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MOCHA’s advanced statistical modeling of
scATAC-seq data enables functional genomic
inference in large human cohorts

Samir Rachid Zaim 1,3, Mark-Phillip Pebworth1,3, Imran McGrath1,
Lauren Okada 1, Morgan Weiss1, Julian Reading 1, Julie L. Czartoski2,
Troy R. Torgerson 1,M. JulianaMcElrath2, Thomas F. Bumol1, Peter J. Skene 1 &
Xiao-jun Li 1

Single-cell assay for transposase-accessible chromatin using sequencing
(scATAC-seq) is being increasingly used to study gene regulation. However,
major analytical gaps limit its utility in studying gene regulatory programs in
complex diseases. In response, MOCHA (Model-based single cell Open CHro-
matin Analysis) presents major advances over existing analysis tools, includ-
ing: 1) improving identification of sample-specific open chromatin, 2)
statistical modeling of technical drop-out with zero-inflated methods, 3)
mitigation of false positives in single cell analysis, 4) identification of alter-
native transcription-starting-site regulation, and 5) modules for inferring
temporal gene regulatory networks from longitudinal data. These advances, in
addition to open chromatin analyses, provide a robust framework after quality
control and cell labeling to study gene regulatory programs in human disease.
We benchmark MOCHA with four state-of-the-art tools to demonstrate its
advances. We also construct cross-sectional and longitudinal gene regulatory
networks, identifying potential mechanisms of COVID-19 response. MOCHA
provides researchers with a robust analytical tool for functional genomic
inference from scATAC-seq data.

Single-cell assay for transposase-accessible chromatin using sequen-
cing (scATAC-seq)1–3 has become increasingly popular in recent years
for studying biological and translational questions around gene reg-
ulation and cell identity and has revealed insights on diverse topics
such as tumor-related T cell exhaustion4, trained immunity in mono-
cytes in patients with COVID-195, regulators of innate immunity in
COVID-196, and potentially causal variants for Alzheimer’s disease and
Parkinson’s disease7. Many sophisticated software tools have been
developed for analyzing scATAC-seq data8, covering functionalities
such as dimensionality reduction and clustering9–11, semi-automated
cell type annotation10,11, identification of open chromatin regions12–16,
characterization of motif usage and enrichment17–20, and inference on

gene regulatory networks11,21,22. Integrating thesedevelopments, recent
end-to-end analysis pipelines streamline the analytical process from
quality control and cell type annotation to accessibility and motif
analysis9–12,23. Together these tools have facilitated the extraction of
biological insights from scATAC-seq data.

Despite these advances, major analytical gaps in scATAC-seq data
analysis limit the construction of robust and reproducible gene reg-
ulatory networks to study human disease. First, human disease studies
require reliable evaluation of sample- and cell-type-specific open
chromatin to capture human genetic heterogeneity and cell-type-
specific regulatory regions. However, visibility into these forms of
heterogeneity is compromised by existing packages10–13,15, which
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usually mix cells across either samples or cell types to compensate for
the low coverage of scATAC-seq. Second, scATAC-seq data is intrinsi-
cally sparse. Only 5–15% of open chromatin regions are detected in
individual cells9. Both single-cell and pseudo-bulk ATAC-seq data can
contain an excessively high number of regions without accessibility
measurements. While zero-inflated (ZI) statistical methods are widely
used and often debated in analyzing single-cell ribonucleic acid
sequencing (scRNA-seq) data24–28, such methods are not implemented
in popular tools for scATAC-seq data analysis, likely leading to many
unreliable results. Third, previous studies have shown that pseudo-
replication bias (cell-interdependence) generates many false results in
scRNA-seq analysis, if left unaddressed29,30. Similarly, existing scATAC-
seq tools, which use the Wald, Wilcoxon, and logistic regression tests
at the single-cell level10,31, do not address this issue and thus may
generate many false results as well. Additionally, others have applied
methods designed for bulk RNA-seq (such as DESeq)32. The few exist-
ing reviews describe the methods mentioned above, but do not
benchmark them comprehensively8,31. In longitudinal studies, these
challenges are exacerbated as subjects have multiple interdependent
samples. To postulate robust gene regulatory networks in human
disease, the research community needs a tool to address these
challenges.

To this end, we developed a suite of analytical modules for robust
functional genomic inference in heterogeneous human disease
cohorts, in an open R package calledMOCHA (Model-based single-cell
Open CHromatin Analysis). First, we developed a method for evalu-
ating sample- and cell-type-specific chromatin accessibility in low
coverage scATAC-seq. Second, we implemented ZI statistical
methods33–37 for differential accessibility analysis, co-accessibility
analysis, and mixed effects modeling. Third, we aggregated scATAC-
seq data per cell type into normalized pseudo-bulk tile-sample acces-
sibility matrices (TSAMs) to capture donor and cell type-centric
accessibility. This TSAM directly addresses the issue of cell inter-
dependence (pseudo-replication) and enables modeling cross-
sectional and longitudinal gene regulatory landscapes of human dis-
ease in large cohorts. We benchmarked MOCHA against state-of-the-
art methods in identifying regions of open chromatin, differential
accessibility, and co-accessibility. More importantly, we demonstrate
MOCHA’s ability to construct gene regulatory networks from both
cross-sectional and longitudinal analyses of scATAC-seq data on CD16
monocytes from our COVID-19 cohort38. We also demonstrate how to
integrate MOCHA with existing tools11,17,33,39, contrast its functionality
with other existing tools, and adapt it for customapproaches. In all, we
anticipate MOCHA will accelerate the analysis and interpretation of
gene regulatory networks using scATAC-seq data.

Results
MOCHA overview
We developed MOCHA based on our COVID19 dataset (Methods),
which was collected on n = 91 peripheral blood mononuclear cell
(PBMC) samples of either COVID+ participants (n = 18, 10 females and
8 males, 3–5 samples per participant, a total of 69 samples) or unin-
fected COVID- participants (n = 22, 10 females and 12 males, one
sample per participant). We obtained high-quality scATAC-seq data of
1,311,638 cells from the samples. Unless specified, we mainly used a
cross-sectional subset of the COVID19 dataset (denoted as COVID19X,
n = 39) in MOCHA’s development, including data of the COVID- sam-
ples and the first samples of the COVID+ participants during early
infection (<16 days post symptom onset (PSO), n = 17, 9 females and
8 males).

We designed MOCHA to serve as an analytical framework for
sample-centric scATAC-seq data analysis, after quality control assess-
ments (filtering duplicate fragments and low quality cells), cell type
labeling, and doublet removal. MOCHA identifies sample- and cell
type-specific open chromatin and provides a range of analytical

functions for complex scATAC-seq data analysis (Fig. 1 and Supple-
mentary Fig. 1):

(i) Tiling: MOCHA divides the genome into pre-defined 500 base
pair (bp) tiles, which allows head-to-head comparisons on chromatin
accessibility across samples and cell types and avoids complex peak-
merging procedure on non-aligned summits9,11.

(ii) Normalization: Since sequencing depth may differ across
samples in a large-scale scATAC-seq study (Supplementary Fig. 2a), it is
essential to normalize scATAC-seq data prior to meaningful accessi-
bility analysis. MOCHA counts the number of fragments that overlap
with individual tiles in individual cells, collects the total and the max-
imum fragment counts for each tile from all cells of a targeted cell type
per sample, and normalizes the fragment counts by the total number
of fragments of the cell type per sample to reduce the effects of var-
iations in sequencing depth and cell count (Methods). Compared with
other normalization approaches, this approach resulted in the lowest
coefficient of variation (CV) distribution on 2230 invariant CCCTC-
binding factor (CTCF) sites on the COVID19 dataset (Supplementary
Fig. 2b, n = 91). Additionally, this normalization implicitly addresses
batch effects around sequencing depth and cell numbers, the effects
of which may not be evident in the single cell space (Methods, Sup-
plementary Fig. 3). As indicated by the low tomoderate CV values, this
approach also makes it possible to compare normalized accessibility
across samples (Supplementary Fig. 2b) and cell types (Supplemen-
tary Fig. 2c).

(iii) Accessibility evaluation: MOCHA applies logistic regression
models (LRMs) to evaluate whether a tile in a given cell type and
sample is accessible based on three parameters (Methods): the nor-
malized total fragment count λ(1), the normalized maximum fragment
count λ(2), and a study-specific prefactor S to account for differences in
data quality between training and user datasets. The global prefactor,
S, is needed for a broad application of MOCHA as data quality,
sequencing depth, and cell count may result in a large difference in
median number of fragments per cell either between different studies
(e.g., 3600 to 9000 fragments per cell, Supplementary Fig. 4a, b) or
across cell types in different organs (e.g., 4k − 25k fragments per cell,
Supplementary Fig. 5). Since λð2Þ can only be evaluated on scATAC-seq
data, its usage distinguishesMOCHA frompeak-callingmethods based
on pseudo-bulk ATAC-seq data only. Using the full COVID19 dataset
(n = 91), we generated pseudo-bulk ATAC-seq data from scATAC-seq
data of all cells of a targeted cell type, ran MACS240 to identify all
accessible regions, and used these labels as the imperfect “ground
truth” to train and test the LRMs. More specifically, we used natural
killer (NK) cells (n = 179,836) for training, which had 750 million total
fragments, or 15x the recommended coverage for MACS241,42. On this
dataset, MACS2 identified 1.15 million tiles as accessible and the
remaining 4.39 million tiles having fragments were labeled as ‘inac-
cessible’. Using these tiles as positives and negatives, respectively, we
developed cell count-specific LRMswith varying coefficient to account
for variations in cell count across samples (Supplementary Fig. 6a-b).
The Youden Index43 was used to balance the tradeoff between sensi-
tivity and specificity (Supplementary Fig. 6b) and generate cell count-
dependent thresholds. MOCHA applies smoothing and interpolation
to find the proper coefficients and thresholds for cell counts not in the
training. Once trained, all coefficients and thresholds for the LRMs are
fixed for new datasets and applied to all cell types, with the exception
for Swhich needs to be adjusted to account for difference in fragments
per cell in new datasets.

The LRM model was trained exclusively on NK cells in the full
COVID19 dataset and then assessed on either other cell types in the
dataset (using the same S) or other human or mouse datasets (using S
evaluated from the corresponding studies). We validated the LRMs
(Supplementary Fig. 6c, d) using data of CD14 monocytes
(n = 135,949), naive B cells (n = 60,595), CD16 monocytes (n = 28,525),
NK CD56 bright cells (n = 14,692), and conventional dendritic cells
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(cDCs, n = 9915). We used sensitivity, specificity, area under the
receiver operating characteristic (ROC) curve (AUC), and Youden’s J
statistic to quantify the performance (Supplementary Fig. 6c, d).
Overall MOCHA had a good performance even at low cell counts. For
example, MOCHA achieved an AUC ranging from 0.693 (CD14 mono-
cytes), 0.703 (CD16 monocytes), to 0.741 (NK CD56 bright cells) with
only 50 cells.

(iv) Tile-sample accessibilitymatrix (TSAM):MOCHA first uses the
LRMs to identify accessible tiles from cells of a targeted cell type in
individual samples and then keeps only tiles that are common to at
least a user-defined fraction thresholdof samples. Afterwards,MOCHA
generates a TSAM for the cell type with rows being the accessible tiles,
columns the samples, and elements the corresponding λ(1) values.
While λ(2) is informative for identifying sample-specific accessibility
(Supplementary Fig. 7), λ(1) provides a more robust assessment on
chromatin accessibility and was chosen for cross-sample comparisons
and downstream analyses. A total of 215,649 accessible tiles were
identified on CD16 monocytes with a fraction threshold of 20% (Sup-
plementary Fig. 2d) across either COVID+ or COVID- samples in the
COVID19X dataset (n = 39). About 25% elements in the obtained TSAM
were zero (Supplementary Fig. 2e, f), reflecting the sparsity of scATAC-
seq data even after pseudo-bulking. Statistical testing against negative
binomial (NB) distributions revealed the data was ZI (Supplementary
Fig. 18c), indicating the necessity of applying ZI statistical methods for
downstream analysis.

(v) Differential accessibility analysis (DAA): Similar to other
methods,MOCHA first filters out noisy tiles. Tiles are excluded if either
1) the median log2(λj

(1) + 1) value (across all samples) is lower than a

user-defined threshold or 2) their difference (between two sample
groups) in percentage of zeros is less than a user-defined threshold.
Unlike other methods, MOCHA includes functions to heuristically
define these thresholds. For the COVID19X dataset (n = 39), we noticed
that the log2(λj

(1) + 1) values in the TSAMofCD16monocytes followed a
bi-modal model and thus chose a value of 12 near the higher mode as
the median accessibility threshold (Supplementary Fig. 2g). Addition-
ally, weobserved a 25%difference in fragment counts betweenCOVID+
and COVID- samples (Supplementary Fig. 2a), so we set a 50% thresh-
old for the difference in the percentage of zeros to control for tech-
nical differences. MOCHA then applies a two-part Wilcoxon test34,35 to
identify differential accessibility tiles (DATs) within the cell type
between the two sample groups (Methods). DATs have either a large
fold change (FC) in accessibility (Supplementary Fig. 2h) and/or large
difference in percentage of zeros (Supplementary Fig. 2i). For com-
parison, ArchR11 uses the standard Mann-Whitney-Wilcoxon (MWW)
test along with a post-test log2(FC) cutoff to identify differential
regions on bias-matched cell populations, while Signac10 constructs
LRMs and prioritizes differential regions based on FC.

(vi) Co-accessibility analysis (CAA): MOCHA applies the ZI Spear-
man correlation36 to evaluate two types of co-accessibility between
tiles in TSAMs (“Methods” section). The inter-cell type co-accessibility
is evaluated across cell types where data from different samples are
stacked. The inter-sample co-accessibility is evaluated within a tar-
geted cell type but across different samples. Both types are important
to infer potential gene regulatory networks, one for understanding
differences between cell types and the other for understanding dif-
ferences between sample groups.

Fig. 1 | General workflow of MOCHA. Schematic representation of the core
functionalities in MOCHA, starting from scATAC input data (fragments, black list,
cell type labels, and sample metadata). Using these data, MOCHA generates frag-
ment counts for every 500bp tiles (1), normalizes the count data (2), and leverages
single-cell and pseudo-bulk information to identify open tiles in a cell type- and
sample-specific manner (3). It then generates population-level open chromatin
matrices for each cell type (4), which is the starting point for downstreamanalytical

functions (5). MOCHA includes improvements to differential accessibility analysis,
co-accessibility analysis, and longitudinal modeling. It also provides functions for
identifying alternatively regulated transcription starting sites, motif enrichment,
and dimensionality reduction. Panels were generated usingAdobe Illustrator. Panel
1 also used BioRender, released under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International license.
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In addition, MOCHA has functions for dimensionality reduction,
motif enrichment, analysis for alternative transcription starting site
(TSS) regulation, and longitudinalmodeling. TSAMs can also bepassed
to some existing scATAC-seq tools such as ArchR and chromVAR and
other bioinformatics tools such as Monocle3 for further analysis.
Furthermore, users can easily leverage information from TSAMs to

conduct their own interrogations of scATAC-seq data. MOCHA’s
functionalities are mostly complementary to those of PALMO44, a
previously published platform by our group for analyzing longitudinal
omics data (Supplementary Table 1). MOCHA can run on a standard
desktop or modern laptop computer with at minimum 2GB of RAM, 1
Core CPU 2.0GHz/core. For best performance, at least 8GB of RAM
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and 4 +CPU cores are recommended to take advantage of MOCHA’s
parallelization.

MOCHA reliably detects sample-specific chromatin accessibility
A crucial component of scATAC-seq data analysis is to reliably detect
which chromatin regions are accessible. We benchmarked MOCHA
against the popular tools MACS240 and HOMER45. The former is also
implemented in ArchR11, Signac10, and SnapATAC9.We compared these
tools using three scATAC-seq datasets with different data quality and
sequencing depth (“Methods” section and Supplementary Fig. 6a): (i)
COVID19X (n = 39, Fig. 2) orCOVID19 (n = 91, Supplementary Fig. 6); (ii)
HealthyDonor, a dataset of 18 PBMC samples of n = 4 healthy donors44;
and (iii) Hematopoiesis, an assembled dataset of hematopoietic cells
from 49 samples of diverse data quality11, which was treated as a single
sample in this study. To ensure a fair comparison and remove artifacts
due to tiling, we trimmed the broad peaks by MACS2 or HOMER and
removed the tail ends of peaks that extended onto tiles with no signal
(“Methods” section). Three representative cell types with moderate to
high cell counts were selected from each of the three datasets for the
comparison, with cell count per sample ranging from 227 to 743
(COVID19X, median), 163 to 784 (HealthyDonor, median), and 1175
to 27463 (Hematopoiesis), respectively (Fig. 2a and Supplemen-
tary Fig. 6b).

To benchmark performance on sample-specific accessibility,
we compared the number of open regions detected in individual
samples (Fig. 2b). On COVID19X, MOCHA detected a median of
129k–195k open tiles per sample, which was 19–64% higher (sig-
nificantly with P < 0.05 in 5/6 cases) than the corresponding num-
bers by MACS2 or HOMER. Similarly on HealthyDonor, MOCHA
detected a median of 117k–216k open tiles per sample, a 35–59%
increase (significantly with P < 0.05 in 5/6 cases) over the corre-
sponding numbers by MACS2 or HOMER. On Hematopoiesis,
MOCHA detected 370k open tiles in cDCs, 665k in naive CD4+ T
cells, and 1.28m in CD14 monocytes, which were <7% lower, >43%
higher, and >70% higher, respectively, than the corresponding
numbers by MACS2 or HOMER. Thus MOCHA detected more open
chromatin regions than MACS2 and HOMER in individual samples
for almost all cases. Additionally, we constructed 110 simulated
scATAC-seq datasets by simulating 10 fixed peaksets as the ground
truth for open and closed regions. For each peakset, we sampled 11
cellular abundances (ranging from 75 to 5000 cells) to mimic cell
populations in a typical scATAC-seq sample. We applied MOCHA,
HOMER, and MACS2 algorithms to identify open regions in the
simulated data in the sameway as to real data, without changing any
parameters. Across ≈ 90% of the simulations, MOCHA had a higher
F1 score, and thus more accurately detected open regions vs noise
(Supplementary Fig. 8a). We also conducted simulations by varying
the number of fragments per cell (1k–4.5k) and the total number of
open regions (150k–350k, mimicking three different cell types).

The results show that MOCHA attained the highest F-1 score in 210/
240 iterations (87.5%, Supplementary Fig. 8b–d).

To assess the consistency between open tiles detected by the
three tools, we generated TSAMs with a fraction threshold of 20%
based on tiles detected by each tool and compared the corresponding
tiles in TSAMs (Fig. 2c). Most tiles were detected by all three tools. As
described above, MOCHA detected more tiles than MACS2 and
HOMER in almost all cases. Among all tiles detected by MACS2 and/or
HOMER, 95–97% were also detected by MOCHA in COVID19X, 92–93%
inHealthyDonor, and 84–97% inHematopoiesis. Tiles detected only by
MOCHA contained on average more fragments than tiles missed by
MOCHA (Fig. 2c, inserts; P < 0.001). Furthermore, when we ran linkage
disequilibrium score analysis46, MOCHA identified 195 enriched
annotations, MACS2 190, HOMER 192, with an overlap of 188 between
all three methods (Supplementary Fig. 9). Thus MOCHA not only
captured themajority of tiles detected byMACS2 andHOMER but also
added extra tiles of better signals of potential biological significance
than those by MACS2 or HOMER.

To further elucidate differences among tiles detected by the three
tools, we calculated the percentage of zeros among all samples for
each tile in each TSAM and obtained the corresponding cumulant
distributions (Fig. 2d). While all three tools agreed on open tiles
common to most samples, MOCHA detected more sample-specific
tiles than MACS2 and HOMER. To test whether these additional tiles
potentially contained biological information, we generated the corre-
sponding cumulative distributions on tiles mapped to CTCF sites or
TSSs and observed similar patterns (Fig. 2e, f). This suggests that the
extra tiles detected by MOCHA may carry important biological infor-
mation. MOCHA also detected similar or more open CTCF sites
and open TSSs in Hematopoiesis compared to MACS2 and
HOMER (Fig. 2g).

Calling peaks on pooled cells of interest is a common practice in
scATAC-seqdata analysis9–11. To compareMOCHA,MACS2 andHOMER
on this approach, we pooled cells of the three cell types in the three
datasets, randomly downsampled the cells to a series of pre-
determined cell counts, and applied the three tools to detect acces-
sible tiles (Supplementary Fig. 4c). MOCHA consistently detected
more tiles, more CTCF sites, and more TSSs than MACS2 and HOMER
in almost all cases.

To demonstrate that MOCHA is applicable beyond immune cells
and human data, we benchmarked all three methods on a multi-organ
mouse scATAC atlas47 (Supplementary Fig. 5). We called open tiles on
20 randomly selected and representative organ-cell type populations
ranging from tens to thousands of cells (Supplementary Fig. 5a, b) and
compared the number of open tiles, CTCF sites, and TSS detected per
each method (Supplementary Fig. 5c–e). MOCHA identified compar-
able numbers of open chromatin regions, CTCF sites, and TSSs.

Finally, we benchmarked the runtime for each tool on a cloud
computing environment.MOCHAwas consistently faster than HOMER

Fig. 2 | Benchmarking MOCHA with MACS2 and HOMER on open chromatin
identification. a Cell counts per sample in three cell types from each of three
scATAC-seq datasets. The same three cell types in the three corresponding datasets
(Methods) were used, including COVID19X (n = 39), HealthyDonor (n = 18, middle),
and Hematopoiesis (treated as n = 1, right). b The number of open tiles per sample
from MOCHA (light blue), MACS2 (green), or HOMER (light purple). The same
colors are used in d–h. b, c The two-sided MWW was used to compare results by
MOCHAvsMACS2 (P-value = 4.8e-5, 0.055, 3.6e-11, 0.12, 5.8e-4, 9.9e-4) andHOMER
(P-value = 1.3e-4, 3.0e-2, 1.8e-9, 2.4e-2, 1.32e-4, 3.0e-3), listed left to right. c UpSet
plot showing overlaps between open tiles from MOCHA, MACS2, or HOMER. For
the COVID19X and HealthyDonor datasets, tiles common to >20% of samples were
kept. For the Hematopoiesis dataset, all tiles were kept. Insert: Violin plot of signal
(i.e., log2(normalized fragment count+1)) from tiles missed by MOCHA (i.e., those
from MACS2 and/or HOMER but not MOCHA, left l) and from those unique to
MOCHA (i.e., those identified only by MOCHA, right panel). All P-values = 2.2e-16

(Wilcoxon test). d–f The cumulative number of detected tiles (d), tiles overlapping
with CCCTC-binding factor (CTCF) sites (e), or tiles overlapping with transcription
starting sites (TSSs, f) as a function of the maximum fraction of samples without
overlapping fragments in the COVID19X (left panel) orHealthyControl (right panel)
datasets. g The number of detected CTCF sites (top panel) or TSSs (bottom panel)
in the Hematopoiesis dataset. h, The actual (top panel) and the relative (with
respect toMOCHA, bottom panel) runtime to identify open chromatin from single
cell data as a function of the number of samples. The black horizontal line in the
bottom panel marks the MOCHA runtime. CD16 Mono: CD16 monocytes; B Naive:
naive B cells; CD4 CTL: CD4+ cytotoxic T lymphocytes; CD4 TEM: CD4+ effector
memory T cells; CD8 TEM: CD8+ effector memory T cells; cDC: conventional den-
dritic cells; CD4 Naive: naive CD4+ T cells; CD14 Mono: CD14 monocytes. * =
0.01 < P <0.05, ***P <0.001. Source data is provided in “SourceData_Figure2-1.xlsx”
and “SourceData_Figure2-2.zip”. Panels were generated using Adobe Illustrator.
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in all tested cases andMACS2 in all practical cases for sample- and cell-
type specific analyses (Fig. 2h). Of note, individual cell populations in
scATAC-seq data range primarily between tens to thousands of cells,
due to technological limitations. Additionally, we estimated run times
by pooling cells across samples (Supplementary Fig 4d), and demon-
strated that MOCHA provided fastest runtimes in almost all cases.

MOCHA implements zero-inflated differential accessibility and
co-accessibility analyses
We evaluated MOCHA’s ZI modules against existing state-of-the-art
tools for DAA and CAA. We first benchmarked MOCHA with ArchR
and Signac on DAA. To eliminate differences in open-chromatin/
peak-callling by the three tools and ensure a head-to-head
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comparison, we restricted the DAA benchmark to the 215,649 CD16
monocytes tiles identified by MOCHA in the COVID19X dataset
(“Methods” section). We then applied eachmethod to identify DATs
between COVID+ (n = 17) and COVID- (n = 22) participants using
these tiles. MOCHA identified 6211 DATs (false discovery rate
(FDR) < 0.2, Fig. 3a, Supplementary Fig. 10a). In comparison, ArchR
and Signac detected 6009 and 1266 DATs, respectively (Fig. 3b).
While 28% of DATs by MOCHA were in gene promoter regions, the
corresponding percentage was 17% for ArchR and 18% for Signac. As
a result, MOCHA, ArchR, and Signac identified 1811, 1006, and 228
genes, respectively, with DATs in their promoter regions. These
genes were enriched (FDR < 0.05) in 27, 1, and 1 Reactome
pathways48 (Fig. 3c), respectively, illustrating a striking distinction
by MOCHA. The same trend was also observed for other pathway
databases (Supplementary Fig. 10b). Among the 27 Reactome
pathways revealed by MOCHA (Fig. 3d), toll-like receptors (TLRs),
myeloid differentiation primary response 88 (MyD88), interleukins,
and nuclear factor kappa B (NF-κB) pathways all play important
roles in innate immune response to viral infection49, consistent with
the expected functions of CD16 monocytes. Thus DATs by MOCHA
revealed more biological insights than those by ArchR or Signac.

To quantify the DAT accuracy for eachmethod, we evaluated its
efficiency in separating COVID19+ and COVID19- samples. We ran-
domly selected 50 DATs, performed k-means (k = 2) clustering to
reflect the two-group comparison, calculated the absolute value of
the G index (|G|) of agreement50, and repeated the process 1000
times. DATs by MOCHA better separate COVID19+ and COVID19-
samples than those by ArchR (P < 0.001) or Signac (P < 0.001,
Fig. 3e). Similar results were obtained for N = 25, 50, 75, and 100
randomly selected DATs (Supplementary Fig 12a). It should be
noted that this analysis is aimed for benchmarking, not for routine
biological analyses.

Biologically meaningful DATs should be robust against minor
changes in the sample set. Following strategies applied in DESeq251, we
assessed the stability of our DAT results across different sample sub-
sets and benchmarked DAT differences as proxies for evaluating false
positives and false negatives. Starting with DATs from the full sample
set (n = 39), we iteratively removed one sample at a time and recalcu-
lated DATs from the reduced subset of samples (n = 38). We repeated
this process until each sample was removed once. From there, we
collected the set of conserved (e.g., cumulative intersection, proxy for
evaluating false negatives) and inflated (e.g., cumulative additional,
proxy for evaluating false positives) DATs across all iterations. Ulti-
mately, 3990 (64%) of the 6211 DATs by MOCHA were conserved
(Fig. 3f), whichwas 1.8–3.4 times higher than the corresponding rate of
ArchR (1136/6009, 20%) or Signac (458/1264, 36%). MOCHA had 5782
(93%) additional DATs, which was 2.7 times lower than the corre-
sponding rate by ArchR (15310/6009, 255%) and 1.6 times higher than
that by Signac (735/1264, 58%). MOCHA was more robust than ArchR
and had a split performance in comparison with Signac in detecting
DATs regardless of sample set. However,MOCHA had 3990 conserved
DATs, 8.7 times higher than those of Signac (458). MOCHA provided a

better balance between sensitivity and robustness in detecting DATs
compared to ArchR and Signac.

When benchmarking runtime, we observed that MOCHA and
ArchR took 1.8 and 1.6min, respectively, to evaluate approximately
200,000 tiles, while Signac took 18.6 h (Fig. 3g). MOCHA was 23–614x
faster than Signac and 0.86–2.8x as fast as ArchR.

In addition, we benchmarked MOCHA against bulk differential
methods from RNA-seq (DESeq2) and ChIP-seq (DiffChIPL). MOCHA
performed significantly better at classification tests (p < 0.001, Sup-
plementary Figs. 11 and 12), aswell as in identifying enriched pathways.
Additionally, we assessed false positive rates (FPRs) by shuffling the
disease labels (Supplementary Fig 12b). MOCHA had a 0% FPR across
all 50 random permutations. In comparison, the minimum, median,
and maximum FPR for other methods were: DESeq2 (0%, 0%, 3%),
DiffChipL (0%, .05%, 11.1%), Signac (0%,0.43%, 13.5%), andArchR (0.11%,
1.0%. 41.6%). We also assessed recalls by downsampling the number of
subjects (Supplementary Fig 12c). Signac obtained higher recalls with
its very conservative (thus very few) DAT calls, while the remaining 4
methods obtained similar recalls. We note that the recall evaluated in
this approach was likely a lower bound due to disease/human het-
erogeneity and sample size reduction, a loss of > 20% of power when
the sample size was reduced from n = 39 to n = 30 based on 2-sample t-
test (Supplementary Fig 12d). Overall, MOCHA provided comparable
performance on recall, and better performance on FPR than other
methods.

Next, we compared the ZI and the standard Spearman correla-
tions across cell types and samples in the COVID19X dataset based on
log2(λ

(1) + 1) in TSAMs. Guided by prior studies52,53, we leveraged pub-
lished HiC interaction data to enrich for correlated regions, and used
this to benchmark the two correlation methods using HiC (Methods).
For the inter-cell type co-accessibility, we used known promoter-
enhancer interactions in naive CD4+ and CD8+ T cells54 to define pos-
sibly interacting tile pairs (1.21 million) while randomly selecting 100k
tile pairs as a negative background for comparison (Methods). Both
correlation approaches largely generated similar results (Supplemen-
tary Fig. 13a, Spearman correlation = 0.687, P = 2.2 × 10−16), but dis-
agreements were also observed (Supplementary Fig. 13b). The ZI
correlation better distinguished promoter-enhancer pairs from the
random pairs than the standard correlation (Kolmogorov–Smirnov
(KS) test statistic = 0.26 vs. 0.13), and identified 1000xmorepromoter-
enhancers pairs (15,988 vs. 149, FDR <0.1, Supplementary Fig. 13c, d).
For the inter-sample co-accessibility, we first collected a subset of tiles
in theTSAMofCD16monocytes that roughly located in thefirstmillion
bp of chromosome 4 (chr4:121500-1130999) and then used both cor-
relation approaches to calculate the inter-sample correlations between
all pairs (about 34.5k) of these tiles.While both correlation approaches
generally agreed with each other with a rank correlation of 0.69
(P < 0.001, Supplementary Fig. 13e), 9550/34,596 (28%) of the tested
correlations switched sign between the two approaches and 2087/
34,596 (6%) of them differed in value by >0.25 (Supplementary
Fig. 13f). Thus properly accounting for ZI is essential for reliable CAA in
sparse scATAC-seq data.

Fig. 3 | Benchmarking MOCHA with ArchR and Signac on differential accessi-
bility analysis. a MOCHA’s differential accessible tiles (DATs) in CD16 monocytes
between COVID+ samples during early infection (n = 17) and COVID- samples
(n = 22) in the COVID19X dataset. The volcano plot illustrates the log2(FC) on the
x-axis against the -log10(P value) on the y-axis, where FC represents fold change in
accessibility. The log2(FC) was estimated using the Hodges-Lehmann estimator110.
The P value was calculated based on the two-part Wilcoxon test (two-sided, zero-
inflated)35. DATs with a false discovery rate (FDR) < 0.2 were considered as sig-
nificant. b Venn Diagram of MOCHA, Signac, and ArchR’s DATs. The count and
percentage of 1) promoters, 2) intragenic tiles, and 3) distal tiles are shown for each
method and each Venn diagram subset. c The number of (top) genes with differ-
ential promoters and (bottom) enriched Reactome pathways for each method are

depicted using barplots. d Reactome Pathway enrichment results based on genes
with differential promoter tiles. Pathway categories are annotated using Reac-
tome’s pathway hierarchy. e Violin plot of Holley’s |G| from 1000 bootstrapped
samples, each containing 50 randomly selected DATs from each category. Cate-
gorieswith <50DATswere not tested. Two-sidedWilcoxon rank-sum test was used.
f Leave-one-sample perturbation analysis to test the robustness of each method in
differential accessibility analysis. New sets of DATs were calculated iteratively after
removing each sample once. The robustness was assessed by the number of total
(solid line) and conserved (dotted line) DATs detected across perturbations. g Each
method’s runtime (in seconds) as a function of the number of tested tiles. Source
data is provided in “SourceData_Figure3-S10.xlsx”. Panels were generated using
Adobe Illustrator.
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Networks of alternatively regulated genes in early SARS-CoV-2
infection
To demonstrate how improvements in MOCHA can be leveraged for
constructing gene regulatory networks, we investigated possible
alternative TSS regulation by CD16monocytes during early SARS-CoV-
2 infection (Methods), using the COVID19X dataset. We observed two

types of alternatively regulated genes (ARGs, Fig. 4a). Type I (n = 278
genes, Fig. 4b) had at least one TSS showing differential accessibility
(FDR <0.2) between COVID19+ and COVID19- samples, while other
open TSSs had no change. Type II included 5 genes with at least two
differential TSSs in opposing directions (ATP1A1, UBAP2L, YWHAZ,
CAPN1, and ARHGAP9; Fig. 4c). Interestingly, all Type II ARGs were
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previously associatedwithCOVID-19 and two (ATP1A1 andCAPN1) have
been proposed as therapeutic targets for COVID-19 (Supplementary
Table 2). Pathway enrichment analysis55 on all Type I and Type II ARGs
revealed that they were enriched in pathways of the innate immune
response to infection, including MyD88 and TLR responses (Fig. 4d).
The same analysis based on DATs from Signac and ArchR identified a
total of 483 and 45 ARGS (type I and type II), respectively (Supple-
mentary Fig. 14).However, neither of these gene setswere enriched for
any immune pathways, suggesting their limited utility in such analyses.

To understand the upstream signaling mechanisms regulating
ARGs, we first applied MOCHA to identify potential, distal regulatory
tiles that were co-accessible (inter-sample, within 1 Mbp) with the
corresponding DATs. Motif enrichment analysis on DATs of ARGs and
their co-accessible tiles identified 13 enriched motifs, including acti-
vator protein-1 (AP-1) family motifs, PATZ1, and CEBPA (FDR <0.05,
Fig. 4e). Next, we carried out ligand-motif set enrichment analysis
(LMSEA, Methods) based on a priori ligand-motif (transcription factor
(TF)) interactions in NicheNet56. We identified 122 significantly enri-
ched ligands (FDR <0.05, Fig. 4f), many of which, including IL17, IL21
and PLAU, have already been implicated in COVID-19 (Source Data
Fig. 4g). Finally, we constructed a network that linked ligands, TFs, and
ARGs together (Methods). Notably, the subnetwork of CEBPA is parti-
cularly interesting (Fig. 4g): CEBPA was proposed as a COVID-19 ther-
apeutic target57 and identified as a key regulator in CD14monocytes of
hospitalized COVID-19 patients from scATAC-seq data6. Furthermore,
29/30of its upstream ligandswere either therapeutic targets or altered
during SARS-CoV-2 infection, and 20/27 of its downstream ARGs were
associated toCOVID-19 or viral infection57–64. TwoARGs, SOCS3/SOCS3-
DT and CAPN1, were potential targets for COVID-19 treatment65. Using
MOCHA’s differential accessibility and co-accessibility modules, we
constructed a putative upstream regulatory network that could be
driving alternative TSS regulation in CD16 monocytes during early
SARS-CoV-2 infection. Given that these results are largely aligned with
the literature, we anticipate that this approach can be used more
generally to identify potentially novel biological mechanisms.

Longitudinal analysis of chromatin accessibility during COVID-
19 recovery
To understand chromatin regulation during COVID-19 recovery, we
analyzed scATAC-seq data of CD16 monocytes from our longitudinal
COVID-19 study (Fig. 5a). The dataset, denoted as COVID19L, was col-
lected on 69 longitudinal PBMC samples from 18 COVID+ participants
(10 females and 8 males) over a period of 1–121 days PSO (Methods).
We integrated MOCHA with existing tools and developed customized
approaches to analyze the data at both single-cell and pseudo-bulk
levels.

First, open tiles from the TSAM of CD16 monocytes were impor-
ted into ArchR as a peakset for dimensionality reduction. The resulting
Uniform Manifold Approximation and Projection66 (UMAP) plot
showed a clear shift in cellular population from initial infection to 30+
days post infection, at which time the cellular population appeared
similar but not identical to that of the 22 COVID- participants (Fig. 5b).

Second, days PSO were binned (Fig. 5b) and used to learn a
Monocle367 trajectory, which largely followed the cellular population
shift across the UMAP space (Supplementary Fig. 15a). Using ArchR, we
further identified genes with GeneScore changes or tiles from the
TSAM with accessibility shifts along this trajectory (Supplementary
Fig. 15b). The genes with promoter accessibility shifts in CD16 mono-
cytes were enriched in 72 immune system pathways, including 39
innate immune, 15 adaptive immune, and 18 cytokine signaling path-
ways (Supplementary Fig. 15c, right panel). In comparison, the corre-
sponding pathway counts from the GeneScore analysis was only 10, 2,
4, and 4, respectively (Supplementary Fig. 15c, left panel). TSAM-based
results were more informative and aligned better with the expected
roles of CD16 monocytes than GeneScore-based ones.

Third, we converted the TSAM of CD16 monocytes into a
chromVAR object and calculated sample-specific z-scores for TF
activity (Methods). This enabled us to apply generalized linear mixed
models (GLMM) to identify TFs with dynamic activities in CD16
monocytes during COVID-19 recovery, adjusting for age and sex in the
models. Among the 223 TFs whose activity changed significantly in
time (FDR <0.1, Fig. 5c, d), the AP-1 family (such as ATF1-7, JUN/B/D,
MAF/F/G/K, FOS/B, and BACH1-2; Fig. 5c, insert) and the NF-κB family
(such as REL/A and NFKB1-2) mostly had decreased activities, in con-
sistency with their inflammatory, infection-responsive functions. On
the contrary, the forkhead box (FOX) TF family (such as FOXP1/4,
FOXG1, FOXO1, and FOXK2) had increased activities, which agreeswith
their known roles in immune homeostasis68–70. In comparison, we also
identified 86 TFs with chromVAR z-score changes along the pseudo-
time trajectory described above, among which only 31 were unique
(Supplementary Fig. 16). Longitudinal analysis based on real time
identified more TFs with dynamic activities during COVID-19 recovery
than the trajectory analysis based on pseudotime.

Fourth, the TSAM of CD16 monocytes was used to examine how
gene promoter accessibility shifted during COVID-19 recovery. The
data had about 20% zeros, which can be associated with either tech-
nical dropouts or biological features. We applied ZI-GLMM to model
both types of zeroes (Methods, Supplementary Fig. 18).Given thatonly
0.193% of highly accessible tiles (which are defined as having at least
80% non-zero values within any infection stage and include most
promoters) had variance predominately explained by batch, we did
not include batch as a covariate (Methods, Source Data File: Variance
Decomposition). A total of 2,120 genes demonstrated promoter
accessibility shifts over time (FDR <0.1, adjusting for age and sex),
including genes regulating immune inflammation such as NFKBIE and
DOK3 (Fig. 5e and Supplementary Fig. 17a)71–73. This gene set was
enriched for 71 Reactome pathways (FDR <0.1; Fig. 5f). Interestingly,
among the 23 immune system pathways, five involve signaling by
interleukins and 18 are related to the innate immune system (such as
TLR-, MyD88-, and IRAK1-related pathways), but none are specific to
the adaptive immune system. Again, these results are consistent with
the expected roles of CD16 monocytes during viral infection.

Finally, to discover possible TF-gene regulations in CD16 mono-
cytes during COVID-19 recovery, we applied ZI-GLMM to examine

Fig. 4 | Regulatory network construction on alternative transcription starting
sites in CD16 monocytes during early COVID-19 infection. a Scatter plot of dif-
ferential accessibility at potential alternative transcription starting sites (TSSs).
False discovery rate (FDR) and fold change (FC) were evaluated on chromatin
accessibility in CD16 monocytes between COVID+ samples during early infection
(n = 17) and COVID- samples (n = 22) in the COVID19X dataset. All pairwise combi-
nations of -log10(FDR)*sign(log2(FC)) are shown. TSS pairs were categorized as type
I if only one TSS was significantly differential (FDR <0.2), or type II if both were
significantly differential but in the opposite directions. Pairs of TSSs that were
significantly differential in the same direction were not considered. b, c Coverage
tracks illustrating type I (b) or type II (c) alternative TSS regulation aroundexemplar
genes (* denotes a significant differential accessibility tile (DAT), FDR <0.2). Precise

FDR values are in the source data file. d Reactome pathway enrichment for genes
with alternatively regulatedTSSs (both type I and II). Pathway annotationwasbased
on Reactome’s hierarchical database. e Motif enrichment using DATs involved in
alternatively regulated TSSs and their co-accessible tiles (within ±1Mbp, zero-
inflated correlation >0.5). f NicheNet-based ligand-motif set enrichment analysis
(LMSEA) on motifs with FDR <0.01. g A network centered around CEBPA that was
constructedusing significant ligands,motifs, andgeneswith alternatively regulated
TSS sites. Ligand-motif links represent NicheNet-based associations. Motif-gene
links representmotif presence in either an alternative TSS tile, or tiles correlated to
an alternative TSS. TF transcription factor; Source data is provided in “SourceDa-
ta_Figure4.xlsx”. Panels were generated using Adobe Illustrator.
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whether TFs with significant activity changes were associated with
genes with significant promoter accessibility changes (Methods). For
example, we found that JUNB chromVAR z-score was significantly
associated (P <0.05) with the promoter accessibility of 19 genes in the
TLR4 cascade pathway (Fig. 5g and Supplementary Fig. 17b). As an
illustration, we selected the top five TFs having the largest positive
(PLAGL1, ELF5, ETV6, SPIB, and SPIC) or negative (JUN, FOSL1,
SMARRC1, FOSL2 and JUNB) slopes, respectively, against time and

examined their associations with gene promoters within the 18 innate
immunepathways enriched duringCOVID-19 recovery (Fig. 5f). Nine of
the 10 TFs had high to medium expression in CD16 monocytes while
the exception SPIB had a very low expression in CD16 monocytes but
high expression in their progeny, macrophages, based on published
datasets74–77. The five TFs having negative slopes were significantly
associated (P <0.05) with 14 pathways (Fig. 5h), consistent with the
prominent roles of AP-1 TF family in innate immunity. Among the five
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TFs with positive slopes, PLAGL1 and ETV6 were significantly asso-
ciated (p <0.05)with five innate immune pathways, SPIB and SPICwith
2, and ELF1 with 1, respectively. Four innate immune pathways did not
show significant associations with any of these top 10 TFs. While wet-
lab validation is needed, such TF-gene associations generate interest-
ing biological hypotheses regarding gene expression regulation in
CD16 monocytes during COVID-19 recovery and can be expanded to
include enhancers and additional regulatory elements. To the best of
our knowledge, ZI mixed modeling is currently not possible in other
existing scATAC-seq data analysis packages. Together, these results
demonstrate MOCHA is a valuable tool in studying chromatin
dynamics and gene regulatory networks based on longitudinal
scATAC-seq data.

Discussion
We developed MOCHA to robustly infer active gene regulatory pro-
grams in human disease cohorts based on scATAC-seq. First, we
showed that our open chromatin model significantly agreed and was
able to detect more sample-specific open chromatin regions than
MACS2 and HOMER. Second, we identified differential accessible
regions that better distinguish between COVID+ and COVID- partici-
pants than those by ArchR and/or Signac and uniquely revealed
pathways affected by SARS-CoV-2 infection. Third, we constructed
ligand-TF-gene networks on potential alternative TSS regulations
during SARS-CoV-2 infection using only scATAC-seq data. Fourth,
using ZI mixed models, we identified motifs and promoters that were
associated with COVID-19 recovery and constructed a TF-pathway
network to infer which pathways were functionally important during
COVID-19 recovery. MOCHA substantially increased the value of
scATAC-seq in our distinct disease cohorts (including COVID19) by
enabling robust modeling and visibility into the functional implica-
tions of chromatin accessibility. In addition, we illustrated how
MOCHA can be integrated with existing tools such as ArchR, Mono-
cle3, chromVAR, and NicheNet while enabling customized analysis
using ZI-mixed effects models to gain unique insights from scATAC-
seq data. Furthermore, we demonstrated that MOCHA can also be
applied to data froma range of human andmouse tissues. The LRMs of
MOCHA can be retrained if a different tile size (other than 500bp) is
preferred or when data is collected on non-diploid cells. Vignettes for
analyzing patterns of dropout across cell types are also provided.
Given its capabilities, we believe MOCHA is a valuable addition for
analyzing scATAC-seq data, especially in biomedical research.

Constructing robust regulatory networks begins with reliable
identification of patient- and cell-type-specific open chromatin. We
used peaks called by MACS2 on pseudo-bulk ATAC-seq data as
imperfect “ground truth” to train and validate MOCHA, and con-
structed LRMs to identify sample-specific accessibility using statisti-
cally informative single-cell and pseudobulk features, resulting in λ(1)

and λ(2). While other features were tested, they were not statistically
informative. The training data of NK cells (n = 179,836, 750 million
fragments) had enough sequencing depth for reliable MACS2 perfor-
mance and thus likely reliable MOCHA training. However, MACS2
might call every fragment as a peak for less abundant cell types,
leading to many false positives. To mitigate such artifacts, some
pipelines artificially limit the number of peaks called by MACS211. To
provide a reasonable comparison, we focused our benchmarking on
cell types with moderate to high cell counts. MOCHA outperformed
MACS2 in calling sample-specific regions despite relying onMACS2 for
training. In theory, MOCHA was not designed to call open tiles on
datasets of mixed cells from multiple studies. For example, we used a
global prefactor S to account for differences in data quality instead of,
more properly, estimating an S for each of themany studies within the
Hematopoiesis dataset. Nevertheless, MOCHA outperformed MACS2
andHOMER on all three datasets of varying data quality, although only
slightly on the Hematopoiesis dataset. In simulation studies, we
benchmarked the three methods across a broader set of conditions
(cell abundance, sequencing depth, and total open regions). MOCHA
outperformed MACS2 and HOMER in about 90% of all conditions. It is
possible that the LRMs in MOCHA may need to be retrained if the
difference in species, sample type, experimental protocol, sequencing
depth, data quality, etc., becomes overwhelmingly large between our
training data and user data. Due to a lack of access to GPU hardware78

and integration challenges13, we benchmarked MOCHA only with
MACS2 and HOMER, which are the most widely incorporated open
source peak callers. Given its strong performance against these stan-
dard algorithms, MOCHA’s robust open chromatin results provided a
solid foundation for downstream analysis. We note that some biolo-
gical questions (e.g., copy number variation79, causal variants80,
nucleosomepositioning81, and the roleof pioneer factors82)maynot be
best answered with tools such as MOCHA calling broad peaks.

Additionally, gene regulatory networks require clear identifica-
tion of accessibility changes. However, the presence of drop-out leads
to many unreliable results. We notice that there has been a debate on
whether scRNA-seq data is ZI27. That discussion centers around mea-
surement vs expression models27. scATAC-seq data is even sparser
than scRNA-seq data with a near binary (0 or 1) measurement of
accessibility1, and a detection rate of 1– 10% on expected accessible
peaks at the single-cell level (compared to 10–45% of expressed genes
being detected per cell in scRNA-seq)8. The incorporation of ZI sta-
tistical methods to handle drop out is a major advantage of MOCHA
over most existing tools. ZI methods provide well-documented
improvements over their counterparts on ZI data83,84. While ZI meth-
ods are applied to scRNA-seq data exclusively at single-cell level, the
sparsity of scATAC-seq data makes it necessary to apply ZI methods
even at pseudo-bulk level in most analyses. Our analyses showed that
excess zeros in pseudobulk scATAC-seq data were not fully captured

Fig. 5 | Integrative analyses to reveal longitudinaldynamics in CD16monocytes
during COVID-19 recovery. a Longitudinal COVID19 cohort overview (n = 18).
Time points indicated by black dots illustrate sample availability for each COVID+
participant. b Single-cell Density UMAPs using open regions in CD16 monocytes
from MOCHA (full COVID19 dataset, n = 91 samples), showing cells from COVID+
samples during early infection (1–15 days PSO, n = 21), late infection (16–30 days
PSO, n = 13), and recovery (>30 days PSO, n = 35), and COVID- samples (n = 22).
c Volcano plot illustrating the −log10(FDR) vs. the slope of motif usage over time.
Motif usage quantified using Z-scores from ChromVAR run on the TSAM. Insert:
The network showing interacting TFs within the AP-1 family (APID database118). TFs
were color-coded by the sign of their slope. d Longitudinal motif usage over time
for an exemplary set of TFs. Individual participants and population trends are
shownwith thin lines (colored-coded by subject), and thick black lines (population
trend). e Volcano plot illustrating the −log10(FDR) vs. the slope of promoter
accessibility over time based on (ZI-GLMM). A subset of the top promoters are
labeled with their corresponding genes. f Significant Reactome pathways (FDR<

0.1) enriched for genes with significant promoter accessibility changes. The
pathways were aggregated into upper-level pathway annotations using Reactome’s
database hierarchy. The barplot shows the number of pathways in each category.
The pie chart breaks down the immune system pathways by Reactome’s next level
categories. g Three scatter plots illustrating examples of associations between
promoter accessibility (y-axis) and JUNB’s ChromVar z-score (x-axis). The thick
black line shows the population trend from ZI-GLMM. h Bipartite network illus-
trating associations between the top 5 motifs (largest positive (+) or negative (−)
slope) and 14 significant innate immune pathways. Motif-promoter associations
only shown if Motif is related to >33% of significant genes in a pathway. c–h Data
from CD16 monocytes in the COVID19L dataset (n = 69). PSO post symptom onset,
UMAP Uniform Manifold Approximation and Projection, TSAM tile-sample acces-
sibility matrix, FDR false discovery rate, TF transcription factor, AP-1 activator
protein-1, ZI-GLMM zero-inflated generalized linear mixed model. Source data is
provided in “SourceData_Figure5.xlsx”, including precise FDR values. Panels were
generated using Adobe Illustrator.
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by negative binomial distributions, motivating the use of ZI statistics.
We applied the two-partWilcoxonmodel34 forDAA, ZI correlation36 for
CAA, and ZI-GLMM33 for longitudinal modeling in MOCHA and
demonstrated how MOCHA led to more informative results than
existing tools. While ZI-GLMM approaches model biological zeroes
and technical drop-outs separately, more research is needed to fully
disentangle them. No ZI method is needed for open chromatin iden-
tification since only tiles that contain fragments are evaluated and we
don’t impute accessibility for empty tiles. It is noted that, while many
bulk ATAC-seq or bulk RNA-seq approaches (e.g., DiffChIPL, DESeq2,
EdgeR, Limma, and more)51,85–91 also utilize generalized linear models;
they do not account for ZI. Recent literature has beenmoving towards
analyzing scATAC-seq data implementing ZI approaches92–95.

While single-cell analysis provides granularity into cellular beha-
vior, human cohort studies are usually interested in identifying
patient-level behavior across cell populations. While current methods
are centered at the single cell level, MOCHA aggregates scATAC-seq
data into TSAMs to facilitate sample-centric analysis. To the best of our
knowledge,while pseudobulking is fairly common in analyzing scRNA-
seq data and inspired our use of it in MOCHA, this rather simple
approach has not been reported to analyze scATAC-seq data. The
approach provides several important advantages. First, as literature in
the scRNA-seq spaces has shown, the approach specifically addresses
pseudo-replication bias in single-cell data and avoids computationally
expensive single-cell mixed effect models, following recent advice for
analyzing scRNA-seq data29,30. Second, the sample-centric approach
makes it computationally feasible to analyze large, diverse human
cohorts and explicitly models patient-level heterogeneity. Third, since
the TSAM is constructed from standard Bioconductor data structures,
its flexibility enables a broad range of scientific enquiries into gene and
chromatin regulation and supports seamless integration with a variety
of bioinformatics tools. For example, we applied ZI-GLMM and
chromVAR to study COVID-19 recovery on our longitudinal scATAC-
seq data. We believe TSAMs facilitate the extraction of genomic
insights from large-scale, heterogeneous scATAC-seq data. Never-
theless, the approach is underpowered for studies of small sample size
and not appropriate for comparing a handful of samples. We plan to
adapt MOCHA for small-scale studies in the future.

We selectedCD16monocytes in ourCOVID19 dataset to showcase
the utility of MOCHA in biomedical research. Our results reveal from
multiple perspectives that the genomic regions associated with innate
immune pathways (such as TLR, MyD88, and NF-κB) played essential
roles in SARS-CoV-2 infection and patient recovery, aligning with the
expected functions of CD16monocytes during viral infection96. To the
best of our knowledge, explicit longitudinal analysis on scATAC-seq
data has not been reported, limiting the value of scATAC-seq in
studying the regulatory landscapes of disease progression and recov-
ery. Furthermore, despite the large number of publications on COVID-
19, alternative TSS regulation during SARS-CoV-2 infection has not
been reported. We consider MOCHA as a tool to generate interesting
hypotheses from scATAC-seq data, which nevertheless need to be
validated in follow-up studies. An in-depth, comprehensive analysis of
our COVID19 cohort is beyond the scope of current work and will be
presented in a follow-up paper.

In short, we present MOCHA as a tool to better infer gene reg-
ulation from scATAC-seq in biomedical and biological research.
MOCHA is freely available as an R package in CRAN.

Methods
Inclusion and ethical considerations
All study activities were approved by institutional review boards at the
participating institutionswhere required. Informedconsentwasobtained
fromall participants at the Seattle Vaccine Trials Unit to participate in the
study and topublish their corresponding researchdata. Twoparticipants
declined to publish their raw sequencing data. All human data are

anonymized, and the human cohort data used in this manuscript had
either prior IRB approval or were publicly available.

Longitudinal COVID-19 cohort
We recruited in the greater Seattle area n= 18 participants (10 females
and 8 males, aged 22–79 years) who tested positive (COVID+) for SARS-
CoV-2 virus (Wuhan strain) and n=23 uninfected (COVID-) participants
(10 females and 13 males, aged 29–77 years) for our longitudinal COVID-
19 study38, “Seattle COVID-19 Cohort Study to Evaluate Immune
Responses in Persons at Risk and with SARS-CoV-2 Infection”. Due to
recruitmentduring thepandemic, there is abias towardsfirst responders.
All COVID+ participants had mild to moderate symptoms. Peripheral
bloodmononuclear cell (PBMC) and serum samples were collected from
the COVID- participants at a single time point and from the COVID+
participants at 3–5 timepoints over aperiodof 1–121dayspost-symptom-
onset (PSO, total samples n= 70). Study data were collected and mana-
ged using REDCap electronic data capture tools hosted at Fred Hutch-
inson Cancer Research Center (FHCRC). The FHCRC Institutional Review
Board (IRB) approved the studies and procedures. Informed consentwas
obtained from all participants at the Seattle Vaccine Trials Unit to parti-
cipate in the study and topublish their corresponding researchdata. Two
participants declined to publish their raw sequencing data. Sex of parti-
cipants was determined based on self-reporting. Participants were not
compensated for being in this study.

COVID19 single-cell ATAC-seq
PBMC isolation. Blood collected in acid citrate dextrose tubes was
transferred to Leucosep tubes (Greiner Bio One). The tube was cen-
trifuged at 800–1000x g for 15min and the PBMC layer recovered
above the frit. PBMCswerewashed twicewithHanksBalancedSolution
without Ca+ or Mg+ (Gibco) at 200–400 × g for 10min, counted, and
aliquoted in heat-inactivated fetal bovine serum with 10% dimethyl-
sulfoxide (DMSO, Sigma) for cryopreservation. PBMCs were cryopre-
served at −80 °C in Stratacooler (Nalgene) and transferred to liquid
nitrogen for long-term storage.

FACS neutrophil depletion. To remove dead cells, debris, and neu-
trophils prior to scATAC-seq, PBMC samples were sorted by
fluorescence-activated cell sorting (FACS) prior to cell permeabiliza-
tion as described previously97. Cells were incubated with Fixable Via-
bility Stain 510 (BD, 564406) for 15min at room temperature and
washed with AIM V medium (Gibco, 12055091) plus 25mM HEPES
before incubating with TruStain FcX (BioLegend, 422302) for 5min on
ice, followed by staining with mouse anti-human CD45 FITC (BioLe-
gend, 304038, 1.0 uL/10e6 cells) and mouse anti-human CD15 PE (BD,
562371, 1.0 uL/10e6 cells) antibodies for 20min on ice. Cells were
washed with AIM V medium plus 25mM HEPES and sorted on a BD
FACSAria Fusion. A standard viable CD45+ cell gating scheme was
employed: FSC-A x SSC-A (to exclude sub-cellular debris), two FSC-A
doublet exclusion gates (FSC-W followed by FSC-H), dead cell exclu-
sion gate (BV510 LIVE/DEAD negative), followed by CD45+ inclusion
gate. Neutrophils (defined as SSC high, CD15+) were then excluded in
the final sort gate. An aliquot of each post-sort population was used to
collect 50,000 events to assess post-sort purity.

Sample preparation. Permeabilized-cell scATAC-seq was performed
as described previously97. A 5% w/v digitonin stock was prepared by
diluting powdered digitonin (MP Biomedicals, 0215948082) in DMSO
(Fisher Scientific, D12345), whichwas stored in 20μL aliquots at −20 °C
until use. To permeabilize, 1 × 106 cells were added to a 1.5mL low
binding tube (Eppendorf, 022431021) and centrifuged (400× g for
5min at 4 °C) using a swinging bucket rotor (Beckman Coulter Avanti
J-15RIVD with JS4.750 swinging bucket, B99516). Cells were resus-
pended in 100μL cold isotonic Permeabilization Buffer (20mM Tris-
HCl pH 7.4, 150mM NaCl, 3mM MgCl2, 0.01% digitonin) by pipette-
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mixing 10 times, then incubated on ice for 5min, after which theywere
diluted with 1mL of isotonic Wash Buffer (20mM Tris-HCl pH 7.4,
150mM NaCl, 3mM MgCl2) by pipette-mixing five times. Cells were
centrifuged (400× g for 5min at 4 °C) using a swinging bucket rotor,
and the supernatant was slowly removed using a vacuum aspirator
pipette. Cells were resuspended in chilled TD1 buffer (Illumina,
15027866) by pipette-mixing to a target concentration of
2300–10,000 cells per μL. Cells were filtered through 35μm Falcon
Cell Strainers (Corning, 352235) before counting on a Cellometer
Spectrum Cell Counter (Nexcelom) using ViaStain acridine orange/
propidium iodide solution (Nexcelom, C52-0106-5).

Tagmentation and fragment capture. scATAC-seq libraries were
prepared according to the Chromium Single Cell ATAC v1.1 Reagent
Kits User Guide (CG000209 Rev B) with several modifications. 15,000
cells were loaded into each tagmentation reaction. Permeabilized cells
were brought to a volume of 9μl in TD1 buffer (Illumina, 15027866)
and mixed with 6μl of Illumina TDE1 Tn5 transposase (Illumina,
15027916). Transposition was performed by incubating the prepared
reactions on a C1000 Touch thermal cycler with 96– Deep Well
Reaction Module (Bio-Rad, 1851197) at 37 °C for 60min, followed by a
brief hold at 4 °C. A Chromium NextGEM Chip H (10x Genomics,
2000180)wasplaced in a ChromiumNext GEMSecondaryHolder (10x
Genomics, 3000332) and 50% Glycerol (Teknova, G1798) was dis-
pensed into all unused wells. A master mix composed of Barcoding
Reagent B (10x Genomics, 2000194), Reducing Agent B (10x Geno-
mics, 2000087), and Barcoding Enzyme (10x Genomics, 2000125) was
then added to each sample well, pipette-mixed, and loaded into row 1
of the chip. Chromium Single Cell ATAC Gel Beads v1.1 (10x Genomics,
2000210) were vortexed for 30 s and loaded into row 2 of the chip,
along with Partitioning Oil (10x Genomics, 2000190) in row 3. A 10x
Gasket (10x Genomics, 370017) was placed over the chip and attached
to the Secondary Holder. The chip was loaded into a Chromium Single
Cell Controller instrument (10x Genomics, 120270) for GEM genera-
tion. At the completion of the run, GEMs were collected and linear
amplification was performed on a C1000 Touch thermal cycler with
96–Deep Well Reaction Module: 72 °C for 5min, 98 °C for 30 s, 12
cycles of 98 °C for 10 s, 59 °C for 30 s and 72 °C for 1min.

Sequencing library preparation. GEMswere separated into a biphasic
mixture through addition of Recovery Agent (10x Genomics, 220016);
the aqueous phase was retained and removed of barcoding reagents
using Dynabead MyOne SILANE (10x Genomics, 2000048) and SPRI-
select reagent (Beckman Coulter, B23318) bead clean-ups. Sequencing
libraries were constructed by amplifying the barcoded ATAC frag-
ments in a sample indexing PCR consisting of SI-PCR Primer B (10x
Genomics, 2000128), Amp Mix (10x Genomics, 2000047), and Chro-
mium i7 Sample Index Plate N, Set A (10x Genomics, 3000262) as
described in the 10x scATACUser Guide. Amplification was performed
in a C1000 Touch thermal cycler with 96–DeepWell ReactionModule:
98 °C for 45 s, for 9 to 11 cycles of: 98 °C for 20 s, 67 °C for 30 s, 72 °C
for 20 s, with a final extension of 72 °C for 1min. Final libraries were
prepared using a dual-sided SPRIselect size-selection cleanup. SPRI-
select beads were mixed with completed PCR reactions at a ratio of
0.4x bead:sample and incubated at room temperature to bind large
DNA fragments. Reactions were incubated on a magnet, and the
supernatantwas then transferred andmixedwith additional SPRIselect
reagent to a final ratio of 1.2x bead:sample (ratio includes first SPRI
addition) and incubated at room temperature tobindATAC fragments.
Reactions were incubated on a magnet, the supernatant containing
unbound PCR primers and reagents was discarded, and DNA-bound
SPRI beads were washed twice with 80% v/v ethanol. SPRI beads were
resuspended in Buffer EB (Qiagen, 1014609), incubated on a magnet,
and the supernatant was transferred resulting in final, sequencing-
ready libraries.

Quantification and sequencing. Final libraries werequantified using a
Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific, P7589)
on a SpectraMax iD3 (Molecular Devices). Library quality and average
fragment size were assessed using a Bioanalyzer (Agilent, G2939A)
High Sensitivity DNA chip (Agilent, 5067-4626). Libraries were
sequenced on the Illumina NovaSeq platform with the following read
lengths: 51nt read 1, 8nt i7 index, 16nt i5 index, 51nt read 2.

Data preprocessing. scATAC-seq libraries were processed as descri-
bed previously97. In brief, cellranger-atac mkfastq (10x Genomics
v1.1.0) was used to demultiplex BCL files to FASTQ. FASTQ files were
aligned to the human genome (10x Genomics refdata-cellranger-atac-
GRCh38-1.1.0) using cellranger-atac count (10x Genomics v1.1.0) with
default settings. Fragment positions were used to quantify reads
overlapping a reference peak set (GSE123577_pbmc_peaks.bed.gz from
GEO accession GSE12357798), which was converted from hg19 to hg38
using the liftOver package for R99, ENCODE reference accessible
regions (ENCODEfile ID ENCFF503GCK100), andTSS regions (TSS ± 2 kb
from Ensembl v93101 for each cell barcode using a bedtools (v2.29.1102)
analytical pipeline.

Quality control. Custom R scripts were used to remove cells with less
than 1,000 uniquely aligned fragments, less than 20% of fragments
overlapping reference peak regions, less than 20% of fragments
overlapping ENCODE TSS regions, and less than 50% of peaks over-
lapping ENCODE reference regions. The ArchR package11 was used to
assess doublets in scATAC data. Doublets were identified using the
ScoreDoublets function using afilter ratioof 8, and cellswith aDoublet
Enrichment score exceeding 1.3 as determined by ArchR’s doublet
detection algorithm11 were not considered for downstream analysis.

Dimensionality reduction and cell type labeling. We used the ArchR
package to generate a count matrix for a PBMC reference peak set98.
Dimensionality reduction was performed using the ArchR addIter-
ativeLSI function (parameters varFeatures = 10,000, iterations = 2), and
the addClusters functionwas used to identify clusters in latent semantic
indexing (LSI) dimensions using the Louvain community detection
algorithm. For visualization, Uniform Manifold Approximation and
Projection66 (UMAP)was performedusingArchR’s addUMAP function at
the default settings. The ArchR addGeneIntegrationMatrix function
(parameters transferParams = list(dims = 1:10, k.weight = 20)) was used
to label scATAC cells using the Seurat level 1 cell types from the Seurat
v4.0 PBMC reference dataset103. To generate clusters that more closely
matched label transfer results, we performed K-means clustering on the
UMAP coordinates using 3 to 50 cluster centers and identified a set of
clusters that each had > 80% of cells sharing a single cell type identity.
Almost all such clusters contained ≥98% cells from a single major cell
type (T cells, B cells, NK cells, or monocytes/DCs/other), with the
exception of a single cluster with 88% purity. We used clusters of the
same major cell type to subset the data into T cells, B cells, NK cells, or
monocytes/DCs/other for downstream analyses. For each major cell
type, we repeated the same dimensionality reduction (LSI/UMAP) pro-
cess on the scATAC-seq datawith the same settings.We then performed
a second round of label transfer, using the ArchR addGeneInte-
grationMatrix function (sameparameters as described above for level 1),
to reach level 2 and3cell labelingsof theSeurat PBMCreferencedataset.
These labels were consolidated into 25 cell types for most analysis,
except for the co-accessibility analysis where 17 cell types were used to
match the published promoter-capture HiC resource54. The median cell
labeling score across all cells that passed quality control was 0.74.

Three Human scATAC-seq datasets for MOCHA development
and benchmarking
COVID19 dataset. Two samples (1 COVID- sample, male; 1 COVID+
sample, female, collected onday 12 PSO) fromour longitudinal COVID-
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19 cohortwere lost due to low sample volume. The scATAC-seq data of
the remaining samples was denoted as the COVID19 dataset (n = 91) in
this study. After removing doublets and cells of poor quality, high
quality data of 1,311,638 cellswereobtained. Thedatawas split into two
overlapping subsets for some analyses: 1) A cross-sectional dataset
(denoted as COVID19X, n = 39) included data of COVID- samples
(n = 22, 10 females and 12 males) and the first samples of COVID+
participants (n = 17, 9 females and 8 males) during early infection
(<16 days PSO). 2) A longitudinal dataset (denoted as COVID19L,
n = 69) included all data for the 18COVID+participants (10 females and
8males). The overlap between COVID19X and COVID19L was 17, which
were the first samples of COVID+ participants. The full dataset
(COVID19) can be accessed at GEO under accession number
GSE173590.

HealthyDonor dataset. This longitudinal scATAC-seq dataset44 was
collected on 18 PBMC samples of 4 healthy donors (aged 29–39 years)
over 6 weeks (1 female and 1 male, weeks 2–7; 2 males, weeks 2, 4, and
7). The donors hadno diagnosis of active or chronic disease during the
study. The data is publicly available at GEO under accession number
GSE190992. We used the dataset as is, except we removed cells with
doublet enrichment score exceeding 1.3, based on ArchR’s doublet
detection algorithm11. High quality data of 145,711 cells were obtained.
From this dataset, we consolidated existing annotations into 25 cell
types with a published median cell labeling score of 0.78.

Hematopoiesis dataset. This dataset was downloaded from (https://
www.dropbox.com/s/sijf2votfej629t/Save-Large-Heme-ArchRProject.
tar.gz). It consists of ~220,000 hematopoietic cells from the hemato-
poiesis dataset in ArchR11. As described in their Supplementary Table 1,
the dataset was assembled from 49 samples in four data sources, of
different sample types (mixed, sorted, and unsorted cells; PBMCs; and
bone marrow mononuclear cells), and generated using different
sample processing protocols and on different technical platforms. We
usedArchR togeneratedoublet scores and removed clusterswith both
high doublet scores and amixture of disparate cell types. This doublet
removal only applied to sequencing wells that were not sorted, pur-
ified cells. In the end, data of 95,599 cells were obtained. Becausemany
of the cell types were sorted populations run on an individual well,
many cell types were not available across samples. As a result, we
treated all cell types as coming from a single sample for benchmarking
purposes. We used previously published cell annotations, with a
median labeling score of 0.70.

Mouse Pan-Organ scATAC Atlas
This dataset (GEO: GSE111586) was downloaded from https://atlas.gs.
washington.edu/mouse-atac/.We performed doublet removal and then
used the data for benchmarking purposes on non-human scATAC-seq
datasets. The original cell type labels were used in the analysis.

Assessing dataset noise using the Altius Peakset
To assess ‘noise’ within a dataset (i.e., fragments from closed regions
known as heterochromatin), we used the Altius consensus peakset100 of
over 3.6 million DNase I hypersensitive sites within the human genome
as an approximation of all potentially accessible sites.We calculated the
overlap rate between fragments and the Altius consensus peakset for
each cell type and dataset, in order to assess the quality of the data. The
COVID19 dataset had an median Altius peakset overlap rate of 88.9%,
while the corresponding rates for the HealthyDonor dataset and the
Hematopoiesis dataset were 75.5% and 82%, respectively.

MOCHA overview
MOCHA is implemented as anopen-sourceRpackage under theGPLv3
license in CRAN. All code and development versions of MOCHA are
available in MOCHA’s github repository.

MOCHA is designed to run in-memory and interoperate with
common Bioconductor methods and classes (e.g., RaggedExperiment,
MultiAssayExperiment, and Summarized Experiment). It takes as input
four objects that are commonly generated from scATAC-seq after cell
labeling and the removal of doublets and cells of low quality data.
These four objects are: 1) a list of GRanges or GRangesList containing
per-sample ATAC fragments, 2) cell metadata with cell labels, 3) a
BSGenome annotation object for the organism, and 4) a GRanges
containing blacklisted regions. These inputs can be passed to MOCHA
directly from an ArchR object. Alternatively, results can be extracted
from Signac, SnapATAC, or ArchR, and converted to common Bio-
conductor data objects, which can then be imported into MOCHA. By
operating on well-supported Bioconductor objects, MOCHA’s inputs
and outputs are compatible with the broader R ecosystem for
sequencing analyses, and are easily exportable to genomic file formats
such as BED and BAM.

MOCHA’s core functionality runs as a pipeline from these inputs
to perform sample-specific open tile prediction and consensus analy-
sis, resulting in a TSAM represented as a Bioconductor RangedSum-
marizedExperiment. On systems with sufficient memory, MOCHA’s
functions can be parallelized over samples with the ‘numCores’ para-
meter to decrease runtime. From the TSAM, MOCHA provides func-
tions for ZI co-accessibility andZI differential accessibility analysis. The
format of the TSAM output enables additional downstream analyses
with other R packages. For example, the TSAM RangedSummar-
izedExperiment can be used directly as the counts matrix input for
motif deviations analysis with the chromVAR R package. Additional
details on the workflow and functions on the MOCHA package are
provided in Supplementary Fig. 1.

MOCHA objects
MOCHA’s workflowgenerates twomajor objects: anOpenTiles Object,
and a Tile-Sample Accessibility Matrix (TSAM) object. An OpenTiles
Object is created by callOpenTiles and stores tile accessibility infor-
mation at the sample and cell type level, along with sample-specific
metadata in a MultiAssay Experiment, which contains:

• RaggedExperiment (Bioconductor) for each cell type
◦ Accessibility calls and normalized intensity across samples

• Sample-level metadata in the colData slot.
• Additional metadata as a list in the metaData slot.

◦ Cell type-level metadata in a SummarizedExperiment
(Bioconductor)
▪ Cell counts, fragment number, and other relevant

metadata
◦ Transcript and Genome database used for calling
◦ History of the object

From there, user-defined cutoffs are used to identify study-level
open chromatin regions. These regions are used to generate tile-by-
sample accessibility matrices (i.e., TSAMs) for downstream analysis.
These TSAMs are saved in a SummarizedExperiment format,
containing:

• Tile-Sample Accessibility Matrix for each cell type
◦ Counts at the complete set of open regions (across all

cell types)
• Tile metadata saved in the rowRanges slot

◦ Genomic positions for each tile
◦ Boolean/indicator columns labeling population-level open

tiles for each cell type
◦ Columns labeling the type of region (e.g., promoter, inter-

genic, distal)
◦ Columns labeling the associated genes for promoter and

intergenic tiles
• Sample-level metadata in the colData slot.
• Additional metadata as a list in the metaData slot.
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◦ Cell type-level metadata in a SummarizedExperiment
(Bioconductor)
▪ Cell counts, fragment number, and other relevant

metadata
◦ Transcript and Genome database used for calling
◦ History of the object

These TSAM can then be integrated with ArchR, ChromVar, and
other Bioconductor-compatible R packages for downstream analyses.

Tiling the genome
MOCHA splits the genome into pre-defined, non-overlapping 500
base-pair tiles that remain invariant across samples and cell types.
MOCHA annotates each tile using a user-provided transcript database
(e.g., HG38 Transcript Database) as follows: Promoter regions are
2000 bp upstream and 200bp downstream from transcriptional start
sites104. Intragenic regions are tiles that fall within a gene body, but not
within the promoter regions. All other regions are classified as distal.

From there, we only consider tiles that overlap with ATAC frag-
ments. MOCHA counts the number of fragments in a tile as follows

f i,j,k,t = the number of fragments on sample i, of cell type j,

in cell k, overlapping with tile t
ð1Þ

Fi,j = the total number of fragments on sample i, of cell type j ð2Þ

If a fragment falls between two tiles, it is counted on both tiles.

Normalization
Normalization techniques using invariant CTCF sites. We examined
three normalizing approaches: dividing the number of fragments by 1)
the total number of fragments for sample i, cell type j (i.e., Fi,j); 2) the
total number of fragments for sample i (i.e., Fi = ΣjF i,j), and 3) the total
number of cells in sample i, cell type j. We evaluated the above nor-
malizationmethods alongwith the rawdata basedon a list of 2230cell-
type invariant CCCTC-binding factor (CTCF) sites from the ChIP Atlas
database105. These loci were identified in at least 201/204 (99%) of
blood cell types present in the ChIP-seq Atlas database106. Using these
CTCF sites, each approach was assessed based on the corresponding
distribution of coefficient of variation (CV) in peak accessibility.
MOCHA normalizes data using Fi,j .

Sample- and cell type-specific normalization. For each sample i, cell
type j, and tile t, MOCHA calculates the following normalized features:

λð1Þi,j,t = Σkf i,j,k,t=Fi,j

� �
× 109

= the total normalized fragments for sample i, cell type j, at tile t
ð3Þ

λð2Þ i,j,t = ðmaxff i,j,k,tgk=Fi,jÞ× 109

= the maximum number of normalized fragments across single cells,

for sample i, cell type j, tile t

ð4Þ
Since the NK population used for model training contained 750

million fragments, a scaling factor of 109 is applied to make the raw
and normalized counts on the same scale across cellular abundances,
and keep normalized values greater than 1 to minimize convergence
errors in downstreammodel training. Biologically, λ(1)

i,j,t is designed to
capture the total number of fragments across all cells (e.g., pseudo-
bulk), normalized by the sequencing depth for that cell type and
sample. Given the sparsity of scATAC-seq data and the assumption of

limited number of genomic copies (2x-4x) in a typical cell, λ(2)
i,j,t is

designed to capture the presence of multiple fragments in a tile from
any cell, which can only be evaluated on single-cell data. This approach
combines single cell and pseudo-bulk information for downstream
prediction. Normalizing by Fi,j is used to normalize both sequencing
depth and cell population variability. This approach provides both a
sample- and cell-type-specific normalization scheme.

Evaluation of open chromatin accessibility
Training of logistic regression models for predicting tile accessi-
bility. MOCHA assumes a typical ploidy per cell (two to four copies of
the genome). Its pseudocode and further details are provided in
Supplementary Fig. 2 in order to allow for modifications when the
above assumption does not hold.

We used scATAC-seq data of 179k NK cells in the COVID19 (n = 91)
dataset as the training dataset. First, we normalized the scATAC-seq
data and collapsed it into pseudobulk data. Second, we applied
MACS240 (‘-g hs -f BED --nolambda --shift -75 --extsize 150 --broad’,
‘--model -n’, using the parameters set in ArchR) to identify accessible
peaks in the pseudobulk data. We chose these settings to match the
behavior of MACS2 in a commonly-used scATAC data analysis soft-
ware, modified to call broad rather than narrow peaks. The resulting
peaks were then overlaid onto our pre-defined 500bp tiles. We trim
the broad peaks by 75 base pairs at each end and remove the tail ends
of peaks that extend onto tiles with no signal. MACS2 identified 1.15
million tiles as ‘accessible regions’ and the remaining 4.39 million tiles
with fragments were labeled as ‘inaccessible’. We labeled all other
fragment-containing regions as inaccessible, and used these ‘acces-
sible’ and ‘inaccessible’ regions for training. Third, we randomly
selected NK cells at cell counts ranging from 170k to 5 at discrete
intervals, generating 10 replicates for subsets <50k cells, and 5 repli-
cates for larger subsets. In each of the subsets, we calculated λ(1)

i,j,t and
λ(2)

i,j,t at individual tiles. Fourth, we trained a LRM for each selected
subset of NK cells based on the tile labeling just described. The LRM
was fitted using a logit ‘link’ function and applying the default loss
function from the GLM logistic regression function in R. For each
sample of na cells, the LRM calculates a probability score to assess the
likelihood of a tile being accessible, using the formula

PrðnaÞðλð1Þ i,j,t ,λð2Þi,j,tÞ=
1

1 + expð�bðnaÞ
0 � bðnaÞ

1 � λð1Þi,j,t � bðnaÞ
2 � λð2Þi,j,tÞ

ð5Þ

Here bðnaÞ
0 is the intercept, bðnaÞ

1 and bðnaÞ
2 are coefficients for λ(1)

i,j,t

and λ(2)
i,j,t, respectively. A tile is predicted as accessible if PrðnaÞ ≥θðnaÞ or

inaccessible if PrðnaÞ <θðnaÞ where θðnaÞ is the threshold value separating
accessible and inaccessible tiles. Since it is not possible to balance open
vs closed tiles in real-data, this leads toprevalence imbalances that need
to be addressed. To account for this, we used the Youden index107 to
calculate optimal θðnaÞ in this study, using the cutpointR R package.

Fifth, we collected fbðnaÞ
0 g, fbðnaÞ

1 g, fbðnaÞ
2 g,fθðnaÞg from the 10 or 5

replicated runs on n cells and then took the corresponding median
coefficients, i.e., bðnÞ

0 , bðnÞ
1 , bðnÞ

2 , and θðnÞ, to construct the predictive
model for a sample of n cells. Finally, we used the learned coefficients
and the learned thresholds to smoothen the model to interpolate the
model across cellular abundances that the model was not trained on.
The finalmodel is composed of a set of smoothened coefficients fbðnÞ

0 g,
fbðnÞ

1 g, fbðnÞ
2 g, and smoothened thresholds fθðnÞg from all examined n.

Model evaluation metrics
To quantify a model’s performance, we counted their true positives
(TPs), false positives (FPs), true negatives (TNs), and false negatives
(FNs), and used these to calculate false positive rates, recall, and
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F1-score.

False Positive Rate = 1� Precision= 1� TP=ðTP+ FPÞ,
Recall = Sensitivity = 1� False Negative Rate =TP=ðTP+FNÞ,
F1score= 2 � TP=ð2 � TP+FP+ FNÞ:
Specificity = 1� FPR

Youden’s J = Sensitivity + Specificity� 1

Prediction of tile accessibility on newdata. To predict accessibility in
a new dataset, MOCHA first accounts for differences in sequencing
depth and cell count across datasets and calculates the ratio, S, of the
median (across samples) number of total fragments in the training
data, and the corresponding median in the new dataset. MOCHA then
scales both λ(1)

i,j,t and λ(2)
i,j,t in the new dataset by S and calculates the

likelihood of a tile being accessible as

PrðnÞðλð1Þ i,j,t ,λð2Þi,j,t ,SÞ=
1

1 + exp½�bðnÞ
0 � bðnÞ

1 � ðSλð1Þi,j,tÞ � bðnÞ
2 � ðSλð2Þi,j,tÞ�

,

ð6Þ
where n is the number of cells of the targeted cell type in the targeted
sample. The normalization and scaling factors enable the same
smoothened coefficients to be used on new data, regardless of cell
type or tile position. As before, a tile is predicted as accessible if
PrðnÞ ≥ θðnÞ or inaccessible if PrðnÞ <θðnÞ where θðnÞ is the threshold value
separating accessible and inaccessible tiles.

Benchmarking open regions. To benchmark MACS2, HOMER, and
MOCHA, we ran each tool per sample and cell type to generate com-
parable accessibility measurements across three cell types in three
different datasets. For MACS2, we used the following parameters to
call broad peaks (‘-g hs -f BED --nolambda --shift -75 --extsize 150
--broad --nomodel -n’), in accordancewith previous published scATAC-
seq settings11. For HOMER, we used the findPeaks functionwith default
parameters, and added (‘-style histone’) to call broad peaks. While
HOMER and MACS2 are primarily designed around the properties of
ChIP-seq and DNase-seq, they are also recommended for use with bulk
ATAC-seq41.

To ensure head-to-head comparisons, we overlaid HOMER and
MACS2’s peaks into MOCHA’s predefined 500 base-pair tiles to
translate peak calls into open tile calls. Similar to training, we trimmed
75 bp off each end, as MACS2’s shift/extsize parameters extend frag-
ments to improve peak calling under the -nomodel flag. By trimming,
we avoid counting the tails of peaks that extend into tiles with no
actual fragments. This trimming approach allows for a direct head-to-
head comparison of open regions detected across methods. Addi-
tionally, all three methods are provided the same normalized pseudo-
bulk intensity information to ensure comparable peak calling and
prevent confounding peak calling and normalization. After translating
MACS2 and HOMER peaks into open tiles, we then compared the
number of open tiles per sample across all methods, cell types, and
datasets.

Next, we generated a TSAM for each cell type across all three
methods. The TSAM is a matrix with an array-type structure, where
each cell contains the normalized λ(1)

i,j intensities for a given sample i,
at tile j. We kept open tiles that were called in at least 20% of samples
(or all tiles in Hematopoiesis). By generating a TSAM for eachmethod,
we compared reproducible, population-level open tiles across all three
methods. The 20% threshold was applied to filter out noisy data.

CTCF and TSS Sites for benchmarking. CTCF sites were drawn from
the ChipSet Atlas105. In brief, we download a bed file containing CTCF
peaks for all blood cell types, and then used Plyranges’s
reduce_ranges108 function to collapse duplicate peak calls into one

non-redundant and smaller file for detecting overlaps. This process
was done for both Hg19 (n = 197,882) and Hg38 (n = 184,588). TSS sites
were taken from Bioconductor database TxDb.Hsa-
piens.UCSC.hg19.knownGene for the Hematopoiesis dataset (which
was aligned to Hg19), and TxDb.Hsapiens.UCSC.hg38.refGene for the
other datasets by first extracting the transcripts for all genes. The TSS
were then extracted from the transcripts using the promoters() com-
mand (Hg19, n = 62,265, Hg38, n = 88,819). We then calculated the
number of tiles that overlapped with a CTCF and TSS site using the
subsetByOverlaps function from the GenomicRanges104 R package.

Runtime comparison on open chromatin analysis. Using the CD14
monocyte population in our COVID19 dataset (n = 91), we produced
13 subsamples ranging from 100,000 to 10 cells and measured 10
replicates of the time it takes to conduct open chromatin analysis. Our
runtime comparisons were conducted on N2 machines on the Google
Cloud Platform, with 64 vCPUs and 512GB RAM.MOCHA version 0.2.0
was used. The R package tictoc was used to record elapsed time.

Downsampling comparison on open chromatin. Since pooling cells
across samples before calling open tiles is a common approach, we
benchmarked all three methods on the same randomly selected cell
subsets ranging from 5 cells to the full set in the COVID19 dataset
(n = 91). For this comparison, we utilized the same three cell types
across the same three datasets. For each cell type and dataset, we used
the following procedures. For MOCHA:
1. Generate a coverage object using predefined 500 base-pair tiles

on all pooled cells (e.g., CD16 monocytes).
2. Predict open tiles on the pooled cells.
3. Count the total number of open tiles, the number of open tiles

overlapping with CTCF sites, and the number of open tiles over-
lapping with TSSs.

4. Repeat (1–3) for all pre-specified downsampled cell counts.

For MACS2 and HOMER:
1. Generate a coverage file on all pooled cells (e.g., CD16

monocytes),
2. Call peaks on the pooled cells.
3. Convert the peak regions onto the pre-defined MOCHA tiles.
4. Remove tiles that extend onto empty regions.
5. Count the total number of open tiles, the number of open

tiles overlapping with CTCF sites, and the number of open
tiles overlapping with TSSs.

6. Repeated (1–5) for the pre-specified downsampled cell
counts.

Simulating fragments and open chromatin from scATAC-seq
To benchmark HOMER, MACS2, and MOCHA, we designed a simula-
tion study to determine the sensitivity, specificity, and accuracy of
eachmethod. The simulated scATAC-seq data is constructed in 6 steps
as follows:

Step 1: Defining open and closed tiles as the ground truth.We first
splitted each chromosome into 500 bp tiles.We then assigned roughly
200,000 open tiles across the genome, with the number of open tiles
per chromosome being proportional to the chromosome’s length.
Afterwards, wedistributed the open tiles along eachchromosomewith
a sinusoidal probability (negative values set to 0) with a periodicity of
10 tiles, to mimic periodic appearances of open regions followed by
large closed regions. All other tiles were defined to be closed. We
treated these open and closed tiles as the ground truth in this simu-
lation analysis. In this step, each sampling draws a different peakset
and thus mimics a cell type with its own peakset.

Step 2: Simulating the number of fragments in individual cells.
Each simulated cell was randomly allocated a mean of 4k fragments,
following a Poisson distribution (λ = 4000). To simulate our quality
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control (QC) thresholds for sequencing depth, we excluded cells with
fewer than 1000 fragments. The process was repeated until a target
number of simulated cells was reached.

Step 3: Assigning fragments to open and closed tiles within each
cell. Simulating a FRIP (fractionof reads inpeaks) scoreof 95%, a random
number of fragments were assigned to the open tiles using a Poisson
distribution (λ =0.95*fragment number) while the rest fragments were
randomly assigned to the closed tiles with equal weight. For the open
tiles,wefirst simulated their relativeweight using aBetadistribution (1,3)
and then allocated the corresponding fragments to individual open tiles
according to their relative weights. These weights were set to simulate
real data of many low accessible tiles and few highly accessible ones.

Step 4: Positioning fragments in individual tiles. To determine the
precise locationof fragments assigned toopen tiles,wefirst assigned the
midpoint of each fragment to the center of the corresponding tile and
then used a Poisson distribution (λ=5) to add a random offset from the
center. The direction of the offset (left or right) was randomly generated
with a Bernoulli distribution (p=0.5). For fragments assigned to closed
tiles, their position was randomly distributed across ‘closed’ tiles.

Step 5: Determining the length of individual fragments. We
simulated the length of individual fragments following a Poisson
mixture distribution so that approximately 90% of fragments have a
mean length of 75 bp, and 10% with a mean length of 200bp.

Step 6: Assembling simulated scATAC-seq data. All simulated
fragments from all simulated cells were treated as a scATAC-seq
sample, saved in a single fragment file, and converted into a normal-
ized bedgraph file for peak calling.

Using the above process, we ran two sets of simulations: 1) varying
the number of cells tomodel cell types of different abundances, and 2)
varying the total number of open regions to mimic cell types of dif-
ferent open tiles. For the first set, we simulated samples with a range of
cell counts: 75, 100, 150, 200, 250, 500, 1000, 1500, 2000, 3000, and
5000 cells. Tiles having no fragments were removed from individual
samples, resulting in different ground truth tiles per sample. This
process was repeated 10 times for each cell count. The pairwise
overlap rate between the 10 peaksets sampled in Step 1 ranged
between 8.4% to 8.6%. 110 simulated samples were generated.

For the second set of simulations, we fixed the number of cells
(250) but varied the number of fragments per cell (1k, 1.5k, 2k, 2.5k, 3k,
3.5k, 4k, 4.5k) and the location and number of open regions (150k,
250k, 350k). The three peaksets sampled in Step 1 overlapped at rates
between 6.3% to 14.8%. For each peakset, 10 samples were simulated at
each value for fragments per cell, generating a total of 240 simulated
samples. This enables the simulation of different cell types (total open
regions and/or fragment variations due to ploidy variation) and tech-
nical influences from sequencing depth (fragments per cells). Based on
existing vignettes and documentation, we note different tools apply
different QC cutoffs to filter out low quality cells: ArchR=1k, Signac=1k,
SnapATAC=3k. To cover a wide range of conditions, we simulated
fragments per cell from 4.5k (our internal datasets) down to 1k, where
ArchR and Signac would retain approximately 50% of cells.

We then ran all three methods (MOCHA, MACS2, & HOMER) to
identify open tiles, in the following manner. For MACS2 and HOMER,
we called peaks and converted the open peakset into 500bp tiles for
direct comparison across methods, and removed tiles that minimally
overlap the peakset (<75 bpoverlap) to avoid tiling artifacts. Finally, we
compared the open tiles from each method with the ground truth
using previously described model evaluation metrics.

Assessment on zero-inflation in pseudobulk scATAC-seq Data
To assess ZI in pseudobulk scATAC-seq data, we fitted a negative
binomial (NB) distribution on pseudobulked accessibility λj

(1) at each
open tile. We then tested whether λj

(1) was ZI using the DHARMa R
package, which utilizes the model fits from the glmmTMB R package.
More specifically, the test compared the observed number of zeros

with that expected from a NB distribution: An estimate of >1 means
that there are more zeros than expected by a NBmodel and a p <0.05
means that the observed and the expected zeros in the data is sig-
nificantly different. To be comprehensive, we ran the test using two
standard parameterizations of the NB family, as implemented in the
glmmTMB package: The variance grows either linearly (NB1) or
quadratically (NB2) with the mean. The λj

(1) was ZI if p < 0.05 and sta-
tistic > 1, or underinflated if p <0.05 and statistic <1.

Differential accessibility analysis
MOCHA’s zero-inflated method for DAA. MOCHA identifies differ-
ential accessibility tiles (DATs) in a targeted cell type between sample
groups A and B in three steps:

First, similar to others10,11,MOCHAprioritizes tiles for testingusing
heuristic functions to calculate two data-driven thresholds. MOCHA
transforms the total fragment count {λ(1)} in the corresponding TSAM
to log2(λ

(1) + 1) and fits a mixturemodel of two normal distributions on
all log2(λ

(1) + 1) values in the TSAM (Supplementary Fig. 2g). This
bimodal model provides a heuristic threshold to prioritize high-signal
tiles. From there, we used the TSAM metadata to identify any differ-
ences in sequencing depth by comparing the median number of
fragments per sample between groups. This analysis informs the ZI
threshold. Given our initial observations of a 25% difference in frag-
ment counts, we set a 50% threshold (2X the observed sequencing
depth difference) to control for technical artifacts. Tiles that do not
pass either threshold are assigned a DAT P value of NA, and those
passing thresholds are then tested for differential accessibility.

Second, MOCHA tests for differential accessibility as follows.
Denote the percentages of zeroes among samples of the two groups as
ρA and ρB and the corresponding medians of non-zero log2(λj

(1) + 1)
values asμA andμB.MOCHA then testswhether a tile is a DATbasedon
the following hypothesis testing:

Null hypothesis (H0): ρA =ρB and μA =μB

Alternative hypothesis (H1): ρA ≠ρB or μA ≠μB.
MOCHA uses the two-part Wilcoxon (TP-W) test35 to combine

results from the binomial test on ρA and ρB with results from the
Wilcoxon rank-sum test on μA and μB. Since each test statistic can be
transformed to follow a χ21 distribution (i.e., χ21,ρ and χ21,μ), MOCHA

combines them into a single test statistic, i.e., χ22 = χ21,ρ + χ21,μ, and con-

sequently evaluates from it a single P value34. In the absence of zeros,
the TP-W test mathematically reduces to the standard Wilcoxon rank-
sum test.

Finally, to control for multiple testing, MOCHA calculates a
modified q-value to adjust for FalseDiscovery109 for each tile and uses a
default threshold of 0.2 to identify DATs. Since the P values are inflated
near 1 (see Supplementary Fig. 10a), the background is estimated from
P ≤0.95 only.

In addition, MOCHA uses the Hodges-Lehmann estimator110 to
estimate log2(fold change) on chromatin accessibility between the two
sample groups. More specifically, MOCHA first calculates the differ-
ence between each sample pair (one sample each from group A or B)
having non-zero log2(λ

(1) + 1) values and then takes themedian from all
paired differences as an estimate for log2(fold change) between the
two sample groups.

Benchmarking MOCHA with ArchR, Signac, DESeq2, and
DiffChipL on DAA. ArchR’s, Signac’s, DESeq2’s, and DiffChipL’s DA
modules were each run on a single cell count matrix generated from
the same tile set (215,649 tiles) as the COVID19X CD16 monocytes
TSAM. For ArchR, default settings were used, except we modified
maxCells to include all cells (n = 24,744). For Signac, we lowered the
minimum percent detection (pct = 0.001), and the log2FC threshold
(logfc.threshold =0.05) in order to test the full tileset, thus enabling a
full head-to-head comparison. As a close analog of Signac’s tutorial, we
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also set latent.vars to ‘nFrags’ to adjust for sequencing depth. For
DESeq2 and DiffChipL, the single cell matrix was pseudobulked by
sample to generate raw counts, as required for DESeq2’s and Diff-
ChipL’s workflow before running differentials. Default settings for
normalization and differentials were used, in line with both method’s
tutorials.

To assess the false positive rate (FPR, 1 - specificity) of themethods,
we conducted 50 permutation tests in which labels for COVID+ and
COVID- sampleswere randomizedandsignificantDATswere identifiedas
in the real data in each test. All DATs thus identified were considered as
false positives (FPs) and the FPRwas evaluated as the ratio of the number
of FPs to the number of the original DATs from the real data.

Due to a lack of “ground truth”, it is not possible to accurately
evaluate the recall (sensitivity) of the methods. Nevertheless, we esti-
mated a lower bound of the recall by downsampling the samples from
n = 39 to n = 38, 37,…, 30. More specifically, we randomly selected the
targeted number of samples, identified the DATs, and estimated the
recall as the ratio of the number of the newDATs to the number of the
original DATs. We repeated the process 15 times for each targeted
sample size. To save computing time, we limited the analysis to tiles in
chromosome 4 only. Some of the false negatives may be specific to
removed samples, due to disease/human heterogeneity. The loss of
power due to sample size reduction also increases the number of false
negatives. Thus the recall evaluated in the approach is likely a
lower bound.

Power analysiswhendownsampling. We conducted a power analysis
to illustrate the theoretical power loss when reducing the sample size
from n = 39 to n = 30. We first calculated the statistical power of
detecting differences with a moderate effect size (d = 0.5) under an
α=0.05 using a 2-sample t-test (COVID+, n = 17; COVID-, n = 22). We
thendownsampled fromn = 39 ton = 30andcalculated thepowerwith
d = 0.5 and α=0.05 whilemaintaining the COVID+/COVID- sample ratio
as close to 17/22 as possible. Finally, we divided the statistical power at
each n, with the power observed at n = 39, to calculate relative power
loss due to downsampling.

Assessing discriminative power per method. We randomly sub-
sampled 50 DATs from the output of each method, ran K-means
clustering (K = 2), and generated the following confusion matrix to
summarize the predictions.

COVID+ COVID−

Cluster 1 a b a + b

Cluster 2 c d c + d

a + c b + d a + b + c + d

We then calculated Holley’s50G= ða+dÞ�ðb+ cÞ
a+b+ c+d to assess howwell the

50 randomly selectedDATs in separatingCOVID+ andCOVID- samples.
We used |G| for the comparison since it is irrelevant which cluster is
enriched for COVID+ samples.We repeated this process 1,000 times to
obtain a distribution for each method.

DAA runtime comparison. To evaluate each method’s speed in DAA,
we started by testing all 215,649 tiles in the CD16 monocytes TSAM,
and gradually decreased the number of tested tiles. At each down-
sample, we tracked the run time required to identify DATswithin those
randomly selected tiles. The tictoc R package was used to calculate
runtime.

Co-accessibility analysis
MOCHA’s zero-inflated method for CAA. MOCHA applies ZI Spear-
man correlation36,37 to evaluate the co-accessibility of two tiles (e.g., X

and Y) across either cell types or samples based on the corresponding
log2(λ

(1) + 1) values. More specifically, the method first calculates the
standard Spearman correlation on (X,Y) pairs of non-zero data (i.e.,
X > 0 andY >0), denoted as ρS,11, and then adjusts it in the presence of
zeroes in either tile as follows:

ρ*
S =p11p + 1p1 + ρS,11 + 3ðp00p11 � p10p01Þ, ð7Þ

where

p00 = PðX=0,Y=0Þ,

p10 = PðX>0,Y=0Þ,

p01 = P X=0,Y>0ð Þ,

p11 = PðX >0,Y>0Þ,

p + 1 =p01 +p11,

p1 + =p10 +p11,

which quantify how zeros are distributed among the two tiles
across all data points with p00 +p10 +p01 +p11 = 1. In the absence of
zeros, the ZI-Spearman correlation reduces to the standard Spearman
correlation, i.e., ρ*

S = ρS,11. MOCHA makes two modifications to an R
implementation of the method28: 1) The Spearman correlation (ρS,11) is
calculated in C language for optimal computing time and 2) undefined
ZI Spearman correlations (when ρS,11 cannot be calculated) are
assigned toNA rather than replacing themwith the standard Spearman
correlations with zeros treated as normal data.

Benchmarking inter-cell-type co-accessibility. We used a previously
published promoter-capture HiC (pcHiC) resource54 which identified
promoter-enhancer regulatory links. From there, we used the liftOver
R package, version 1.22.0, and the Hg19 to Hg38 conversion file
(hg19ToHg38.over.chain, https://hgdownload.soe.ucsc.edu/gbdb/
hg19/liftOver/) to convert promoter/enhancer loci from HG19 to
HG38. The large HiC windows for Promoters and enhancers were then
tiled into 500bpwindows to generate all potential promoter-enhancer
tile (PET) pairs. We only kept PET pairs when both tiles were identified
as accessible by MOCHA in naive CD4+ and CD8+ T Cells and had
pcHiC evidence supporting their interaction specifically in naive CD4+
and CD8+T cells. We used this final list of 1.2 million PET pairs as a
foreground set of regions that are enriched for biologically relevant
interactions within these cell types. We then generated a background
set of randomly selected pairs of tiles to generate an empirical null
distribution. We calculated the Spearman and ZI-spearman correla-
tions across 17 cell types to identify pairs of regions that are co-
accessible in T cells vs other cell types (17 cell types include B inter-
mediate, B memory, B naïve, CD14 Mono, CD16 Mono, CD4 Effector,
CD4 Naïve, CD8 Effector, CD8 Naïve, DC, HSPC, MAIT, NK, NK Pro-
liferating, NK_CD56bright, OtherT, and Treg). We then used the
Kolmogorov–Smirnov (KS) distance to quantify how well the two
correlation methods separated the PET pairs from the random pairs.
We then calculated an empirical P value for each PET pair based on the
foreground and the empirical null distributions, and then accounted
for multiple comparisons (Benjamini-Hochberg method). A PET pair
was considered as significant if FDR <0.1.
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Pathway enrichment analysis
Pathway enrichment analysis was mostly restricted to the Reactome
pathway database. All genes within the database reference of
TxDb.Hsapiens.UCSC.hg38.refGene from Bioconductor111 were selec-
ted as the background. Over-representation analysis was performed
using WebGestaltR112. We annotated enriched pathways at the highest
level within the Reactome’s database hierarchy. Lower level annota-
tions on immune system pathways were provided to discern adaptive,
innate, and general signaling pathways. Using WebGestaltR, pathway
enrichment analysis was performed once on Wikipathways, Gene
Ontology (Biological Processes, Non-redundant), and KEGG for illus-
trative purposes.

Linkage disequilibrium score regression analysis
Linkage Disequilibrium Analysis was performed using the codebase
from https://github.com/bulik/ldsc and reference files from https://
zenodo.org/records/8292725. GWAS summary statistics were pulled
from EMBL’s GWAS catalog for studies GCST90029015113 (Auto-
immune disease), GCST90038603114 (Immune Aging), and
GCST90043674115 (Abnormal Immune Response). Using the LDSC
scripts, munge_sumstats.py was used to generate summary statistics
files for heritability analysis. Peak calls on 9 cell types (across 3 data-
sets) by all 3methods (total of 27 peaksets) from Fig. 2 were split up by
chromosome for computing efficiency and the make_annot.py was
used to generate an annotation file for each before modeling (Source
Data for Fig. 2). LDSC was then run (--l2 flag) on each bed file of peak
calls using reference files from above, generating a file that could be
used along with the reference baseline LD scores for heritability ana-
lysis on each GWAS summary file. Overlap between methods was then
counted, when the same annotation was enriched in different meth-
od’s peaksets from the same cell type, in the same dataset, and using
the same GWAS study’s results.

Identification of alternatively regulated transcription start sites
We extracted all TSSs from the Transcript database TxDb.Hsa-
piens.UCSC.hg38.refGene found on BioConductor111, and then expan-
ded themupstreamby 125 bp to account for TSSs falling very close to a
tile boundary. We filtered out genes with only one TSS. If alternative
TSSs of the same gene occurred within a user-defined neighborhood
(default: 150 bp) of eachother, we collapsed them into a single TSS.We
then found the intersection between alternative TSSs and the 6211
DATs between COVID+ and COVID- samples in CD16 monocytes. TSSs
that landed on a DAT were assigned with the FDR (q-value) of the
corresponding DATs. We categorized alternatively regulated genes
(ARGs) as

• Type I: A gene had a subset of TSSs showing differential accessi-
bility (FDR <0.2) in the same direction and another subset being
open but not differential.

• Type II: A gene had at least two TSSs showing differential acces-
sibility (FDR <0.2) but in opposite directions.

Motif enrichment analysis on alternatively regulated TSSs and
associated regulatory regions
Motif matching was done using the motifmatchr package and the
CISBP motif database, as provided by the chromVARmotif package
(https://github.com/GreenleafLab/chromVARmotifs). MOCHA uses a
standard hypergeometric test to identify enriched motifs, with a user-
provided foreground and background tile sets. For multi-testing cor-
rections, the resulting p-values were converted into FDRs
(Benjamini–Hochbergmethod). To understand the upstream signaling
mechanisms regulating ARGs, we first applied MOCHA to identify tiles
that were within ±1Mbp of and also co-accessible (inter-sample, ZI-
Spearmancorrelation > 0.5) with the correspondingDATs. TheseDATs
and their co-accessible tiles were selected as the foreground tile set.
For the background tile set, we chose all tiles with TSSs and their co-

accessible tiles that did not overlap with the foreground set. These
foreground and background tile sets were used to calculate CISBP
motif enrichment regulating ARGs.

Ligand-motif set enrichment analysis
TheNicheNet56 databasehas identified links betweenupstream ligands
and downstream transcription factors (TFs) that regulate gene
expression56. Using the sameprinciple as pathwayenrichment analysis,
we designed a Ligand-Motif Set Enrichment Analysis (LMSEA) frame-
work to capture potential drivers of our observed motifs (i.e., ligands
regulate the TFs in our dataset). Specifically, LMSEA tests whether
motifs linked to a ligand of interest are significantly (using hypergeo-
metric test) over-represented in our observed motifs relative to the
ligand’s motif set within NicheNet. The Benjamini and Hochberg (BH)
procedure was used to adjust P values for multiple comparisons. An
FDR value <0.05 was considered significant.

Construction of ligand-transcription factor-gene network
We constructed ligand-TF-gene networks and visualized them using
Cytoscape116. The nodes were ARGs, enriched motifs (TFs), and enri-
ched ligands. Edges were drawn as follows: a motif-gene link was cre-
ated if an enriched TF was found within the TSS-containing DATs of an
ARG or their co-accessible tiles, a ligand-motif link was drawn if a
ligand was known to interact with a TF in NicheNet’s ligand-
transcription matrix.

Longitudinal analysis of COVID-19 response at single-cell level
Grouping COVID+ samples by infection stage. COVID+ samples
(n =69) in the COVID19 dataset were grouped by the corresponding
infection stage, including early infection (1–15 days PSO, n= 21), late
infection (16–30 days PSO, n= 13), and recovery ( > 30 days PSO, n= 35).

Generation of density UMAP. We extracted sample-specific open
tiles on CD16 monocytes for all samples in the full COVID19 dataset
(n = 91). From there, we generated a TSAM by aggregating all tiles
that were called in at least 20% of samples at any infection stage or
uninfected. We extracted the tiles from the resulting TSAM and
added them to the original ArchR project via addPeakSet. We then
generated a single-cell peak matrix from this tile set, using
addPeakMatrix, and used it as input for ArchR’s iterative LSI and
UMAP functions. The LSI was run with default parameters, except for
the number of iterations (5 instead of 2). The UMAP was run on
standard ArchR settings11 on the resulting iterative LSI object. Based
on the resulting single-cell UMAPs, we generated a density plot for
each infection stage or uninfected.

Pseudotime trajectory analysis. We used ArchR’s standardMonocle3
pipeline to conduct a trajectory analysis. We instructed Monocle to
construct a trajectory from cells belonging to samples in the order of
early infection, late infection, recovery, and uninfected. The resulting
trajectory was overlaid on the single-cell UMAP. Following the above
trajectory, three distinct pseudotime heatmaps were generated using
ArchR’s standard protocol and the following input single-cell matrices:
log2-normalized GeneScores, peak (tile) accessibility, and ChromVAR
z-scores. Using ArchR’s functions with default settings, we further
extracted pseudotime-changing elements for each of the three
matrices.

Longitudinal analysis of COVID-19 response at pseudo-bulk level
Longitudinal analysis ofmotif usage. Wemodeled longitudinalmotif
usage using pseudobulk ChromVar motif z-scores. We converted the
TSAM of CD16 monocytes from the COVID19L dataset (n = 69) into a
ChromVAR-compatible object, and then ran ChromVAR on the TSAM-
derived object to generate sample-level motif z-scores. We then
modeled motif usage with the following generalized linear mixed
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effect model (GLMM):

lmerðz ∼Age+ Sex + xi + xi
2 + ð1jSubjectÞ,data=mydataÞ ð8Þ

where xi was the centered days PSO (i.e., days PSO of individual sam-
ples minus the mean days PSO of all samples)117 and ð1jSubjectÞ indi-
cated that random intercepts were used for individual participants.
The P values associated with the linear xi terms were extracted using
the lmerTest package. We converted the P values to FDRs (Benjamini-
Hochberg method) to control multiple testing. Motifs with a FDR <0.1
were considered as significantly changing in time.

Transcription factor network. The activator protein-1 (AP-1) family
network was obtained by subsetting the APID protein-protein interac-
tion database118 down to just the significant AP1-family TFs. Edges
between nodes were included if they were supported by at least four
experiments. The nodes were color-coded using the signs of the cor-
responding coefficient of xi. The networkwasdrawnusingCytoscape116.

Longitudinal analysis of gene promoter accessibility. We collected
promoter tiles from the TSAM of CD16 monocytes in the COVID19L
dataset and modeled their accessibility using either GLMMs or ZI-
GLMMswith the glmmTMBpackage33.More specifically, for promoters
with zeroes, we applied the ZI-GLMM modeling as follows

glmmTMB Log Acc∼Age+ Sex +Time+ ð1jSubjectÞ,ð
zi= ∼0+CellCounts,

data=mydata, f amily = gaussianðÞÞ,
ð9Þ

where Log Acc was short for log2(λj
(1) + 1), Time was days PSO,

ð1jSubjectÞ indicated that random intercepts were used for individual
participants, and ZI was modeled as a function of the total cell counts
in individual samples with no intercept. For promoters without zeroes,
we applied the GLMM modeling as follows

glmmTMB Log Acc∼Age+ Sex +Time+ ð1jSubjectÞ,ð
zi= ∼0,data=mydata, f amily= gaussianðÞÞ, ð10Þ

where the ZI component was omitted. The P values associated with
Time were extracted and converted to FDRs (Benjamini-Hochberg
method) to control multiple testing. Promoters with a FDR <0.1 were
considered as significantly changing in time. For promoters attributed
tomultiple genes, all geneswere included for pathway enrichment and
downstream analyses.

Transcription factor and gene promoter associations
Linking transcription factor to gene promoters. We evaluated whe-
ther motif z-scores were statistically associated with gene promoter
accessibility via ZI-GLMMs as follows

glmmTMB Log Acc∼ z,zi= ∼ z,data=mydata,ð
f amily= gaussianðÞÞ, ð11Þ

where Log Acc was short for log2(λj
(1)+1). All pairs of significantly

changing TFs and significantly changing gene promoters were eval-
uated. We considered a TF and a gene promoter to be associated if the
continuous coefficient of z was statistically significant (P < 0.05)
without adjusting for multiple testing.

Linking transcription factor to innate immune pathways. Using the
TF-gene promoter associations, we calculated the percentage of sig-
nificant genes in an innate immunepathwaybeing associatedwith aTF.
For visualization purposes, the network only displayed an edge
between a TF and a pathway if more than 33% of significant genes in
that pathway were associated with the TF.

Variance decomposition on longitudinal COVID19 dataset
To identify significant covariates for modeling accessibility, we ran
variance decomposition on highly accessible tiles (defined as having at
least 80% non-zero values within any infection stage). We modeled
Age, Sex, time (i.e., days since symptom onset), Batch, and Donor as
random effects using the following formula:

lmerðLog Acc∼ ð1jAgeÞ+ ð1jSexÞ+ ð1jtimeÞ+ ð1jBatchÞ+ ð1jDonorÞ,
data =my data,

f amily= gaussianðÞ,
REML=TÞ

and then we used the relative variances to identify the most influential
factor for each tile.

Modeling zero-inflated associations across covariates
To identify factors associated with high presence of zeroes in scATAC
pseudo bulk data, we ran the following zero-inflated models

glmmTMB Log Acc∼Age+ Sex + time + ð1jPTIDÞ,ð
zi= ∼0+CellCounts +Age+ Sex,data=mydata,

f amily= gaussianðÞ,
REML=TÞ

on all promoter tiles to test whether zeroes were associated with
Cell Counts, Age, and Sex. We extracted the p-values from the
glmmTMB and summarized the associations using the histograms of
the p-values.

Statistics and reproducibility
The datasets used in this manuscript were selected for benchmarking
purposes, and therefore there is no need for sample-size calculation,
randomization, or blinding. No samples were excluded from the ana-
lyses. Any computational data cleaning and processing are described
accordingly.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. The Heal-
thyDonor (GSE190992) and COVID19 (GSE173590) scATAC-seq data-
sets have been deposited in the Gene Expression Omnibus (GEO)
database under accession numbers “GSE190992” and “GSE173590”,
respectively. The corresponding raw data are available via authorized
access at dbGaP under accession number phs003203.v1.p1 and
phs002576.v1.p1, respectively. This mouse dataset used in this study is
available in the GEO database under accession code GSE111586, and
was obtained by downloading from https://atlas.gs.washington.edu/
mouse-atac/. The Hematopoiesis dataset was downloaded from the
ArchR Manuscript Repository. All source data files and corresponding
code for all figures are provided at https://doi.org/10.5281/zenodo.
11459041.

Code availability
MOCHA is a freely available R package in CRAN that can be easily
downloaded using R or RStudio (https://cran.rstudio.com/web/
packages/MOCHA/index.html). MOCHA can be cited with the https://
doi.org/10.5281/zenodo.11459041, which includes the exact MOCHA
version used for thismanuscript. MOCHA can also be found at https://
github.com/aifimmunology/MOCHA119. Code used to generate the
figures can be found at https://github.com/aifimmunology/MOCHA_
manuscript and within the above Zenodo DOI.
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