAkt

pAkt0
× 100%
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Tumor lesions were measured using computed tomog-
raphy or magnetic resonance imaging at baseline and 
at regular intervals afterward (after the first and second 
cycle and every two cycles subsequently). Longitudinal 
tumor size data, defined as the sum of the longest diam-
eters of target lesions at each visit according to RECIST 
1.0 [15] or, in the case of patients with malignant pleural 
mesothelioma, modified RECIST [16], were used for the 
estimation of tumor growth inhibition. Patients with at 
least baseline and one post-baseline tumor size measure-
ments were defined as evaluable (n = 117), and data from 
patients who only had baseline tumor assessments were 
excluded from the analysis.

2.3 � Pharmacokinetic Models

2.3.1 � Mouse Pharmacokinetic Model

The pharmacokinetics of apitolisib appeared to be linear 
over the range of doses tested. A one-compartment model 
with first-order oral absorption was simultaneously fit to 
the mean plasma concentration–time data from mice fol-
lowing single PO administrations of 1, 5, and 10 mg/kg. 
The parameter estimates of the absorption rate constant 
(ka), the apparent oral clearance (CL/F), and the apparent 
volume of distribution (V/F) were used to simulate the 
apitolisib plasma concentrations for xenograft biomarker 
and tumor growth inhibition analysis.

2.3.2 � Patient Population Pharmacokinetic Model

A nonlinear mixed-effects models (two-compartment model 
with oral absorption) was used to fit the concentration–time 
data of apitolisib from patients given oral doses of apitolisib. 
Apparent clearance (CL/F) after oral dosing, apparent vol-
ume of distribution parameters for the central (V1/F) and 
peripheral (V2/F) compartments, apparent and intercom-
partmental clearance (CLd/F), and absorption rate (ka) were 
estimated. Interindividual variability (IIV) in PK parame-
ters were modeled as exponential random-effect models to 
constrain the individual parameter values positively, which 
were thus assumed to follow a log-normal distribution. The 
residual error model was a proportional error model.

2.4 � Pharmacokinetic–Pharmacodynamic (PK–PD) 
Models Describing pAkt Modulation

In xenograft analysis, the relationship between pAkt in 
tumor tissue and apitolisib plasma concentrations was eval-
uated using an indirect response model that describes the 
inhibition of pAkt formation rate by apitolisib (Eq. 3):

where γ1 is the sigmoidicity factor, Imax is the maximum 
inhibition of %pAkt, kin is the rate of biomarker production, 
kout is the first-order rate constant describing biomarker loss, 
half maximal inhibitory concentration (IC50) is the apitolisib 
concentration producing 50% of Imax, t is time, and Cp is 
the apitolisib plasma concentration. At baseline, %pAkt is 
equal to 100% in the absence of apitolisib. Plasma concen-
trations of apitolisib were simulated using the mouse PK 
model described above.

Similar methodology was applied to clinical data. 
Patients’ individual PK parameters estimated by a popula-
tion PK model were used to predict apitolisib plasma con-
centrations, and changes in pAkt in platelet-rich plasma 
(PRP) expressed as a percent of control (i.e., baseline) were 
simultaneously assessed for different dose levels using Eq. 3.

2.5 � Integrated PK–PD–Efficacy Models

Mechanistic models were developed to integrate and char-
acterize the relationship between plasma concentrations 
of apitolisib, modulation of pAkt biomarkers triggered by 
inhibition of the PI3K–AKT–mTOR pathway, and tumor 
response in xenografts and in patients. These integrated 
models (Supplementary Fig. S1) assume that the decrease 
in pAkt (i.e., inhibition of the phosphorylation of Akt) is 
representative of the inhibition of the PI3K–AKT–mTOR 
pathway, which is assumed to be the primary driver of tumor 
growth. The changes in %pAkt were predicted for each dose 
using the PK–PD model (Eq. 3) parameter estimates. Next, 
the %pAkt were related to the tumor metrics using Eq. 4:

where “Tumor” is the tumor volume for xenografts or tumor 
size for patients, Kg is the net tumor growth rate constant, 
and Ks is the tumor shrinkage rate constant, and “Tumor” at 
time 0 was set as the baseline tumor observations prior to 
the application of apitolisib, as well as Eq. 

where Ks is the tumor shrinkage rate constant, I is the per-
cent inhibition of Akt phosphorylation, Kmax is the maxi-
mum value of Ks, KI50 is I where Ks is 50% of Kmax, and γ2 
is the sigmoidicity factor of the sigmoid Kmax equation.

In the xenograft-mice-integrated PK–PD–efficacy model, 
apitolisib plasma concentrations, %pAkt, and the cor-
responding I in tumor tissue were predicted based on the 

(3)
d(%pAkt)

dt
= kin

(

1 −
Imax × Cp

�1

IC
�1

50
+ C

�1
p

)

− kout × %pAkt

(4)
d(Tumor)

dt
= Kg × Tumor − Ks × Tumor

(5)Ks =
Kmax × Iγ2

KI
�2

50
+ Iγ2

, where I is100 − %pAkt,
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parameters determined by the mouse PK and mouse PK–PD 
models (Eq. 3). Tumor volumes from all dose groups (rang-
ing from 0.008 to 11 mg/kg) were fitted simultaneously to 
obtain parameter estimates describing the PD–efficacy rela-
tionship from the integrated PK–PD–efficacy model.

In the integrated PK–PD–efficacy model used to describe 
clinical data of patients with cancer, individual patients’ PK 
parameters and individual patients’ dosing records were used 
to predict the apitolisib plasma concentrations; therefore, 
any dosing reduction or dosing interruption for specific 
patients was captured. For pAkt, only a subset of patients 
had pAkt data collected. In those patients with pAkt data, 
individual PK parameters and individual IC50 estimates 
along with the PK–PD model described by Eq. 3 were used 
to predict %pAkt and the corresponding I in the integrated 
model. For patients for whom pAkt data were not collected, 
individual PK parameters and a typical estimated IC50 was 
used for this purpose. Tumor size data from all patient dose 
groups (ranging from 2 to 200 mg) were fitted simultane-
ously to estimate parameters describing the PD–efficacy 
relationship from the integrated PK–PD–efficacy model 
developed using patient data.

2.6 � Model Evaluation

Model evaluation was based on the inspection of graphical 
diagnostics, such as goodness of fit plots, changes in the 
objective function value (OFV) provided by NONMEM, 
relative standard errors (RSE), and plausibility of the param-
eters estimate. If more than one interindividual variability 
(IIV) term was estimated, correlations between IIV terms 
were evaluated. A comprehensive description of models’ 
development, assumptions, and limitations is provided in 
Supplementary Information (Online Resource 1).

2.7 � Software

Models were developed using NONMEM version 7.4 (ICON 
Development Solutions, Ellicott City, MD), with the first-
order conditional estimation (FOCE) and the INTERAC-
TION option [17]. Data management and further processing 
of NONMEM output were performed using R version 4.2.3 
[18].

3 � Results

3.1 � Pharmacokinetic Models

3.1.1 � Mouse Pharmacokinetic Model

The final PK model that characterized the mouse con-
centration–time data well was a linear one-compartment 

model with first-order absorption and oral clearance (data 
not shown). The estimated parameters (RSE%) were 0.387 
(9.5%) L/h/kg for apparent oral clearance (CL/F), 1.13 
(17.3%) L/kg for apparent volume of distribution after oral 
dosing (V/F), and 1.1 (36.4%) h−1 for the absorption rate 
constant (ka).

3.1.2 � Patient Population Pharmacokinetic Model

A linear two-compartment PK model with first-order 
absorption and elimination best described the apitolisib 
plasma concentration–time data in patients (n = 146; 1835 
PK observations). Population typical values (RSE%) were 
21.3 (4.28%) L/h for apparent oral clearance (CL/F), 210.6 
(3.51%) L for apparent volume of the central compartment 
(V1/F), 639.1 (15.1%) L for apparent volume of distribution 
of the peripheral compartment (V2/F), 5.93 (8.53%) L/h for 
apparent intercompartmental clearance (CLd/F), and 3.35 
(16.8%) h−1 for absorption rate constant (ka). Also, based on 
observed data, a delay was detected in apitolisib absorption, 
which was captured in the PK model by a lagged time esti-
mate of 0.465 (0.43%) h. Estimates of IIV (RSE%) [shrink-
age%] were 0.17 (17.6%) [13.7%] for CL/F, 0.0639 (23.2%) 
[23.2%] for V1/F, 0.208 (33.5%) [44.2%] for CLd/F, 0.881 
(44.8%) [40.5%] for V2/F, and 2.09 (16.4%) [13.2%] for ka. 
The goodness-of-fit plots from model fitting showed that the 
predictions from the final model were generally consistent 
with the observed data (Supplementary Figs. S2 and S3).

Assuming a reference body weight of 70 kg, body-
weight-normalized PK parameters were 0.304 L/h/kg for 
apparent oral clearance (CL/F), 3.01 L/kg for apparent 
volume of the central compartment (V1/F), 9.13 L/kg for 
apparent volume of distribution of the peripheral com-
partment (V2/F), and 0.085 L/h/kg for apparent intercom-
partmental clearance (CLd/F). As expected, a faster elimi-
nation rate constant (CL/V) was observed in xenografts 
(0.3 h−1) compared with patients (0.1 h−1).

3.2 � PK–PD Models Describing pAkt Modulation

Observed mean %pAkt versus time data for xenograft 
mice and for patients and PK–PD models fitted lines (aver-
age individual predictions for patients) are presented in 
Fig. 1A and B. The levels of pAkt were measured in tumors 
after a single oral administration of apitolisib at 0.3, 3, 
and 10 mg/kg in 786-O tumor-bearing mice (Fig. 1A). 
A dose-dependent decrease in pAkt was observed at the 
three doses. Suppression of the pAkt was pronounced at 
30 min post-dose and sustained for 6–12 h at the 3 and 
10 mg/kg doses, respectively. In contrast, the pAkt reduc-
tion was very weak and recovered 1–2 h post-dose at the 
0.3 mg/kg dose level. In general, higher apitolisib doses 
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resulted in greater and more sustained suppression of the 
pAkt in tumor tissue of xenografts. In patients, pAkt levels 
were measured in platelet-rich plasma over a large range 
of doses (2–70 mg; Fig. 1B). A dose-dependent decrease 
in pAkt in plasma was observed with increasing doses of 
apitolisib. Peak suppression of the platelet pAkt was 90% 
observed at doses ≥ 12 mg.

In general, the PK–PD models were able to capture 
the %pAkt inhibition (Fig. 1). Estimates of PD param-
eters from fitting the %pAkt data to the PK–PD models 
described by Eq. 3 are shown in Table 1 for xenografts and 
Table 2 for patients. Model estimates of kin and kout were 
comparable when comparing xenograft mice to patients, 
suggestive of there being similar biomarker production 
and elimination rates between humans and xenograft mice 
with human-origin tumors. In contrast, model estimated 
IC50 differed, being 43-fold higher when the estimate was 
obtained from %pAkt measurements from xenograft tumor 
tissue (403 µg/L) compared with %pAkt measurement 
from surrogate plasma for a typical patient (9.32 µg/L). 
The unbound fraction of apitolisib was similar between 
mice (fraction unbound 29.4%) and humans (fraction 
unbound 38.8%), suggesting similar free concentrations 
of apitolisib in plasma and tumor upon equilibration, 
which does not appear to provide an explanation for the 
differences in IC50. Overall, the PK–PD models described 
by Eq. 3 could adequately characterize the relationship 
between apitolisib plasma concentrations and pAkt reduc-
tions in tumors from xenograft mice and platelet-rich 
plasma in patients.

3.3 � Integrated PK–PD–Efficacy Models

The relationship between inhibition of the PI3K pathway 
and efficacy was investigated using a PK–PD–efficacy model 
that describes the relations between apitolisib plasma con-
centrations, pAkt modulation, and tumor growth inhibition. 
The model structures used to fit the preclinical and clini-
cal data are presented in Supplementary Fig. S1. Model 
codes are provided in Supplementary Information (Online 
Resource 2).

Two integrated models were independently developed 
for xenografts (n = 64; 381 tumor volume observations) 
and patients (n = 117; 417 tumor size observations). Indi-
vidual baseline tumor data were used for model develop-
ment (Eq. 4). Median baseline tumor observations were 
173.5  mm3 and 130.0  mm for xenograft mice and the 
phase 1 patient population, respectively. The described 
integrated PK–PD–efficacy models were used to fit tumor 
data collected from individual xenograft mice and patients. 
The goodness-of-fit (GOF) plots support the use of both 
integrated models to fit preclinical and clinical data. The 
models’ GOF plots indicated a good model fit, as shown 

in plots of individual observed versus predicted tumor data 
presented in Figs. S4 and S5. Additionally, GOF plots of 
conditional weighted residuals versus time- and popula-
tion-predicted tumor data also indicated a good model fit, 
as shown in Figs. S6 and S7 for the preclinical and clinical 
models, respectably. A visual predictive check of the final 
models shows that the models captured the central tendency, 
extreme values, and variability in the observed preclinical 
and clinical tumor data relatively well (Figs. S8 and S9).

The estimated PD parameters are presented in Table 3 
(xenografts) and Table 4 (patients). The net growth rate 
constant was 98.7-fold higher in xenograft mice’s subcu-
taneous tumors compared with tumors in patients, which is 
consistent with prior publication of growth rate detection 
comparing diameter and volume in measuring tumor size 
[19]. Specific to the relationship between target modulation 
and anti-tumor efficacy, Kmax was more than 200-fold lower 
in patients when compared with xenograft mice. In contrast, 
KI50 and sigmoidicity factors were similar in xenografts and 
patients, suggesting that the shape, but not magnitude, of the 
relationship between %pAkt and Ks was similar (Fig. 2A). 
When Ks is normalized as a percentage of Kmax, this similar-
ity in the relationship between target modulation and anti-
tumor effect can be more clearly seen (Fig. 2B). In both 
xenograft mice and humans, Kmax > Kg, suggesting that api-
tolisib given at high enough concentrations can cause tumor 
regressions. Based on the relationship between %pAkt inhi-
bition and the tumor shrinkage rate constant (Ks; Fig. 2A), a 
similar constant pAkt inhibition of 61% and 65% would be 
necessary to achieve tumor stasis (where Ks = Kg) in 786-O 
xenografts and patients, respectively.

4 � Discussion

The PI3K–AKT–mTOR signaling pathway is essential for 
numerous fundamental cellular functions such as cell differ-
entiation, growth, proliferation, mobility, and metabolism [2, 
10]. Somatic alterations and genetic amplifications causing 
activation of this pathway are frequently found in cancer; 
as a result, there has been a significant effort to develop 
therapeutics that target critical members of the pathway 
[10]. Successful development of these drugs requires phar-
macodynamic biomarkers that aim to define the degree and 
duration of target and pathway inhibition [10], such as pAkt 
(phosphorylated Akt), which is a protein biomarker that 
is often used as a marker of cellular signaling through the 
PI3K–AKT–mTOR pathway. Drugs that target this pathway, 
such as apitolisib, lead to the inhibition of pAkt phospho-
rylation and the induction of apoptosis in cancer cells [12]. 
In this study, preclinical and clinical apitolisib concentra-
tion–response relationships were explored to investigate 
the utility of the pAkt biomarker in assessing the extent of 
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Fig. 1   Mean observed and predicted %pAkt relative to baseline 
versus time. A Tumor tissue mean %pAkt relative to baseline from 
786-O xenografts following oral administration of 0.3, 3, and 10 mg/
kg apitolisib. B Surrogate plasma mean %pAkt relative to baseline 

from patients with advanced solid tumors (phase 1 studies) follow-
ing oral administration of 2–70  mg apitolisib, stratified by dose. 
Observed mean %pAkt relative to baseline data is presented as dots, 
and the model predicted is presented as a solid line
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PI3K–AKT–mTOR pathway inhibition in terms of tumor 
growth inhibition. More importantly, we present a case study 
of a formal assessment on the real-world translatability of 
preclinical translational PK–PD analyses to clinical response 
in patients using common endpoints that are collected at the 
preclinical and early clinical stages of drug development 
(refer to Supplementary Information, Online Resource 1: 
Analysis objectives). Formal assessment on the translat-
ability of preclinical PK–PD is lacking in literature.

Levels of the biomarker, pAkt, can be measured in both 
tumor tissue and plasma. However, measurement of pAkt 
in the tumor tissue is typically considered more relevant to 
therapy and serves to better inform cancer prognosis. Devel-
opment of targeted therapeutics for cancer at the preclini-
cal research stage is conducted on the xenograft models to 
determine drug efficacy and identify active doses based on 
assessment of the drug’s in vivo concentration and target 
engagement at the site of action. At this stage, the extent 
and duration of target modulation typically is quantified by 
measuring tumor tissue biomarkers. However, once the drug 
moves into the clinical stage, often target modulation and 
response is assessed by surrogate plasma biomarkers, which 
are less invasive.

PD biomarkers provide invaluable insights into the inter-
action of novel therapies with their intended targets; how-
ever, use of these biomarkers requires a deep understanding 
of their relationship to drug concentrations and clinical out-
comes. Over the past few decades, there has been a signifi-
cant rise in preclinical understanding of drug concentrations 
and biomarker response as evident in numerous publications 
[20–22]. This development is driven by advancements in 
technologies and methodologies for measuring drug levels 
and biomarkers in various biological matrices. One of the 
key factors driving the interest in preclinical understanding 
of drug concentrations and biomarker response is the need to 
improve the efficacy and safety of drugs in clinical develop-
ment and design more effective dosing regimens that mini-
mize the risk of adverse events. Based on our knowledge, 
this is the first report to quantitatively examine the relation-
ship between target modulation and efficacy in humans for 

Table 1   Parameter estimates following fitting of the PD–PK model 
describing pAkt modulation for xenograft mice (786-O)

γ1, sigmoidicity factor; Imax, maximum inhibition of %pAkt; kin, rate 
of biomarker production; kout, first-order rate constant describing bio-
marker loss; IC50, half maximal inhibitory concentration; t, time; Cp, 
plasma concentration
*kout = kin/%pAkt(0), where %pAkt(0) is the baseline %pAkt at time 
zero = 100%

Parameter Unit Estimate RSE%

IC50 μg/L 403 14.7
kin %/h 88,698 0.8
kout* 1/h 886.98 –
Imax – 1 (fix) –
γ1 – 1 (fix) –
Proportional error – 0.353 5.6

Table 2   Parameter estimates following fitting of the PK–PD model 
describing pAkt modulation for patients with advanced solid tumors 
(phase 1 studies)

γ1, sigmoidicity factor; Imax, maximum inhibition of %pAkt; kin, rate 
of biomarker production; kout, first-order rate constant describing bio-
marker loss; IC50, half maximal inhibitory concentration; t, time; and 
Cp, plasma concentration
*kout = kin/%pAkt(0), where %pAkt(0) is the baseline %pAkt at time 
zero = 100%
**Sigmoidicity parameter estimate was 0.868–0.937; therefore it was 
fixed to 1 in the final model

Parameter Unit Estimate RSE% Shrinkage%

IC50 μg/L 9.32 12.7 –
kin %/h 88,699 3.8 –
kout* 1/h 886.99 – –
Imax – 1 (fix) – –
γ1** – 1 (fix) – –
Proportional error – 0.672 9.5 –
IIV IC50 Variance 0.296 44.3 15.5

Table 3   Integrated PK–PD–
efficacy model parameter 
estimate for xenografts (786-O)

IIV, interindividual variability; Kg, net tumor growth rate constant; Kmax, maximum value of Ks; KI50, I 
where Ks is 50% of Kmax; RSE, relative standard error; γ2, sigmoidicity factor of the sigmoid Kmax equation

Parameter Unit Estimate RSE% Variability% Shrinkage%

Kg 1/h 0.0057 3.9 – –
Kmax 1/h 0.0194 43.2 – –
KI50 %pAKT inhibition 67.2 12.6 – –
γ2 – 9.4 208.5 – –
Proportional error – 0.248 5.1 – –
IIV Kg Variance 0.0276 29.6 16.6 22.6
IIV Kmax Variance 0.0529 54.6 23.0 45.8
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a PI3K compound using a translational biomarker (pAkt). 
Additionally, this is the first attempt to quantitatively assess 
similarities and differences between the biomarker response 
observed in the preclinical and clinical phases to assess the 
translatability of preclinical PD and efficacy data within 
the PI3K–AKT–mTOR pathway. In this study, we focused 
on a translational PD biomarker in the pathway, pAkt, and 
developed an integrated sequential PK–PD–efficacy model 
to facilitate the interpretation of efficacy studies conducted 
from the preclinical to early phases of clinical development 
for a specific PI3K/mTOR inhibitor compound (apitolisib). 
These integrated models can be used to predict the opti-
mal dosing regimen for a drug, considering not only the PK 
properties of the drug but also the relationship between drug 
concentrations, pAkt levels, and tumor growth inhibition.

The model used to characterize the relationship between 
apitolisib and pAkt levels is an indirect response model. 
Indirect response models are used when the response meas-
ured is the product of an indirect mechanism, such as the 
inhibition or stimulation of the formation (kin) or loss (kout) 
of the mediator controlling the physiological effect [23, 24]. 
Hence, in the present study, the levels of pAkt in tumor tis-
sue (preclinically) and plasma (clinically) that were moni-
tored after upstream inhibition of PI3K by apitolisib were 
characterized using indirect response models to quantify the 
inhibition of the production of pAkt in tumor tissue or sur-
rogate plasma. The quantified kin estimates were comparable 
between xenograft mice and humans, suggesting comparable 
rates of production and loss (kout is derived from kin) for 
pAkt (Tables 1 and 2) in surrogate plasma from patients 
versus tumors from xenograft mice. Notably, the estimated 
IC50 was ~40-fold lower in a typical patient, being 9.32 µg/L 
compared with 403 µg/L in xenografts when the PD bio-
marker was assessed in surrogate plasma rather than from 
tumor tissue. The higher pAkt IC50 estimates in xenograft 
study could be partially due to the RCC tumor type (786-O 
cell line) being less responsive to apitolisib treatment com-
pared with other tumor types such as MCF-7 in in vitro 

studies conducted using cancer cell lines [12, 25]. In patients 
in whom the plasma pAkt biomarker was collected, indi-
vidual IC50 ranged from 4.03 to 26.1 µg/L (Supplementary 
Table S1); notably, within this group, the individual IC50 
estimate for a patient with metastatic renal cell carcinoma 
was 19.12 µg/L, which was on the higher end.

The higher potency observed in patient surrogate 
plasma may be attributed to differences in assay conditions 
that likely favor greater inhibition in the plasma or differ-
ences in drug concentrations between normal and tumor 
tissues due to variances in tissue architecture, and hemo-
dynamics may also contribute to this phenomenon [26]. 
These differences underline the complexity of accurately 
defining the pharmacokinetic–pharmacodynamic relation-
ship of molecularly targeted drugs based on observed data 
alone, as well as the important issues of extrapolation of 
preclinical models to predict effects in patients and dif-
ferences in analytical sensitivity/methodology between 
platelet-rich plasma and tumor biopsies [26]. Model-
informed drug development can identify and characterize 
these differences and their correlation to treatment effect; 
therefore, disease-mechanism-based biomarkers that are 
indicative of a relevant biological aspect of cancer can 
serve as additional surrogates of antitumor activity dur-
ing the drug-development process and bridge preclinical 
studies efficacy and clinical response.

The relationship between pAkt modulation and its impact 
on tumor growth was investigated preclinically and clini-
cally by developing integrated PK–PD–efficacy models that 
assume that tumor growth inhibition has dependence on the 
PI3K–AKT–mTOR signaling pathway (Supplementary 
Fig. S1). Apitolisib is a dual PI3K/mTOR inhibitor that tar-
gets two crucial points in the same pathway that could lead 
to higher efficacy compared with a PI3K inhibitor alone by 
possibly overcoming mTOR negative feedback due to inhibi-
tion of pathway [27]. In our current integrated models used 
for both the preclinical and clinical analyses, pAkt inhibition 
serves as surrogate for both PI3K and mTORC1 inhibition 

Table 4   Integrated PK–PD–
efficacy model parameter 
estimate for patients with 
advanced solid tumors (phase 1 
studies)

IIV, interindividual variability; Kg, net tumor growth rate constant; Kmax, maximum value of Ks; KI50, I 
where Ks is 50% of Kmax; RSE, relative standard error; γ2, sigmoidicity factor

Parameter Unit Estimate RSE% Variability% Shrinkage%

Kg 1/week 0.0097 20.7 – –
Kmax 1/week 0.0142 43.9 – –
KI50 %pAKT inhibition 58.0 34.3 – –
γ2 – 6.52 101.4 – –
Proportional error – 0.141 2.3 – –
IIV Kg Variance 0.668 34.9 81.7 37.9
IIV Kmax Variance 0.377 44.6 61.4 55.8
IIV KI50 Variance 0.0225 (fix) – – –
IIV γ2 Variance 0.0225 (fix) – – –
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by apitolisib; hence, the models utilized have some limita-
tions. Specifically, the role/contribution of mTORC2 inhibi-
tion to tumor growth inhibition is not accounted for sepa-
rately and is “lumped” in with PI3Kinase inhibition by the 
models used. Further, preclinical study was conducted in 
xenografts with renal cancer carcinoma (786-O cell lines), 
and relationships between pAkt modulation and tumor 

inhibition may differ when compared with patients with dif-
ferent cancer types enrolled in the phase 1 studies utilized 
in this analysis.

Individual longitudinal tumor profiles were adequately 
described by both preclinical and clinical integrated 
PK–PD–efficacy models. Numerical and graphical model 
diagnostics were used to evaluate different components 

Fig. 2   Preclinical and clinical 
population integrated PK–
PD–efficacy model estimated 
relationship between tumor 
shrinkage rate constant (Ks) 
versus %pAkt inhibition in a 
xenograft (tumor tissue) and in 
a typical patient with advanced 
solid tumors (surrogate plasma). 
A The steep sigmoid curve 
describes the relationship 
between the tumor shrink-
age rate constant and %pAkt 
inhibition in xenografts (tumor 
tissue site, red line) and typical 
patient (surrogate plasma site, 
blue line). B Tumor shrinkage 
rate constant normalized to 
Kmax versus %pAkt inhibition 
in xenografts (tumor tissue site, 
red line) and typical patients 
(surrogate plasma site, blue 
line)
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of the integrated PK–PD–efficacy models, which verified 
adequacy of the underlying structural models to capture 
observed preclinical and clinical data. A steep sigmoid 
curve describing the relationship between inhibition of Akt 
phosphorylation and tumor growth inhibition, represented 
by the rate constant Ks, was observed in xenograft mice and 
patients despite differences in species and matrices where 
pAkt inhibition was evaluated. In both species, a threshold 
of approximately 35–45% pAkt inhibition is required prior 
to rapid increases in tumor growth inhibition with increas-
ing pAkt modulation (Fig. 2). The commonality of curve 
shape has implications in clinical trial design, as pharma-
codynamic endpoints can be appropriately selected in clini-
cal trials based on similarity in observed pharmacodynamic 
thresholds required prior to onset of an antitumor effect. 
A similar steep relationship (sigmoidicity factor ~9) was 
estimated for target modulation (Gli mRNA inhibition) and 
vismodegib efficacy (i.e., the rate constant describing the 
measure of antitumor effect) in the preclinical models of 
the hedgehog pathway, and approximately a minimum of 
50% Gli mRNA inhibition was needed for tumor growth 
inhibition [28]. Finally, of note, the net growth rate constant 
was considerably lower in patients compared with xenograft 
mice. This is consistent with previous publications of the 
tumor growth rate constant in humans versus preclinical 
xenograft models [28, 29].

Previous study delves into the translational relevance of 
preclinical murine subcutaneous tumor models in predict-
ing clinical response [30]. Through a retrospective phar-
macokinetic–pharmacodynamic analysis of eight agents, 
including both molecularly targeted and cytotoxic ones, 
with known clinical response data, the research sheds 
light on the correlation between simulated tumor growth 
inhibition in xenografts/allografts using human exposures 
and actual clinical response. A significant correlation was 
found between tumor growth inhibition (TGI) driven by 
human pharmacokinetics and clinical response, contrasting 
with TGI observed at maximum tolerated doses in mice. 
Agents inducing over 60% TGI in preclinical models, at 
clinically relevant exposures, exhibited a higher likelihood 
of eliciting clinical response. These findings establish a 
framework for effectively utilizing murine subcutaneous 
tumor models for selecting promising agents for clinical 
advancement.

In summary, modeling can play a critical role in bridg-
ing the gap between xenograft and human studies and in 
facilitating the development of more effective cancer treat-
ments. The complexity of accurately defining the treatment 
exposure–response relationship based on different matrices 
of origin (tumor tissue versus surrogate plasma) due to ana-
lytical sensitivity and methodology is challenging, specifi-
cally at lower drug exposures. The preclinically and clini-
cally developed integrated PK–PD–efficacy models bring 

together the information from PK, PD, and efficacy studies 
to provide a more complete understanding of the relation-
ship between drug dose, drug concentration, and therapeu-
tic response. The primary objective of our analysis was to 
examine a real-world translational analysis and assess both 
insights gained and shortcomings of the analysis. The overall 
goal of this analysis was to better characterize preclinical 
to clinical translation, with the aim of improving predic-
tivity and use of translational biomarkers such as pAkt, 
which reflect the biological response of a drug. These PD 
biomarkers can be used to monitor the treatment efficacy 
and facilitate informed decision-making on dose finding and 
dosing-regimen optimization, to better inform future clinical 
trial design and interpretation based on preclinical studies.
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