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Abstract

The heart is an excitable medium which is excited by membrane potential depolarization and 

propagation. Membrane potential depolarization brings in calcium (Ca) through the Ca channels 

to trigger intracellular Ca release for contraction of the heart. Ca also affects voltage via Ca-

dependent ionic currents, and thus, voltage and Ca are bidirectionally coupled. It has been shown 

that the voltage subsystem or the Ca subsystem can generate its own dynamical instabilities which 

are affected by their bidirectional couplings, leading to complex dynamics of action potential 

and Ca cycling. Moreover, the dynamics become spatiotemporal in tissue in which cells are 

diffusively coupled through voltage. A widely investigated spatiotemporal dynamics is spatially 

discordant alternans (SDA) in which action potential duration (APD) or Ca amplitude exhibits 

temporally period-2 and spatially out-of-phase patterns, i.e., APD-SDA and Ca-SDA patterns, 

respectively. However, the mechanisms of formation, stability, and synchronization of APD-SDA 

and Ca-SDA patterns remain incompletely understood. In this paper, we use cardiac tissue models 

described by an amplitude equation, coupled iterated maps, and reaction-diffusion equations with 

detailed physiology (the ionic model) to perform analytical and computational investigations. 

We show that, when the Ca subsystem is stable, the Ca-SDA pattern always follows the APD-

SDA pattern, and thus, they are always synchronized. When the Ca subsystem is unstable, 

synchronization of APD-SDA and Ca-SDA patterns depends on the stabilities of both subsystems, 

their coupling strengths, and the spatial scales of the initial Ca-SDA patterns. Spontaneous (initial 

condition-independent) synchronization is promoted by enhancing APD instability and reducing 

Ca instability as well as stronger Ca-to-APD and APD-to-Ca coupling, a pattern formation caused 

by dynamical instabilities. When Ca is more unstable and APD is less unstable or APD-to-Ca 

coupling is weak, synchronization of APD-SDA and Ca-SDA patterns is promoted by larger 

initially synchronized Ca-SDA clusters, i.e., initial condition-dependent synchronization. The 

synchronized APD-SDA and Ca-SDA patterns can be locked in-phase, antiphase, or quasiperiodic 

depending on the coupling relationship between APD and Ca. These theoretical and simulation 
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results provide mechanistic insights into the APD-SDA and Ca-SDA dynamics observed in 

experimental studies.

I. INTRODUCTION

The function of the heart is to pump blood via mechanical contraction and relaxation. 

Contraction and relaxation of the heart are regulated by intracellular calcium (Ca) which 

rises and decays following the membrane potential depolarization and repolarization cycle. 

This process is called excitation-contraction coupling [1]. On the other hand, the membrane 

potential or voltage is also affected by Ca via Ca-dependent ionic currents, and thus, Ca 

and voltage are bidirectionally coupled. Complex action potential duration (APD) and Ca 

cycling dynamics can occur due to instabilities originating from the voltage subsystem 

(voltage driven) or the Ca subsystem (Ca driven), as well as their bidirectional couplings 

[2]. Alternans, a period-2 behavior, is the most widely investigated nonlinear dynamics 

in cardiac systems, including animal experiments and clinical settings [3–12]. Theoretical 

and simulation studies have shown that alternans can arise from instabilities originating 

from voltage [6,7,13] or Ca cycling [14–20], which can be potentiated or attenuated by 

the bidirectional couplings of the two [21–23]. Both voltage- and Ca-driven alternans have 

been demonstrated in experimental studies [6,24–30]. Since voltage and Ca are coupled, 

voltage-driven alternans can result in Ca alternans, and Ca-driven alternans can result in 

APD alternans. Clinically, alternans manifests in the hearts as either pulsus (mechanical) 

alternans or T-wave (electrical) alternans. Pulsus and T-wave alternans are widely known 

as precursors of lethal ventricular arrhythmias and sudden cardiac death [3,4,9,10,12]. A 

potential mechanism linking alternans to arrhythmias is spatially discordant alternans (SDA) 

[31–37] in which APD or Ca exhibits a temporally period-2 but spatially out-of-phase 

(or antiphase) behavior (see Fig. 1), referred to as APD-SDA and Ca-SDA in this paper, 

respectively. APD-SDA results in large APD gradients, making the tissue susceptible 

to conduction block and formation of spiral waves [31,33] or generation of arrhythmia 

triggers [38]. Therefore, understanding the mechanisms of SDA can provide insights into the 

understanding of cardiac arrhythmogenesis.

The genesis of APD-SDA has been widely investigated in previous studies [33,39–41], 

which mainly focus on the role of conduction velocity (CV) restitution (CVR). CVR is 

an action potential conduction property in which CV changes as the diastolic interval 

(DI) changes due to incomplete recovery of the sodium current or changes in excitability 

[32,33,42,43]. The role of CVR in APD-SDA is supported by some experiments [24,44–

47] but not by others [47–49]. In recent simulation and theoretical studies [50,51], we 

performed systematic analyses on the roles of CVR, tissue heterogeneities, convection 

due to conduction, and nodal line curvature in the genesis and dynamics of APD-SDA, 

which provide additional theoretical insights for those experiments that do not support 

the mechanism of CVR-indued APD-SDA. However, these theoretical studies do not 

consider the condition when Ca-driven alternans is also present. Since Ca and voltage are 

bidirectionally coupled, when APD alternans becomes spatially discordant, Ca alternans 

may also be spatially discordant, or vice versa. Experimental studies [44,48,49,52] have 

shown that during SDA, the nodal lines of APD-SDA may or may not colocalize with 
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those of the Ca-SDA, i.e., the APD-SDA and Ca-SDA may or may not synchronize with 

each other. Figure 1 shows such an example from optical mapping experiments in a rabbit 

heart by Hayashi et al. [44]. In this example, the APD-SDA nodal lines colocalize with the 

Ca-SDA nodal lines in the upper region of the mapping area but not in the lower region. 

In the lower region, there are Ca-SDA nodal rings without corresponding APD-SDA nodal 

rings. This indicates that, in the upper region, the Ca-SDA pattern is synchronized with 

the APD-SDA pattern but not in the lower region. Therefore, there is a key question to 

be addressed: when and how are APD-SDA patterns and Ca-SDA patterns synchronized in 

cardiac tissue?

Answering this question is important for understanding cardiac arrhythmogenesis [53]. 

Since a critical APD gradient is needed for reentry initiation [54–57], synchronization of 

Ca-SDA and APD-SDA patterns is needed for the Ca-driven alternans to result in a large 

enough APD gradient. In other words, since Ca is not directly coupled between cells 

[Fig. 2(a)], it can alternate out-of-phase in space. If Ca is not synchronized in space with 

APD, its effect on APD will be averaged out in space since voltage is diffusively coupled 

between cells. Previous simulation studies have investigated the formation of SDA in the 

presence of Ca-driven alternans [44,58–60], but they have not addressed the question of 

when and how APD-SDA and Ca-SDA patterns can be synchronized. In this paper, we 

perform a systematic theoretical study combined with computer simulations to understand 

the formation and stability of SDA patterns in the presence of both voltage-driven 

instability (or voltage-driven alternans) and Ca-driven instability (or Ca-driven alternans), 

particularly synchronization of the APD-SDA pattern with the Ca-SDA pattern. We use 

three types of mathematical models of different complexity and physiological details, i.e., 

the amplitude equation (AE) model with generic kinetics, the coupled map lattice (CML) 

model incorporating certain physiological properties, and the ionic model (i.e., the rabbit 

ventricular myocyte model by Mahajan et al. [61]) describing the detailed physiological 

processes. Spatiotemporal APD and Ca dynamics in both one-dimensional (1D) cable 

and two-dimensional (2D) tissue models are investigated. Through theoretical analyses 

and computer simulations of these models, we reveal the conditions and mechanisms for 

the formation and synchronization of APD-SDA and Ca-SDA patterns, which provides 

mechanistic insights into the formation and synchronization of the APD-SDA and Ca-SDA 

patterns observed in experimental studies.

II. METHODS AND MATERIALS

A. Mathematical models

The AE model is described in the corresponding section in the Results. Details of the CML 

and ionic models are described in the Appendix.

B. Voltage and Ca coupling

Figure 2(a) is a schematic plot for voltage and Ca coupling and cell-to-cell coupling in 

cardiac tissue. In cardiac tissue, the cells are electrically coupled via ion channels called 

gap junctions. When one cell depolarizes, the voltage differences between this cell and 

its neighbors result in current flows to its neighbors, causing the neighboring cells to 
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depolarize. Although Ca may also pass through the gap junction to cause cell-to-cell 

Ca coupling [62], it is believed that this coupling is very weak, which is omitted in 

computational cardiac tissue models. Here, we also assume that there is no cell-to-cell Ca 

coupling, and the cells are coupled only via voltage.

Ca and voltage are bidirectionally coupled within a cell via the Ca-dependent ionic currents 

as well as Ca-dependent signaling. We refer to the couplings as Ca-to-APD coupling and 

APD-to-Ca coupling, as detailed below.

1. Ca-to-APD coupling—Ca affects APD via Ca-dependent ionic currents or Ca-

dependent signaling which then regulates ionic currents. For example, increasing Ca 

increases Na-Ca exchange current (INCX), which is an inward current, prolonging APD. 

Increasing Ca enhances Ca-dependent inactivation of the L-type Ca current (ICa,L), 

shortening APD. Increasing Ca also increases the slow component of the delayed rectifier 

potassium current (IKs) and the Ca-activated small conductance potassium current (ISK) 

[63,64], which are outward currents activated by Ca , shortening APD. Therefore, increasing 

Ca can either lengthen or shorten APD [Fig. 2(b)], which results in positive Ca-to-APD 

coupling or negative Ca-to-APD coupling, respectively.

2. APD-to-Ca coupling—APD affects Ca mainly in two ways. First, lengthening APD 

affects Ca entry and extrusion via changing ICa,L and INCX, which change the Ca load for 

the next beat. The amount of Ca released is larger for a higher sarcoplasmic reticulum (SR) 

Ca load, and this property is called the refractional release relationship [65,66]. Second, 

lengthening APD shortens DI preceding the next beat, reducing the availability of L-type 

Ca channels as well as that of the Ca release channels, called ryanodine receptors, for 

opening due to incomplete recovery. Furthermore, the SR Ca load may also be affected by 

DI due to refilling from the previous release. These effects together give rise to a property 

called Ca release restitution [67–69]. Therefore, lengthening APD in the present beat can 

either enhance Ca release or reduce Ca release in the following beat [Fig. 2(c)], resulting in 

positive APD-to-Ca coupling or negative APD-to-Ca coupling, respectively.

C. Spatially and electromechanically concordant and discordant alternans

When APD (or Ca) alternates in phase in the whole tissue, it is called spatially concordant 
alternans (SCA). When APD (or Ca) alternates out-of-phase in space, it is called SDA 

(Fig. 3). During alternans, APD and Ca may alternate either in-phase or in antiphase. In 

the in-phase mode, a large Ca corresponds to a long APD, and vice versa, which is called 

electromechanically concordant alternans. In the antiphase mode, a large Ca corresponds 

to a short APD, and vice versa, which is called electromechanically discordant alternans. 

The electromechanically concordant alternans occurs when the Ca-to-APD coupling is 

positive, and electromechanically discordant alternans occurs when the Ca-to-APD coupling 

is negative.

In the AE model, the variables are the amplitudes of APD and Ca alternans. Furthermore, in 

the CML and ionic models, we present most of the results using the alternans amplitudes. 

The APD alternans amplitude Δan  is defined as
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Δan = − 1 nan + 1 − an
2 ,

(1)

in which an is the APD of the nth beat. The prefactor − 1 n maintains the sign of Δan during 

alternans. In other words, the term an + 1 − an  changes sign in a beat-to-beat manner during 

alternans, and the prefactor keeps Δan either positive or negative, unchanged from beat to 

beat. In a SCA, Δan keeps either positive or negative in the whole spatial domain. In a 

steady-state SDA, the sign of Δan remains unchanged in time but changes in space. Here, 

Δan = 0 corresponds to the SDA node. Similarly, one defines the Ca alternans amplitude Δcn

as

Δcn = − 1 ncn + 1 − cn
2 ,

(2)

where cn is the peak value of the Ca concentration of the nth beat. In the real cardiac 

myocytes, the intracellular Ca concentration is on the order of 1μM. For simplicity, we use 

an arbitrary unit for cn and Δcn but use the real unit milliseconds for an and Δan in the AE and 

CML models. The bottom panels of Fig. 3 plot the steady-state patterns of Δan and Δcn from 

the SDA shown in the top and middle panels. The SDA in Fig. 3(a) is electromechanically 

concordant in which the signs of Δan and Δcn are the same, i.e., a positive Δan corresponds to 

a positive Δcn, and a negative Δan corresponds to a negative Δcn. Figure 3(b) shows an SDA of 

electromechanically discordant alternans in which the signs of Δan and Δcn are opposite, i.e., 

a positive Δan corresponds to a negative Δcn, and vice versa.

D. Pacing protocol

In this paper, we pace all cells in the tissue simultaneously, i.e., a global pacing protocol, 

and thus, there is no action potential conduction. As we clarified previously [50,51], this 

protocol is not only physiologically realistic but also a simplified setting that can be helpful 

for understanding the SDA dynamics in the presence of conduction. We will investigate in a 

future study the effects of conduction on the SDA dynamics in the presence of Ca alternans 

using local pacing protocols.

E. Computer simulation methods

Computer simulations are carried out for all three types of models. Numerical simulations of 

1D cable and 2D tissue are carried out using a forward Euler method with Δx = 0.0125
cm and Δy = 0.0125cm. Here, Δt = 0.02ms for the AE model, and Δt = 0.01ms for the 

ionic model are used. Simulations are carried out by GPU (NVIDIA GeForce RTX 3090) 

accelerated computing with CUDA C++.
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III. RESULTS

A. SDA formation and synchronization in the AE model—Theoretical analyses

The advantage of the AE model is that it is relatively simple so that we can perform 

analytical treatments, such as stability analysis and theoretical solutions [40,51,70]. An AE 

model describing voltage-driven SDA dynamics in a 1D cable was derived by Echebarria 

and Karma [40,70]. A similar AE model was developed to describe the effects of voltage 

and Ca coupling on subcellular Ca alternans in single myocytes by Shiferaw and Karma 

[71]. In a recent study [51], we used the AE model to investigate the voltage-driven 

SDA dynamics in tissue models under different conditions, such as repolarization and 

coupling heterogeneities. Here, we extend the AE model to describe the SDA dynamics 

in the presence of Ca-driven alternans by phenomenologically adding an AE describing 

the amplitude of Ca alternans and the bidirectional coupling effects. Using this AE model, 

we can perform stability analyses for both SCA and SDA in cardiac tissue and investigate 

the conditions for synchronization of the APD-SDA and Ca-SDA patterns. The theoretical 

predictions are then examined using both the CML and ionic models which have more 

physiological parameters and details.

1. AE model—Under global pacing, the AE model is described by the following coupled 

partial differential equations:

T ∂Δa
∂t = αΔa − βΔa3 + γΔc + ξ2∂2Δa

∂x2 ,

(3)

T ∂Δc
∂t = ρΔc − εΔc3 + σΔa,

(4)

where T  is the pacing period, and t ≡ nT , with n being the beat number of pacing. In the AE 

model, the alternans amplitude of APD is treated as a time and space continuous variable, 

i.e., Δa x, t . Here, α and β, which are related to the slope of the APD restitution curve 

[40,70], are the parameters determining the stability and amplitude of the APD alternans in 

the absence of Ca-driven alternans. In other words, in the absence of Ca-driven alternans (or 

when Ca and APD are decoupled), when α < 0, no APD alternans occurs. When α > 0, APD 

alternans occurs with the steady-state alternans amplitude Δa = ± α
β . Similarly, ρ and ε are 

parameters determining the stability and amplitude of the Ca alternans. Without APD-to-Ca 

coupling, when ρ < 0, no Ca alternans occurs. When ρ > 0, Ca alternans occurs with the 

steady-state alternans amplitude Δc = ± ρ
ε . In this paper, we fix β = ε = 0.0001 but vary α

and ρ for stability and alternans.

Here, γ in Eq. (3) describes the Ca alternans to APD alternans coupling, and σ in Eq. 

(4) describes the APD alternans–to–Ca alternans coupling, with both couplings assumed 
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to be linear. Note that couplings in Eqs. (3) and (4) are those for Ca and APD alternans 

amplitudes (i.e., Δa and Δc), not the Ca-to-APD coupling and the APD-to-Ca coupling. 

However, as illustrated in Fig. 2(b), for a positive Ca-to-APD coupling, an increase in Ca 

amplitude lengthens APD, which shortens the APD in the following beat due to a shorter DI, 

increasing the APD alternans amplitude (Δa). The increase in Ca amplitude also increases 

the Ca alternans amplitude Δc . Therefore, a positive Ca-to-APD coupling is equivalent to 

a positive γ in Eq. (3). Similarly, a negative Ca-to-APD coupling corresponds to a negative 

γ. For the same argument, a positive APD-to-Ca coupling corresponds to a positive σ in Eq. 

(4), and a negative APD-to-Ca coupling corresponds to a negative σ.

To understand the roles of Ca and APD coupling in the genesis of the spatiotemporal 

dynamics, we first perform a linear stability analysis with the following linearized equations:

T ∂Δa
∂t = αΔa + γΔc + ξ2∂2Δa

∂x2 ,

(5)

T ∂Δc
∂t = ρΔc + σΔa .

(6)

Inserting 
Δa x, t
Δc x, t = Δa0

Δc0
exp ikx + λt  into Eqs. (5) and (6), one obtains the following 

Jacobian:

J =

α − ξ2k2 γ
σ ρ
T ,

(7)

whose eigenvalues are

λk =
α − ξ2k2 + ρ ± α − ξ2k2 − ρ 2 + 4γσ

2T .

(8)

As indicated in Eq. (8), λk depends on γσ. We discuss the three coupling cases 

(γσ = 0, γσ > 0, and γσ < 0) in the sections below.

2. Synchronization of APD-SDA and Ca-SDA patterns when γσ = 0—We first 

deal with a special condition, i.e., γσ = 0. This condition is satisfied when Ca and APD 

are either completely decoupled (γ = 0 and σ = 0) or one-way coupled (γ = 0 and σ ≠ 0
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or γ ≠ 0 and σ = 0). However, if γσ = 0, the eigenvalues in Eq. (8) are decoupled into a 

voltage-dependent one and a Ca-dependent one, i.e.,

λk, 1 = α − ξ2k2
T and λk, 2 = ρ

T .

(9)

Note that λk, 2 is independent of k, which is because Ca is not coupled between cells [Fig. 

2(a)]. Since the case of γ = 0 and σ = 0 (APD and Ca are completely decoupled) is trivial, we 

discuss the other two cases in detail below.

a. γ = 0 and σ ≠ 0.: In this case, the APD is not affected by Ca, but Ca is affected by 

APD. This condition can be satisfied when the Ca-dependent inward and outward currents 

are properly balanced so that changing Ca does not change APD, i.e., γ = 0. Although this 

condition may be difficult to be satisfied in the real system, it still gives us insights for the 

condition when the Ca-to-APD coupling is weak, i.e., when γ is small. When γ = 0, Eqs. (3) 

and (4) become

T ∂Δa
∂t = αΔa − βΔa3 + ξ2∂2Δa

∂x2 ,

(10)

T dΔc
dt = ρΔc − εΔc3 + σΔa x, t .

(11)

One can categorize the system into four conditions:

1. When both the APD and the Ca subsystems are stable (α < 0 and ρ < 0), there is 

no alternans and thus no SDA patterns.

2. When the APD subsystem is stable and the Ca subsystem is unstable (α < 0 and 

ρ > 0), there is no APD alternans, and thus, Δa x, t = 0; the Ca-SDA pattern can 

be any pattern determined by the initial condition.

3. When the APD subsystem is unstable and the Ca subsystem is stable (α > 0 and 

ρ < 0), the Ca-SDA pattern passively follows the APD-SDA pattern.

4. When both subsystems are unstable (α > 0 and ρ > 0), the Ca-SDA pattern can 

be dyssynchronous or synchronized to the APD-SDA pattern, which can be 

understood as follows. Under this condition, the steady-state Ca-SDA pattern is 

determined by the solutions of f Δc = 0, in which

f Δc = ρΔc − εΔc3 + σΔa .

(12)
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Here, f Δc = 0 can exhibit either three real solutions or one real solution [Fig. 

4(a)], and the transition occurs when σcΔa = 4ρ3
27ε  or in another form:

σc = 4
27ρ Δc

Δa = 4ρ3β
27εα ,

(13)

in which Δa = ± α
β  and Δc = ± ρ

ε  are the steady-state alternans amplitudes of 

a single cell. Note that Eq. (13) is valid only for α > 0 since Δa = 0 for α ⩽ 0. 

When σ > σc , f Δc = 0 has one real solution, otherwise, there are three real 

solutions. When there are three solutions, Δc of a cell can be either the positive 

or negative solution depending on the initial condition. Under this condition, 

the Ca-SDA pattern can be arbitrary, independent of the APD-SDA pattern and 

determined solely by the initial condition [left panel in Fig. 4(b)]. When there 

is only one solution, Δc follows the same sign of Δa, and thus, the Ca-SDA 

pattern synchronizes to the APD-SDA pattern [right panel in Fig. 4(b)]. Note 

that, in the nodal region, Δc still varies from cell to cell, which is because Δa is 

too small to synchronize Δc, as indicated by Eq. (13). Therefore, when σ > σc , 

synchronization of the Ca-SDA pattern to the APD-SDA pattern occurs, except 

in the nodal region where Δa  is small.

In cardiac myocytes, stochastic opening of ion channels causes random fluctuations in both 

APD and Ca. However, due to the cell-to-cell coupling, the fluctuations in APD become 

small in cardiac tissue [72]. On the other hand, the random fluctuations in Ca can be very 

large [73–77] due to criticality [17,78]. We hypothesize that the random noise can lower the 

threshold of synchronization, i.e., the noise in Ca can promote synchronization of Δc x, t  to 

Δa x, t . We demonstrate this by adding noise to the system. Since the random fluctuation 

in APD is small, we only add noise to Ca, i.e., we add noise to Eq. (11) but not Eq. (10). 

Furthermore, for simplicity, we add Gaussian white noise to Eq. (11), i.e.,

T dΔc
dt = ρΔc − εΔc3 + σΔa + η t ,

(14)

where η t  is the Gaussian white noise satisfying η t = 0 and η t η t′ = 2Dδ t − t′ . 

Here, D is the noise strength. The corresponding Fokker-Planck equation describing the 

probability of Δc p Δc  is ∂p
∂t = − ∂f Δc p

∂Δc + D ∂2p
∂Δc2 . The steady-state solution of the Fokker-

Planck equation is expressed as [79]

p Δc ∝ exp − U Δc
D ,

(15)
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in which U Δc = − ρ
2Δc2 + ε

4Δc4 + σΔaΔc is a double-well potential. When σΔa = 0, the 

probability distribution is symmetric for the two potential wells. When σΔa ≠ 0, one 

potential well is higher than the other, which causes the transition of Δc from the higher 

to the lower potential well, synchronizing the Ca-SDA pattern to the APD-SDA pattern. For 

example, for the case of σ = 0.1 in Fig. 4(b), adding noise causes the Ca-SDA pattern to 

synchronize to the one-node APD-SDA pattern [Fig. 4(c)].

To quantify the degree of synchronization between the APD-SDA pattern and the Ca-SDA 

pattern, we define a synchronization index as follows:

Svc t = 1
L i = 1

L
sgn Δa i, t sgn Δc i, t ,

(16)

where L is the length of the cable (the total number of cells). A perfectly synchronized 

Ca-SDA pattern with an APD-SDA pattern gives rise to Svc = 1 for electromechanically 

concordant SDA and Svc = − 1 for electromechanically discordant SDA. Figure 4(d) plots 

Svc vs the noise strength, showing that, when the noise is weak, no synchronization occurs, 

but once the noise is strong enough, synchronization occurs. However, the synchronization 

weakens as the noise strength increases due to the increased probability of the transitions 

from the lower potential well to the higher one.

b . γ ≠ 0 and σ = 0.: In this case, Ca is not affected by APD, but APD is affected by Ca. 

This condition can be more easily satisfied in the real system. For example, this condition 

can be satisfied at slow pacing rates since the Ca channels, ryanodine receptors, and SR Ca 

load are all recovered before the next beat so that Ca is not affected by the change of APD in 

the previous beat. Under this condition, Eqs. (3) and (4) are then reduced to:

T ∂Δa
∂t = αΔa − βΔa3 + γΔc x, t + ξ2∂2Δa

∂x2 .

(17)

When the Ca subsystem is stable ρ < 0 , i.e., there is no Ca-driven alternans, then 

Δc x, t = 0; Eq. (17) exhibits a front solution in an infinite spatial domain as [51]

Δa x, t = α
β tanh α

2ξ2x .

(18)

In this case, the node dynamics is determined solely by voltage, predicted by λk, 1, which 

has been investigated in detail in our previous analysis [51]. When the Ca subsystem is 

unstable ρ > 0 , Eq. (17) cannot be solved analytically in general. We first consider a special 
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case in which we assume that the Ca alternans is spatially concordant, i.e., Δc x, t = Δc is a 

constant. Then Eq. (17) has the following solution in an infinite spatial domain:

Δa x, t ∝ tanh α′
2ξ2 x − v γΔc t ,

(19)

in which ν γΔc  is the front (or node) velocity as a function of γΔc. The velocity is positive 

if γΔc is positive or vice versa. This implies that, if the Ca alternans is spatially concordant 

(i.e., Ca-SCA), an initial node in APD alternans will eventually drift off the tissue, resulting 

in an APD-SCA pattern. In other words, if Ca alternans is spatially concordant, APD 

alternans must be spatially concordant.

However, when the Ca alternans is spatially discordant (i.e., Ca-SDA), the APD-SDA 

patterns are more complex, i.e., the APD-SDA can be either synchronized or desynchronized 

to the Ca-SDA pattern depending on the spatial scale of the Ca-SDA pattern and the 

coupling strength γ. As shown in our previous analysis [51], in homogeneous tissue without 

Ca-driven alternans, the stability of the APD-SDA node is neutral. However, in the presence 

of Ca-driven alternans, the APD-SDA node in homogeneous tissue may become stable or 

anchored to the Ca-SDA node, as explained in Fig. 5(a). We assume a Ca-SDA pattern 

with a single node [red curve in Fig. 5(a)]. If the initial node of the APD-SDA is in the 

left of the Ca-SDA node, based on Eq. (19), the APD-SDA node will drift toward the 

right since γΔc > 0. If the initial APD-SDA node is in the right of the Ca-SDA node, 

then it will drift toward the left since γΔc < 0. The final APD-SDA state is that its node 

is completely aligned with the Ca-SDA node, synchronizing to the Ca-SDA pattern. The 

theoretical scenario is demonstrated in simulations of the AE model as an example shown 

in Fig. 5(b). However, the synchronization of the APD-SDA pattern to the Ca-SDA pattern 

depends on the coupling strength γ and the spatial scale of the Ca-SDA pattern, i.e., the 

size of the synchronized clusters in Ca-SDA pattern. When the spatial scale of the Ca-SDA 

pattern is large, APD-SDA synchronizes to the Ca-SDA [e.g., Fig. 5(c)], but when the spatial 

scale is small, they do not synchronize [e.g., Fig. 5(d)]. Figure 5(e) plots Svc vs the spatial 

scale of the given Ca-SDA patterns, showing that the degree of synchronization increases 

with the increase of the spatial scale of Ca-SDA.

The case shown in Fig. 5 is for γ > 0, but the results still hold for γ < 0. The difference 

is that, for γ > 0, the SDA patterns are electromechanically concordant, but for γ < 0, the 

SDA patterns are electromechanically discordant. Moreover, the results will also hold for 

periodic boundary conditions. Note that the number of nodes can be either even or odd under 

open boundary conditions, but it must be even for periodic boundary conditions due to the 

required symmetry [i.e., Ca (or APD) must be equal at the two boundaries]. Like the case 

of open boundary conditions, if there is no Ca-SDA, then the APD-SDA nodes are unstable, 

which will disappear by drifting toward each other and annihilate, leading to APD-SCA. 

When Ca alternans is discordant, then the APD-SDA will synchronize or desynchronize to 

the Ca-SDA the same ways as shown in Fig. 5.
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3. Synchronization of APD-SDA and Ca-SDA patterns when γσ > 0—This 

condition is satisfied when γ > 0 and σ > 0 or γ < 0 and σ < 0. Since γσ > 0, the eigenvalues 

in Eq. (8) are always real. As λk < 0 changes to λk > 0, a pitchfork bifurcation occurs, leading 

to alternans. Figure 6(a) plots the stability boundaries [λk = 0 for the larger of the two 

eigenvalues of Eq. (8)] for different k values. The spatial modes are unstable λk > 0  above 

(or to the right of) the boundaries. As k increases, the stability boundary moves uprightward, 

indicating that high spatial modes are more stable. As k ∞, the boundary becomes vertical 

at ρ 0, which indicates that, for ρ > 0, all modes are unstable. Therefore, for ρ < 0, the 

number of nodes of a cable is largely determined by the mode stability, as investigated in 

detail in our previous study [51]. For ρ > 0, i.e., the Ca subsystem is unstable, since all the 

linear modes are unstable, any pattern is possible. However, due to the coupling between 

cells and between APD and Ca, as well as nonlinear interactions, the spatial patterns cannot 

be completely arbitrary, which depend on the stabilities of the APD and Ca subsystems, the 

coupling strength, and the initial conditions.

Figures 6(b)–6(e) show some representative steady-state SDA patterns for the same set of 

α and ρ values (α = ρ = 0.5). Figures 6(b) and 6(c) show a single-node and a high spatial 

periodicity SDA using spatially periodic initial conditions, respectively. As the number of 

nodes increases, the magnitudes of APD alternans are attenuated. Figures 6(d) and 6(e) 

show SDA from random initial conditions with strong and weak APD-to-Ca coupling, 

respectively. Under strong coupling, synchronous APD-SDA and Ca-SDA patterns form 

spontaneously although the initial conditions are purely random. When the coupling is weak, 

APD-SDA and Ca-SDA becomes dyssynchronous. The mechanisms of pattern formation 

and synchronization of the SDA patterns can be understood based on the simple cases 

of γ = 0 (Fig. 4) and σ = 0 (Fig. 5). An APD-SDA pattern forms first because of the 

heterogeneous initial condition and spatial mode instability, which then synchronizes the 

Ca-SDA pattern via the mechanism described in Fig. 4. Once they are synchronized, the 

Ca-SDA pattern stabilizes the nodes via the mechanism described in Fig. 5.

Figure 6(f) shows Svc vs σ from simulations done the same way as in Figs. 6(d) and 6(e). 

Synchronization occurs when σ is greater than a certain value, as predicted by Eq. (13). Note 

that Eq. (13) is only valid for γ = 0, which predicts σc = 0.192 for the α and ρ values used. 

Since γ > 0 in Fig. 6(f), the σ value for synchronization is smaller, indicating that positive 

Ca-to-APD coupling enhances synchronization [see also the comparison of the boundary for 

γ = 0 (white line) with the boundary from the simulation for γ > 0 in Fig. 6(g)]. As indicated 

by Eq. (13), the synchronization of APD-SDA and Ca-SDA depends on α and ρ [Fig. 6(g)], 

i.e., the stabilities of the voltage and Ca subsystems. When ρ < 0, i.e., the Ca subsystem is 

stable, Ca-SDA and APD-SDA are always synchronized. When ρ > 0, i.e., the Ca subsystem 

is unstable, spontaneous synchronization is promoted by increasing α and/or decreasing ρ. In 

other words, larger APD alternans and/or smaller Ca alternans potentiates synchronization, 

which is implied in Eq. (13) σc ∝ Δc
Δa . In the region where spontaneous synchronization 

fails [green region in Fig. 6(g)], synchronization can be enhanced by increasing the spatial 

scale of the initial Ca-SDA pattern [Fig. 6(h)] via the mechanism as shown in Fig. 5.

Huang et al. Page 12

Phys Rev E. Author manuscript; available in PMC 2024 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The same applies to the condition of σ < 0 and γ < 0 except that the SDA patterns are 

electromechanically discordant.

4. SDA dynamics when γσ < 0—In this case, Ca-to-APD coupling is negative, and 

APD-to-Ca coupling is positive (γ < 0 and σ > 0), or vice versa (γ > 0 and σ < 0). Since 

γσ < 0, the eigenvalues in Eq. (8) can be either real or a pair of complex conjugates, and 

thus, the system can undergo a pitchfork bifurcation or a Hopf bifurcation. A pitchfork 

bifurcation leads to alternans, and a Hopf bifurcation leads to quasiperiodic behavior. Figure 

7(a) shows the stability boundaries in the α − ρ plane for different spatial modes (k values) 

of the steady state. The arc lines are the pitchfork bifurcations, and the straight ones are the 

Hopf bifurcations which are determined by ρ = − α − ξ2k2  and γσ < − α − ξ2k2 − ρ 2/4. 

The stability boundary for k = 0 is the same as for the single cell, which has been 

investigated in the previous studies [21,22]. It has been shown that the alternans can be 

electromechanically concordant in which APD and Ca alternate with their phases locked 

in-phase, electromechanically discordant in which APD and Ca alternate with their phases 

locked antiphase, or electromechanically quasiperiodic in which APD and Ca alternate with 

their phases changing quasiperiodically.

Because of the complex cellular alternans dynamics, the spatiotemporal dynamics in 

tissue become more complex. Figures 7(b)–7(d) show three characteristic SDA patterns: 

electromechanically concordant, discordant, and quasiperiodic alternans in the 1D cable. 

However, the stability boundary shifts upward and leftward as k increases, resulting in 

intersections of the stability boundaries for different k values. This differs from the γσ > 0
case, in which there are no intersections of the stability boundaries for different k values. 

The intersection of the stability boundaries results in more complex dynamics in the 

cable. For example, in the location marked by the triangle in Fig. 7(a), it predicts that 

the uniform mode k = 0  is stable, but a nonuniform mode is unstable. Examples of this 

case are shown in Fig. 7(e) in which the homogeneous solution is stable (no alternans) 

but the inhomogeneous initial condition leads to a multiple-node and electromechanically 

discordant SDA. In the location marked by the black square, the low-k modes are 

quasiperiodic, but the high-k modes are stable. Figure 7(f) shows an example in which a 

single-node (low-k mode) SDA is quasiperiodic, but a multiple-node (high-k mode) pattern 

is stable. If one uses random initial conditions with different spatial scales, patterns of a 

mixture of quasiperiodic and stable alternans can coexist.

The results in Fig. 6 are for SDA dynamics vs α and ρ for positive coupling, and those in 

Fig. 7 are for negative coupling. Figure 8 shows Svc in the σ − γ plane for α = 0.5 and ρ = 0.5
for which both the APD subsystem and the Ca subsystem are unstable. Figure 8(a) is the 

color map of Svc for pure random initial conditions, and Fig. 8(b) is that for a larger spatial 

scale of the initial conditions. When γσ > 0, APD-SDA and Ca-SDA are synchronized when 

σ > σc , and the SDA patterns are electromechanically discordant when γ < 0 (lower-left 

quadral, Svc ≈ − 1) and electromechanically concordant when γ > 0 (upper-right quadral, 

Svc ≈ 1). When γσ < 0, APD-SDA and Ca-SDA are synchronized but in quasiperiodic modes 

when σ > σc . Because of this, the Svc map (calculated at the last pacing beat) looks random 
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since the APD-SDA and Ca-SDA are in different phases of quasiperiodicity at the last 

beat for different parameter sets. When σ < σc , APD alternans exhibits no effects on 

Ca alternans; the synchrony between APD-SDA and Ca-SDA is poor. In this region, the 

synchrony is enhanced by increasing the spatial scale of the initial condition [Fig. 8(b)] via 

the mechanism of synchronization (due to APD-to-Ca coupling) shown in Fig. 5.

In summary, the AE model demonstrates that there are two ways in which the APD-SDA 

and Ca-SDA patterns can be synchronized. The first one is spontaneous synchronization 

caused by strong APD-to-Ca coupling. In this mechanism of synchronization, the SDA 

patterns are selected by the APD-SDA patterns which are determined by the spatial mode 

instability and the initial conditions. This mechanism of synchronization is promoted by 

strong APD instability. The second one is the initial condition-dependent synchronization 

in which synchronization is promoted by increasing the spatial scale of the initial Ca-SDA 

patterns. This mechanism of synchronization is promoted by strong Ca instability. Once the 

system is synchronized, the APD-SDA and Ca-SDA may be locked into electromechanically 

concordant, discordant, and quasiperiodic patterns depending on the coupling relationships.

B. SDA dynamics in the 1D CML model

To examine the theoretical predictions of the AE model under more physiological 

conditions, we use a CML model formulated based on previous studies [51,80], described 

in detail in the Appendix. This model contains physiological parameters, such as APD 

restitution, fractional Ca release, and Ca release restitution, allowing us to directly link the 

dynamics to physiological parameters. We vary the following parameters: the slope of the 

APD restitution [controlled by τa in Eq. (A6)], the slope of the fractional release [controlled 

by β in Eq. (A7)], and the APD and Ca coupling strengths γ and σR [see Eqs. (A1) and (A9)]. 

Note that σR determines the APD-to-Ca coupling in the CML model, which is equivalent to 

σ in the AE model but not identical since σR affects the stability of Ca in the CML model. 

As shown in Eq. (A9) q dn = 1 − σRexp −dn/τq , the APD-to-Ca coupling becomes weaker 

as the pacing period T  is longer. When T  is very long (and thus, dn is very large), q dn 1; 

APD-to-Ca coupling vanishes. Therefore, at slow pacing, changing APD (and thus DI) has 

little or no effect on Ca release, which corresponds to γσ ≈ 0 in the AE model. However, 

as the pacing period T  decreases (dn becomes smaller), the term σRexp −dn/τq  has a bigger 

effect, thus enhancing the APD-to-Ca coupling. In the CML model, the APD-to-Ca coupling 

is always positive since lengthening APD shortens DI, resulting in a smaller q dn  and thus 

a smaller Ca [see the definition of positive APD-to-Ca coupling in Fig. 2(c)]. Therefore, the 

sign of γ determines the coupling between APD and Ca.

For γ > 0, the coupling is positive, corresponding to γσ > 0 in the AE model. Figure 9(a) 

shows the stability boundary in the τa − β plane for the single cell (or k = 0 mode) for 

γ = 0.002. The system is stable (no alternans) when both τa and β are large. Figures 9(b) 

and 9(c) show two spatial patterns of alternans with a single node and multiple nodes, 

respectively. Figures 9(d) and 9(e) show SDA patterns from random initial conditions with 

strong and weak coupling, respectively. The APD-SDA and Ca-SDA are synchronized 

(except in the nodal region) when the APD-to-Ca coupling is strong [Fig. 9(d)] but not when 

the coupling is weak [Fig. 9(e)]. The case in Fig. 9(d) is like that in Fig. 6(d), in which the 
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APD-SDA forms first and then synchronizes the Ca-SDA pattern to it. Figures 9(f) and 9(g) 

show Svc vs σR and Svc vs T , respectively. Synchronization occurs when σR is greater than 

a critical value, agreeing with the AE model (Fig. 6). The dependence of synchronization 

on T  is more complex. Here, Svc is low for < 250ms, high for 250 < T < 285ms, low again 

for 285 < T < 320ms, and finally, high for T > 320 ms. This can be understood based on the 

insights for AE model as follows. Based on Eq. (13), σc ∝ Δc
Δa , and thus, synchronization 

tends to occur when Δc is small and Δa is large for a fixed σ. For T < 250ms, Δa is relatively 

small, but Δc is larger [Fig. 9(h)], and thus, the ability of APD-SDA to synchronize Ca-SDA 

is not strong enough. However, as T  increases, Δa increases while Δc decreases, and when T
is large enough [shaded region in Fig. 9(h)], Δa is large enough to synchronize Δc, causing 

spontaneous synchronization. As T  increases further, Δa decreases again, which may be 

too small to synchronize Δc. As > 320ms, both APD and Ca are stable; the system always 

synchronizes. Note that, as in the AE model, when σR is small (or T  is short), spontaneous 

synchronization fails, but the APD-SDA and Ca-SDA patterns can still be synchronized if 

the spatial scale of the initial Ca-SDA pattern is large.

For γ < 0, the coupling is negative. Figure 10(a) shows the stability boundary in the τa − β
plane for the single cell (or the k = 0 mode) for γ = − 0.002. Unlike in the AE model in 

which one can calculate the stability boundaries easily for any k, it becomes nontrivial for 

the CML model. We numerically determine the three regions of alternans behaviors for 

k = 0: the electromechanically concordant, discordant, and quasiperiodic alternans regions, 

which are marked by different colors. Figures 10(b)–10(f) show steady-state patterns or 

space-time plots for different initial conditions and different parameter sets marked by the 

symbols in Fig. 10(a). The behaviors are almost identical to those predicted by the AE 

model shown in Fig. 7.

C. SDA dynamics in a 1D cable of the rabbit ventricular myocyte model

To further examine the theoretical predictions in physiologically detailed ionic models, we 

carry out 1D cable simulations using the rabbit ventricular myocyte model by Mahajan et 
al. [61]. Figure 11(a) is a bifurcation diagram showing APD and peak Ca vs pacing period 

T . Alternans occurs when T < 230ms. Figures 11(b)–11(f) show different SDA patterns 

resulting from different initial conditions for T = 180ms. In Figs. 11(b) and 11(c), the initial 

conditions are periodic. In Figs. 11(d)–11(f), the initial conditions are random with different 

spatial scales. In the cases of random SDA patterns, the Ca-SDA and APD-SDA patterns 

are synchronized when the spatial scale is large but become dyssynchronous when it is 

small. These features are the same as for the AE and CML models. Since the APD and Ca 

coupling is positive, we do not observe electromechanically discordant and quasiperiodic 

SDA patterns in this ionic model. We also do not observe spontaneous synchronization with 

pure random initial conditions, indicating that the voltage-driven instability in this model is 

either absent or not strong enough to promote spontaneous synchronization. The instability 

leading to alternans in the model is mainly Ca driven.
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D. Nodal line dynamics and SDA pattern synchronization in 2D tissue models

SDA nodes form nodal lines in 2D tissue. When the nodal lines are straight, they behave 

the same way as the SDA nodes in 1D cable. However, nodal lines can become curved in 

2D tissue (such as the ones shown in Fig. 1), and a question arising is how the curvature 

affects the stability of the nodal lines and the SDA dynamics. As shown in our previous 

studies [50,51], in the absence of Ca alternans, the SDA nodes or nodal lines are marginally 

stable in homogeneous tissue. Curved nodal lines or nodal rings are unstable, which become 

straight or shrink and disappear unless the tissue is heterogeneous. Here, we investigate the 

effects of nodal line curvature on nodal line stability and synchronization of SDA patterns in 

2D homogeneous tissue in the presence of Ca alternans. We extend the AE model into 2D 

tissue as

T ∂Δa
∂t = αΔa − βΔa3 + γΔc + ξ2 ∂2Δa

∂x2 + ∂2Δa
∂y2 ,

(20)

T ∂Δc
∂t = ρΔc − εΔc3 + σΔa .

(21)

First, we consider the stability of a nodal ring, and for the purpose of theoretical argument, 

we consider a special case in which there is no APD-to-Ca coupling σ = 0 . We further 

simplify the condition by assuming that the Ca alternans is spatially concordant and in 

steady state, i.e., Δc x, y, t = Δc. We transform Eq. (20) into a polar coordinate system, 

which becomes

T ∂Δa
∂t = αΔa − βΔa3 + γΔc + ξ2

r
∂Δa
∂r + ξ2∂2Δa

∂r2 ,

(22)

T ∂Δc
∂t = ρΔc − εΔc3 .

(23)

Assuming an initial APD-SDA nodal ring of radius r, one can obtain an eikonal-curvature 

equation for the node speed as [51]

cnode = ν γΔc
T − ξ2

Tr ,

(24)
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where cnode is the velocity of the APD-SDA node, and the first term is caused by Ca-to-APD 

coupling and the second term by curvature. The sign of v γΔc  depends on the sign of γΔc. 

If v γΔc < 0, the effect of Ca-to-APD coupling and that of curvature are in synergy. If 

ν γΔc > 0, the two effects compete, and there is a critical radius at which cnode = 0, which 

gives rise to

rc = ξ2
v γΔc .

(25)

In other words, the drifting direction of the nodal ring depends on its radius. Now we 

consider that there is a nodal ring in Ca alternans. As depicted in Fig. 12(a), v γΔc  is 

positive on one side and negative on the other side of the node. Therefore, if the initial APD 

nodal ring is outside the Ca nodal ring, the force from the curvature and the one from the Ca 

alternans are in synergy, pulling the APD-SDA nodal ring toward the Ca-SDA nodal ring. If 

the initial APD nodal ring is smaller than the Ca nodal ring, then the two forces compete. 

Therefore, depending on the strength of the two forces, the APD-SDA nodal ring can either 

expand to move toward the Ca-SDA nodal ring and stabilize or shrink to disappear. Based 

on Eq. (24), when the APD-SDA nodal ring radius is larger than rc, it will synchronize to 

the Ca-SDA nodal ring if the Ca-SDA nodal ring is larger than rc. When the APD-SDA 

nodal ring radius is smaller than rc, it will shrink and disappear no matter what the Ca-SDA 

nodal ring radius is. However, in the presence of APD-to-Ca coupling (σ ≠ 0), the nodal ring 

dynamics becomes more complex, which is demonstrated in the AE and ionic models below.

To verify the theoretical argument, we carry out numerical simulations of the AE model 

[Eqs. (20) and (21)]. Figure 12(b) shows rc vs σ obtained from the simulations. Here, rc

remains unchanged for σ < 0.19 but then increases almost linearly with σ. When σ is smaller 

than the critical value, the APD-SDA nodal ring synchronizes with the Ca-SDA nodal ring if 

both ring radii are greater than rc or disappears when either the APD-SDA or Ca-SDA nodal 

ring radius is smaller than rc [Fig. 12(c)]. The Ca-SDA nodal ring can be any size larger than 

the critical size and remains unchanged in time. These behaviors are the same as predicted 

by the simplified condition [Fig. 12(a)]. When σ is greater than the critical value, APD-SDA 

and Ca-SDA nodal rings will synchronize if their radii are greater than rc, but the final ring 

radius depends on the initial ring sizes and the coupling strength. When either of their radii 

is smaller than rc, both nodal rings disappear [Fig. 12(d)]. Note that the critical σ value is 

the same as the one when Ca-SDA is synchronized to APD-SDA via APD-to-Ca coupling, 

which is determined by Eq. (13). Inserting α = 0.5, β = 0.0001, ρ = 0.5, and ε = 0.0001 into 

Eq. (13), one obtains σc = 0.192, agreeing with the simulation results.

To further investigate the synchronization of APD-SDA and Ca-SDA patterns in 2D tissue, 

we carry out simulations of the AE model using random initial conditions with different 

block sizes of both Δa and Δc. Figure 13(a) shows Svc vs σ for different spatial scales 

of the initial SDA pattern. When σ > 0.19, APD-SDA and Ca-SDA become synchronized 

(Svc ≈ 1), almost independent of the spatial scales of the initial pattern. Figure 13(b) shows 
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an example of the synchronized SDA patterns in which the APD-SDA and Ca-SDA nodal 

lines colocalize and the nodal lines are stable and curved. Under this condition, no small 

nodal rings can exist, as predicted by the nodal ring results in Fig. 12. When σ < 0.19, APD-

SDA and Ca-SDA are either completely desynchronized (Svc ≈ 0) or partially synchronized 

0 < Svc < 1 . The degree of synchrony is better (Svc is larger) for a larger spatial scale of 

the initial SDA pattern. Figure 13(c) shows an example of a SDA pattern, in which the 

APD-SDA nodal lines colocalize with Ca-SDA nodal lines, but there are several other 

Ca-SDA nodal rings without corresponding APD-SDA nodal rings. This behavior is the 

same as in the rabbit heart experiments shown in Fig. 1.

The results shown in Figs. 12 and 13 are for the condition in which both APD and Ca 

are unstable. If we use α = − 0.5 and ρ = 0.5 for which the APD subsystem is stable and 

the Ca subsystem is unstable, then the nodal ring dynamics and APD-SDA and Ca-SDA 

synchronization differ from the case in Figs. 12 and 13. Figures 14(a) and 14(b) show the 

results in which two Ca-SDA nodal rings are set initially, but only one APD-SDA nodal ring 

can exist, which colocalizes with the large Ca-SDA nodal ring. This behavior is independent 

of the APD-to-Ca coupling strength. Figure 14(c) shows Svc vs σ for different spatial scales 

of the initial SDA pattern, showing that the synchrony does not depend on σ but only on the 

spatial scale of the initial condition. Figures 14(d) and 14(e) show two examples of the SDA 

patterns resulting from two initial conditions, respectively. For the large spatial scale [Fig. 

14(d)], the APD-SDA and Ca-SDA patterns are well synchronized. For the small spatial 

scale [Fig. 14(e)], however, the synchrony is much reduced because there are very small 

spatial scales in the Ca-SDA pattern but not in the APD-SDA pattern due to cell-to-cell 

coupling.

We then carry out simulations of 2D tissue using the rabbit ventricular myocyte model. 

Figures 15(a) and 15(b) show the nodal ring behavior, which is identical to that shown in 

Fig. 14. Figures 15(c)–15(e) show example SDA patterns resulting from random initial 

patterns of different spatial scales, agreeing completely with those shown in Fig. 14, 

i.e., synchronization occurs when the spatial scales are large but not for the small ones. 

Moreover, the SDA patterns always remain the same as the initial Ca-SDA patterns (note 

that, in Figs. 14 and 15, the Ca-SDA patterns are composed of discretized square boxes that 

are the same as their initial conditions, while the APD-SDA patterns are smoothed due to 

cell-to-cell coupling). Agreeing with the 1D cable results in Fig. 11, the 2D results in Fig. 

15 imply that, in the rabbit ventricular myocyte model, alternans is mainly caused by the 

Ca-driven instability.

IV. SUMMARY AND DISCUSSION

In this paper, we investigate the mechanisms of formation and stability of the SDA dynamics 

and synchronization of APD-SDA and Ca-SDA patterns in cardiac tissue models in the 

presence of both voltage- and Ca-driven instabilities and the effects of Ca and voltage 

coupling. We show that, when the Ca subsystem is stable, the Ca-SDA pattern always 

follows the APD-SDA pattern, and thus, they are always synchronized. When the Ca 

subsystem is unstable, synchronization of APD-SDA and Ca-SDA patterns depends on the 

stabilities of both subsystems, their coupling strengths, and the spatial scales of the initial 
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Ca-SDA patterns. Spontaneous (initial condition independent) synchronization is promoted 

by enhancing APD instability and reducing Ca instability as well as stronger Ca-to-APD 

and APD-to-Ca coupling, a pattern formation caused by dynamical instabilities. When Ca 

is more unstable and APD is less unstable or APD-to-Ca coupling is weak, synchronization 

of APD-SDA and Ca-SDA patterns is promoted by larger initially synchronized Ca-SDA 

clusters, i.e., initial condition-dependent synchronization. The synchronized APD-SDA and 

Ca-SDA patterns can be locked in-phase, antiphase, or quasiperiodic depending on the 

coupling relationship between APD and Ca. Unlike the case of absence of Ca-driven 

instability in which curved nodal lines are unstable [50,51], curved nodal lines can be stable 

in homogeneous tissue when Ca-driven alternans exists.

The theoretical and simulation results provide mechanistic insights into APD-SDA and 

Ca-SDA dynamics observed in experimental studies. Based on our theoretical insights, 

when there is no Ca-driven instability, the APD-SDA and Ca-SDA patterns are always 

synchronized. One can imply that Ca is unstable in those experimental settings [44,48,49] in 

which Ca-SDA and APD-SDA patterns are desynchronized (e.g., Fig. 1). Moreover, that the 

large spatial scales in the Ca-SDA pattern desynchronize with the APD-SDA pattern in these 

experiments indicate that the Ca and voltage subsystems may be both unstable (see Fig. 13) 

since, when either of the two subsystems is stable, APD-SDA and Ca-SDA will tend to be 

synchronized when the spatial scale of the synchronized clusters of Ca-SDA pattern is large 

(Figs. 14 and 15).

The mechanistic insights from this paper provide a better understanding of the roles of 

Ca-driven alternans in cardiac arrhythmogenesis. Since Ca in neighboring cells is not 

directly coupled, theoretically, the phases of alternans can be arbitrary from cell to cell. 

If alternans is caused solely by the Ca instability and the phases of Ca alternans are 

arbitrary, due to the smoothing effect caused by diffusive coupling of voltage, the amplitudes 

of APD alternans will be small. This cannot generate a large enough APD gradient for 

arrhythmogenesis [56]. Synchronization of the Ca alternans between cells is required to 

generate large amplitude APD-SDA for arrhythmogenesis. As shown in this paper, there 

are two ways to synchronize the SDA patterns. The first one is when Ca alternates in 

phase in large clusters, which can synchronize APD-SDA to Ca-SDA to generate large APD 

gradients [e.g., Figs. 5(c) and 11(d)]. This type of clustering may naturally occur in the real 

system, for example, in heterogeneous tissue in which the onset of alternans is regionally 

heterogeneous [81,82]. The second way is when APD-to-Ca coupling is strong enough so 

that APD-SDA and Ca-SDA are spontaneously synchronized to form SDA patterns with 

large alternans amplitude [e.g., Figs. 6(d) and 9(d)]. Strong APD-to-Ca coupling can be 

caused by Ca release restitution [67–69] [q dn  in the CML model], which is promoted by 

fast heart rates. Therefore, Ca alternans at fast heart rates can be more arrhythmogenic than 

the one at slow heart rates due to stronger APD-to-Ca coupling-promoted Ca-SDA and 

APD-SDA synchronization. In other words, fast heart rates not only promote Ca alternans 

but also promote Ca-SDA and APD-SDA synchronization to promote arrhythmias.

There are some limitations of this paper to be mentioned. In the iterated map model, 

Ca alternans is caused by steep fractional release and APD alternans caused by steep 

APD restitution. Other mechanisms of Ca alternans and APD alternans exist [83,84] 
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which may affect the SDA dynamics. However, since the AE model is a generic model 

irrespective of the specific mechanisms of alternans, the mechanisms from the AE model 

should still be applicable to the SDA dynamics from other mechanisms of alternans. 

Subcellular Ca alternans has been observed in experiments [27,59,85–87] and computer 

models [19,59,71,88,89], and tissue models with detailed cell models or multiscale modeling 

approaches [59,75,77,90–92] are needed to investigate how the subcellular Ca alternans 

dynamics affect the formation and synchronization of the APD-SDA and Ca-SDA patterns. 

We only use a global pacing protocol in which no action potential conduction exists. As we 

argued previously [50,51], this pacing protocol not only has its own physiological realism 

but also provides a useful means for the understanding of the SDA dynamics when action 

potential conduction is present. We will carry out further investigations to include action 

potential conduction in the models to investigate how conduction and conduction restitution 

affect the SDA dynamics in the presence of Ca-driven alternans. We omitted the cell-to-cell 

coupling of Ca in our models. It is known that Ca can pass through the gap junction to 

the neighboring cells [62], and thus, cell-to-cell Ca coupling exists. However, it is believed 

that this coupling is very weak, and therefore, it has been omitted in computational cardiac 

tissue models. Although the cell-to-cell Ca coupling may be weak, it may become nontrivial 

under certain conditions. Furthermore, if this coupling is not weak, it will affect the Ca-SDA 

patterns and their synchronization with APD-SDA patterns, which cannot be omitted. These 

need to be investigated in future studies. Finally, we only investigate the nodal line dynamics 

in the ionic tissue model using the Mahajan et al. [61] action potential model in which the 

alternans is primarily driven by a Ca instability and the Ca-to-APD coupling is positive. We 

can change the Ca-to-APD coupling in the model to be negative by adding a Ca-activated 

small conductance potassium current, as shown in our previous study [19]. However, under 

the negative coupling condition, we were still not able to generate quasiperiodicity in 

this model by simply changing the conductance of the L-type Ca current or any of the 

potassium currents, likely due to the lack of enough voltage-driven instabilities. Other ionic 

models may be used in future studies to investigate the coupled dynamics when both Ca- 

and voltagedriven instabilities are present to reveal the predictions from the AE and CML 

models.
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APPENDIX: CML AND IONIC MODELS

1. CML model

A CML model is an array of coupled iterated maps of APD and Ca. In a previous study 

[51,80], we developed a CML model to describe the spatiotemporal dynamics of APD in 1D 

and 2D models. Here, we use the same CML model to investigate the SDA dynamics in the 

presence of Ca-driven alternans.
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a. Single-cell iterated map model

We use the iterated map model we developed previously [22] for APD and Ca dynamics in 

the presence of Ca and APD coupling. The equations are

an + 1 = F dn, ln, Bn = f dn 1 + γcn + 1
p ,

(A1)

ln + 1 = ln − q dn g ln + u T ℎ cn + 1
p ,

(A2)

Bn + 1 = Bn − κ cn − c T ,

(A3)

where an + 1 is the APD of the n + 1  th beat, and dn is the DI of the nth beat, satisfying 

dn = T − an. Here, ln is the SR Ca load at the end of the nth beat, and Bn is the total cytosolic 

Ca at the end of the nth beat. Also, cn is the diastolic Ca at the end of the nth beat, which is 

described by

cn = Bn − ln .

(A4)

Here, cn + 1
p  is the peak cytosolic Ca at the n + 1  th beat, which is described by

cn + 1
p = cn + q dn g ln .

(A5)

The functions are defined as follows:

f dn = a0 + a1

1 + exp − dn − d0
τa

,

(A6)

g ln = ln 1 − 1 − α
1 + exp ln − l0

β
,

(A7)
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ℎ cn + 1
p = vcn + 1

p 1 − 1

1 + exp cn + 1
p − c0

p

δ

,

(A8)

q dn = 1 − σRexp − dn
τq

,

(A9)

u T = 1 − ρexp − T
τu

,

(A10)

c T = c0 1 + εexp − T
τc

,

(A11)

where γ is the parameter describing Ca-to-APD coupling, and σR is the one describing 

APD-to-Ca coupling. Here, a0, a1, d0, and τa in Eq. (A6) are the parameters determining 

the APD and APD restitution properties. Also, a0 = 50ms, a1 = 150ms, and d0 = 100ms
are used. We change τa to alter the APD restitution properties. Furthermore, α and 

β are the parameters determining the fractional Ca release properties, and we change 

β to change the fractional Ca release properties to promote Ca alternans. Here, 

α = 0.036, κ = 0.2, v = 0.4, δ = 20, ρ = 0.15, ε = 2, l0 = 93.5, c0
p = 50, c0 = 28, σR = 0.4, τq = 80, τu

= 200
, 

and τc = 300. Also, σR is altered for synchronization of APD-SDA and Ca-SDA. Note that the 

Greek letters α, β, ρ, and ε are parameters specific to the iterated map model, not related to 

the same Greek letters in the AE model. The physiological meanings of the functions and 

parameters are detailed in the previous study [22].

b. 1D cable CML model

Under global pacing, there is no conduction, and thus, every cell in the cable has the same 

excitation period, which is just the pacing period T . Therefore, the DI and APD of a cell 

satisfy the following relationship:

dn i = T − an i ,

(A12)

where i is the cell index in the cable, and n is the beat number. Based on our previous 

formulation [51,80], an i  is determined as follows:
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an i = Fn − 1 i + ε
k = − M

M
wk Fn − 1 i + k − Fn − 1 i ,

(A13)

where Fn i = F dn i , ln i , Bn i  is the function described in Eq. (A1). Here, ε is a parameter 

controlling the coupling strength of voltage between cells, and M is the maximum coupling 

length (i.e., number of cells). Also, wk describes the distance-dependent weight of coupling 

strength, which is a Gaussian function, i.e., wk =
exp −k2/2σ2

2πσ . We use ε = 1, σ = 25, and 

M = 100. No-flux boundary conditions are used. Details of the CML model and boundary 

conditions are presented in Wang et al. [80].

2. Ionic model

1D cable and 2D tissue simulations are carried out using the rabbit ventricular action 

potential model by Mahajan et al. [61]. The governing partial differential equation for 

voltage V  in the 1D cable is

∂V
∂t = − Iion + Istim

Cm
+ D∂2V

∂x2 ,

(A14)

where Cm = 1μF/cm2, D = 0.001cm2/ms, and Iion is the total ionic current density from the 

rabbit ventricular action potential model by Mahajan et al. [61]. Here, Istim is the stimulus 

current density, which is a 0.5 ms duration and −80μA/cm2 pulse applied periodically with a 

pacing period T . The governing partial differential equation for V  in the isotropic 2D tissue 

model is

∂V
∂t = − Iion + Istim

Cm
+ D ∂2V

∂x2 + ∂2V
∂y2 .

(A15)

No-flux boundary conditions are used for both 1D and 2D tissue models.

References

[1]. Bers DM, Cardiac excitation-contraction coupling, Nature (London) 415, 198 (2002). [PubMed: 
11805843] 

[2]. Qu Z, Hu G, Garfinkel A, and Weiss JN, Nonlinear and stochastic dynamics in the heart, Phys. 
Rep 543, 61 (2014). [PubMed: 25267872] 

[3]. Traube L, Ein Fall von Pulsus bigeminus nebst Bemerkungen uber die Lebershwellungen bei 
Klappenfehlern und acute Leberatrophie, Berl. Klin. Wochenschr 9, 185 (1872).

[4]. Hering HE, Das Wesen des Herzalternans, Munch. Med. Wochenschr 4, 1414 (1908).

[5]. Mines GR, On dynamic equilibrium in the heart, J. Physiol 46, 349 (1913). [PubMed: 16993210] 

Huang et al. Page 23

Phys Rev E. Author manuscript; available in PMC 2024 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[6]. Nolasco JB and Dahlen RW, A graphic method for the study of alternation in cardiac action 
potentials, J. Appl. Physiol 25, 191 (1968). [PubMed: 5666097] 

[7]. Guevara MR, Ward G, Shrier A, and Glass L, Electrical alternans and period doubling 
bifurcations, IEEE Comp. Cardiol 562, 167 (1984).

[8]. Glass L, Dynamics of cardiac arrhythmias, Phys. Today 49, 40 (1996).

[9]. Rosenbaum DS, Jackson LE, Smith JM, Garan H, Ruskin JN, and Cohen RJ, Electrical alternans 
and vulnerability to ventricular arrhythmias, N. Engl. J. Med 330, 235 (1994). [PubMed: 
8272084] 

[10]. Narayan SM, T-wave alternans and the susceptibility to ventricular arrhythmias, J. Am. Coll. 
Cardiol 47, 269 (2006) [PubMed: 16412847] 

[11]. Zhou X, Bueno-Orovio A, Orini M, Hanson B, Hayward M, Taggart P, Lambiase PD, Burrage K, 
and Rodriguez B, In vivo and in silico investigation into mechanisms of frequency dependence 
of repolarization alternans in human ventricular cardiomyocytes, Circ. Res 118, 266 (2016). 
[PubMed: 26602864] 

[12]. Moore PK, Raffel KE, and Whitman IR, Macroscopic Twave alternans: A red flag for code blue, 
JAMA Intern Med 177, 1520 (2017). [PubMed: 28783809] 

[13]. Vinet A, Chialvo DR, Michaels DC, and Jalife J, Nonlinear dynamics of rate-dependent 
activation in models of single cardiac cells, Circ. Res 67, 1510 (1990). [PubMed: 2245510] 

[14]. Qu Z, Nivala M, and Weiss JN, Calcium alternans in cardiac myocytes: Order from disorder, J. 
Mol. Cell Cardiol 58, 100 (2013). [PubMed: 23104004] 

[15]. Rovetti R, Cui X, Garfinkel A, Weiss JN, and Qu Z, Spark-induced sparks as a mechanism 
of intracellular calcium alternans in cardiac myocytes, Circ. Res 106, 1582 (2010). [PubMed: 
20378857] 

[16]. Alvarez-Lacalle E, Cantalapiedra IR, Penaranda A, Cinca J, Hove-Madsen L, and Echebarria 
B, Dependency of calcium alternans on ryanodine receptor refractoriness, PLoS One 8, e55042 
(2013). [PubMed: 23390511] 

[17]. Alvarez-Lacalle E, Echebarria B, Spalding J, and Shiferaw Y, Calcium Alternans is Due to an 
Order-Disorder Phase Transition in Cardiac Cells, Phys. Rev. Lett 114, 108101 (2015). [PubMed: 
25815968] 

[18]. Colman MA, Pinali C, Trafford AW, Zhang H, and Kitmitto A, A computational model of 
spatio-temporal cardiac intracellular calcium handling with realistic structure and spatial flux 
distribution from sarcoplasmic reticulum and t-tubule reconstructions, PLoS Comput. Biol 13, 
e1005714 (2017). [PubMed: 28859079] 

[19]. Song Z and Qu Z, Delayed global feedback in the genesis and stability of spatiotemporal 
excitation patterns in paced biological excitable media, PLoS Comput. Biol 16, e1007931 (2020). 
[PubMed: 33017392] 

[20]. Restrepo JG, Weiss JN, and Karma A, Calsequestrin-mediated mechanism for cellular calcium 
transient alternans, Biophys. J 95, 3767 (2008). [PubMed: 18676655] 

[21]. Shiferaw Y, Sato D, and Karma A, Coupled dynamics of voltage and calcium in paced cardiac 
cells, Phys. Rev. E 71, 021903 (2005).

[22]. Qu Z, Shiferaw Y, and Weiss JN, Nonlinear dynamics of cardiac excitation-contraction coupling: 
An iterated map study, Phys. Rev. E 75, 011927 (2007).

[23]. Jordan PN and Christini DJ, Characterizing the contribution of voltage- and calcium-dependent 
coupling to action potential stability: Implications for repolarization alternans, Am. J. Physiol. 
Heart Circ. Physiol 293, H2109 (2007). [PubMed: 17586611] 

[24]. Banville I and Gray RA, Effect of action potential duration and conduction velocity restitution 
and their spatial dispersion on alternans and the stability of arrhythmias, J. Cardiovasc. 
Electrophysiol 13, 1141 (2002). [PubMed: 12475106] 

[25]. Diaz ME, O’Neill SC, and Eisner DA, Sarcoplasmic reticulum calcium content fluctuation is the 
key to cardiac alternans, Circ. Res 94, 650 (2004). [PubMed: 14752033] 

[26]. Picht E, DeSantiago J, Blatter LA, and Bers DM, Cardiac alternans do not rely on diastolic 
sarcoplasmic reticulum calcium content fluctuations, Circ. Res 99, 740 (2006). [PubMed: 
16946134] 

Huang et al. Page 24

Phys Rev E. Author manuscript; available in PMC 2024 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[27]. Kockskamper J and Blatter LA, Subcellular Ca2+ alternans represents a novel mechanism for 
the generation of arrhythmogenic Ca2+ waves in cat atrial myocytes, J. Physiol 545, 65 (2002). 
[PubMed: 12433950] 

[28]. Li Y, Diaz ME, Eisner DA, and O’Neill S, The effects of membrane potential, SR Ca2+ content 
and RyR responsiveness on systolic Ca2+ alternans in rat ventricular myocytes, J. Physiol 587, 
1283 (2009). [PubMed: 19153161] 

[29]. Xie LH, Sato D, Garfinkel A, Qu Z, and Weiss JN, Intracellular Ca alternans: Coordinated 
regulation by sarcoplasmic reticulum release, uptake, and leak, Biophys. J 95, 3100 (2008). 
[PubMed: 18539635] 

[30]. Martinez-Hernandez E, Kanaporis G, and Blatter LA, Mechanism of carvedilol induced action 
potential and calcium alternans, Channels 16, 97 (2022). [PubMed: 35501948] 

[31]. Pastore JM, Girouard SD, Laurita KR, Akar FG, and Rosenbaum DS, Mechanism linking T-wave 
alternans to the genesis of cardiac fibrillation, Circulation 99, 1385 (1999). [PubMed: 10077525] 

[32]. Cao JM, Qu Z, Kim YH, Wu TJ, Garfinkel A, Weiss JN, Karagueuzian HS, and Chen 
PS, Spatiotemporal heterogeneity in the induction of ventricular fibrillation by rapid pacing: 
Importance of cardiac restitution properties, Circ. Res 84, 1318 (1999). [PubMed: 10364570] 

[33]. Qu Z, Garfinkel A, Chen PS, and Weiss JN, Mechanisms of discordant alternans and induction of 
reentry in simulated cardiac tissue, Circulation 102, 1664 (2000). [PubMed: 11015345] 

[34]. Clusin WT, Calcium and cardiac arrhythmias: DADs, EADs, and alternans, Crit. Rev. Clin. Lab. 
Sci 40, 337 (2003). [PubMed: 12892319] 

[35]. Qu Z, Xie Y, Garfinkel A, and Weiss JN, T-wave alternans and arrhythmogenesis in cardiac 
diseases, Front Physiol 1, 154 (2010) [PubMed: 21286254] 

[36]. Muñoz LM, Gelzer ARM, Fenton FH, Qian W, Lin W, Gilmour RF, and Otani NF, Discordant 
alternans as a mechanism for initiation of ventricular fibrillation in vitro, J. Am. Heart Assoc 7, 
e007898 (2018) [PubMed: 30371176] 

[37]. Choi BR, Jang W, and Salama G, Spatially discordant voltage alternans cause wavebreaks in 
ventricular fibrillation, Heart Rhythm 4, 1057 (2007). [PubMed: 17675081] 

[38]. Liu W, Kim TY, Huang X, Liu MB, Koren G, Choi BR, and Qu Z, Mechanisms linking 
T-wave alternans to spontaneous initiation of ventricular arrhythmias in rabbit models of long QT 
syndrome, J. Physiol 596, 1341 (2018) [PubMed: 29377142] 

[39]. Watanabe MA, Fenton FH, Evans SJ, Hastings HM, and Karma A, Mechanisms for discordant 
alternans, J. Cardiovasc. Electrophysiol 12, 196 (2001). [PubMed: 11232619] 

[40]. Echebarria B and Karma A, Instability and Spatiotemporal Dynamics of Alternans in Paced 
Cardiac Tissue, Phys. Rev. Lett 88, 208101 (2002). [PubMed: 12005608] 

[41]. Fox JJ, Riccio ML, Hua F, Bodenschatz E, and Gilmour RF, Spatiotemporal transition to 
conduction block in canine ventricle, Circ. Res 90, 289 (2002). [PubMed: 11861417] 

[42]. de Lange E and Kucera JP, Alternans resonance and propagation block during supernormal 
conduction in cardiac tissue with decreased K+]o, Biophys. J 98, 1129 (2010). [PubMed: 
20371312] 

[43]. Echebarria B, Roder G, Engel H, Davidsen J, and Bar M, Supernormal conduction in cardiac 
tissue promotes concordant alternans and action potential bunching, Phys. Rev. E 83, 040902(R) 
(2011).

[44]. Hayashi H, Shiferaw Y, Sato D, Nihei M, Lin SF, Chen PS, Garfinkel A, Weiss JN, and Qu Z, 
Dynamic origin of spatially discordant alternans in cardiac tissue, Biophys. J 92, 448 (2007). 
[PubMed: 17071663] 

[45]. de Diego C, Pai RK, Dave AS, Lynch A, Thu M, Chen F, Xie LH, Weiss JN, and Valderrabano 
M, Spatially discordant alternans in cardiomyocyte monolayers, Am. J. Physiol. Heart Circ. 
Physiol 294, H1417 (2008). [PubMed: 18223190] 

[46]. Mironov S, Jalife J, and Tolkacheva EG, Role of conduction velocity restitution and short-term 
memory in the development of action potential duration alternans in isolated rabbit hearts, 
Circulation 118, 17 (2008). [PubMed: 18559701] 

[47]. Gizzi A, Cherry EM, Gilmour RF Jr., Luther S, Filippi S, and Fenton FH, Effects of pacing site 
and stimulation history on alternans dynamics and the development of complex spatiotemporal 
patterns in cardiac tissue, Front Physiol. 4, 71 (2013). [PubMed: 23637684] 

Huang et al. Page 25

Phys Rev E. Author manuscript; available in PMC 2024 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[48]. Ziv O, Morales E, Song YK, Peng X, Odening KE, Buxton AE, Karma A, Koren G, and Choi 
BR, Origin of complex behaviour of spatially discordant alternans in a transgenic rabbit model of 
type 2 long QT syndrome, J. Physiol 587, 4661 (2009). [PubMed: 19675070] 

[49]. Lau E, Kossidas K, Kim TY, Kunitomo Y, Ziv O, Zhen S, Taylor C, Schofield L, Yammine 
J, Liu G et al. , Spatially discordant alternans and arrhythmias in tachypacing-induced cardiac 
myopathy in transgenic LQT1 rabbits: The importance of IKs and Ca2+ cycling, PLoS One 10, 
e0122754 (2015). [PubMed: 25970695] 

[50]. Huang C, Song Z, Landaw J, and Qu Z, Spatially discordant repolarization alternans in the 
absence of conduction velocity restitution, Biophys. J 118, 2574 (2020). [PubMed: 32101718] 

[51]. Huang C, Song Z, Di Z, and Qu Z, Stability of spatially discordant repolarization alternans in 
cardiac tissue, Chaos 30, 123141 (2020). [PubMed: 33380024] 

[52]. Pruvot EJ, Katra RP, Rosenbaum DS, and Laurita KR, Role of calcium cycling versus restitution 
in the mechanism of repolarization alternans, Circ. Res 94, 1083 (2004). [PubMed: 15016735] 

[53]. Qu Z, Liu MB, Olcese R, Karagueuzian H, Garfinkel A, Chen P-S, and Weiss JN, R-on-T and the 
initiation of reentry revisited: Integrating old and new concepts, Heart Rhythm 19, 1369 (2022). 
[PubMed: 35364332] 

[54]. Akar FG and Rosenbaum DS, Transmural electrophysiological heterogeneities underlying 
arrhythmogenesis in heart failure, Circ. Res 93, 638 (2003). [PubMed: 12933704] 

[55]. Laurita KR and Rosenbaum DS, Interdependence of modulated dispersion and tissue structure in 
the mechanism of unidirectional block, Circ. Res 87, 922 (2000). [PubMed: 11073889] 

[56]. Qu Z, Garfinkel A, and Weiss JN, Vulnerable window for conduction block in a one-dimensional 
cable of cardiac cells, 1: Single extrasystoles, Biophys. J 91, 793 (2006). [PubMed: 16679367] 

[57]. Qu Z, Garfinkel A, and Weiss JN, Vulnerable window for conduction block in a one-dimensional 
cable of cardiac cells, 2: Multiple extrasystoles, Biophys. J 91, 805 (2006). [PubMed: 16679366] 

[58]. Sato D, Shiferaw Y, Garfinkel A, Weiss JN, Qu Z, and Karma A, Spatially discordant alternans in 
cardiac tissue. Role of calcium cycling, Circ. Res 99, 520 (2006). [PubMed: 16902177] 

[59]. Gaeta SA, Bub G, Abbott GW, and Christini DJ, Dynamical mechanism for subcellular alternans 
in cardiac myocytes, Circ. Res 105, 335 (2009). [PubMed: 19628792] 

[60]. Sato D, Bers DM, and Shiferaw Y, Formation of spatially discordant alternans due to fluctuations 
and diffusion of calcium, PLoS One 8, e85365 (2014).

[61]. Mahajan A, Shiferaw Y, Sato D, Baher A, Olcese R, Xie L-H, Yang M-J, Chen P-S, Restrepo JG, 
Karma A et al. , A rabbit ventricular action potential model replicating cardiac dynamics at rapid 
heart rates, Biophys. J 94, 392 (2008). [PubMed: 18160660] 

[62]. Boyden PA, Dun W, and Stuyvers BD, What is a Ca2+ wave? Is it like an electrical wave? 
Arrhythm. Electrophysiol. Rev 4, 35 (2015). [PubMed: 26835097] 

[63]. Chua SK, Chang PC, Maruyama M, Turker I, Shinohara T, Shen MJ, Chen Z, Shen C, Rubart-
von der Lohe M, Lopshire JC et al. , Small-conductance calcium-activated potassium channel and 
recurrent ventricular fibrillation in failing rabbit ventricles, Circ. Res 108, 971 (2011). [PubMed: 
21350217] 

[64]. Zhang X-D, Lieu DK, and Chiamvimonvat N, Small-conductance Ca2+-activated K+ channels 
and cardiac arrhythmias, Heart Rhythm 12, 1845 (2015) [PubMed: 25956967] 

[65]. Shannon TR, Ginsburg KS, and Bers DM, Potentiation of fractional sarcoplasmic reticulum 
calcium release by total and free intra-sarcoplasmic reticulum calcium concentration, Biophys. J 
78, 334 (2000). [PubMed: 10620297] 

[66]. Nivala M and Qu Z, Calcium alternans in a couplon network model of ventricular myocytes: Role 
of sarcoplasmic reticulum load, Am. J. Physiol. Heart Circ. Physiol 303, H341 (2012). [PubMed: 
22661509] 

[67]. Ramay HR, Liu OZ, and Sobie EA, Recovery of cardiac calcium release is controlled by 
sarcoplasmic reticulum refilling and ryanodine receptor sensitivity, Cardiovasc. Res 91, 598 
(2011). [PubMed: 21613275] 

[68]. Sobie EA, Song LS, and Lederer WJ, Restitution of Ca2+ release and vulnerability to 
arrhythmias, J. Cardiovasc. Electrophysiol 17, S64 (2006). [PubMed: 16686684] 

[69]. Cely-Ortiz A, Felice JI, Díaz-Zegarra LA, Valverde CA, Federico M, Palomeque J, Wehrens 
XHT, Kranias EG, Aiello EA, Lascano EC et al. , Determinants of Ca2+ release restitution: 

Huang et al. Page 26

Phys Rev E. Author manuscript; available in PMC 2024 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Insights from genetically altered animals and mathematical modeling, J. Gen. Physiol 152, 
e201912512 (2020). [PubMed: 32986800] 

[70]. Echebarria B and Karma A, Amplitude equation approach to spatiotemporal dynamics of cardiac 
alternans, Phys. Rev. E 76, 051911 (2007).

[71]. Shiferaw Y and Karma A, Turing instability mediated by voltage and calcium diffusion in paced 
cardiac cells, Proc. Natl. Acad. Sci. USA 103, 5670 (2006). [PubMed: 16574775] 

[72]. Heijman J, Zaza A, Johnson DM, Rudy Y, Peeters RL, Volders PG, and Westra RL, Determinants 
of beat-to-beat variability of repolarization duration in the canine ventricular myocyte: A 
computational analysis, PLoS Comput. Biol 9, e1003202 (2013). [PubMed: 23990775] 

[73]. Skupin A, Kettenmann H, Winkler U, Wartenberg M, Sauer H, Tovey SC, Taylor CW, and 
Falcke M, How does intracellular Ca2+ oscillate: By chance or by the clock? Biophys. J 94, 2404 
(2008). [PubMed: 18065468] 

[74]. Nivala M, Ko C, Garfinkel A, Weiss JN, and Qu Z, Self-organization of pacemaking sites for 
calcium waves and oscillations in cardiac myocytes, Biophys. J 100, 557a (2011).

[75]. Campos FO, Shiferaw Y, Prassl AJ, Boyle PM, Vigmond EJ, and Plank G, Stochastic 
spontaneous calcium release events trigger premature ventricular complexes by overcoming 
electrotonic load, Cardiovasc. Res 107, 175 (2015). [PubMed: 25969391] 

[76]. Song Z, Qu Z, and Karma A, Stochastic initiation and termination of calcium-mediated triggered 
activity in cardiac myocytes, Proc. Natl. Acad. Sci. USA 114, E270 (2017). [PubMed: 28049836] 

[77]. Colman MA, Arrhythmia mechanisms and spontaneous calcium release: Bi-directional coupling 
between re-entrant and focal excitation, PLoS Comput. Biol 15, e1007260 (2019). [PubMed: 
31393876] 

[78]. Nivala M, Ko CY, Nivala M, Weiss JN, and Qu Z, Criticality in intracellular calcium signaling in 
cardiac myocytes, Biophys. J 102, 2433 (2012) [PubMed: 22713558] 

[79]. Risken H, The Fokker-Planck Equation (Springer, Berlin, 1989)

[80]. Wang S, Xie Y, and Qu Z, Coupled iterated map models of action potential dynamics in a 
one-dimensional cable of coupled cardiac cells, New J. Phys 10, 055001 (2007).

[81]. Cram AR, Rao HM, and Tolkacheva EG, Toward prediction of the local onset of alternans in the 
heart, Biophys. J 100, 868 (2011) [PubMed: 21320430] 

[82]. Visweswaran R, McIntyre SD, Ramkrishnan K, Zhao X, and Tolkacheva EG, Spatiotemporal 
evolution and prediction of [Ca2+]i and APD alternans in isolated rabbit hearts, J. Cardiovasc. 
Electrophysiol 24, 1287 (2013). [PubMed: 23845004] 

[83]. Qu Z, Liu MB, and Nivala M, A unified theory of calcium alternans in ventricular myocytes, Sci. 
Rep 6, 35625 (2016). [PubMed: 27762397] 

[84]. Landaw J and Qu Z, Memory-induced nonlinear dynamics of excitation in cardiac diseases, Phys. 
Rev. E 97, 042414 (2018) [PubMed: 29758700] 

[85]. Diaz ME, Eisner DA, and O’Neill SC, Depressed ryanodine receptor activity increases variability 
and duration of the systolic Ca2+ transient in rat ventricular myocytes, Circ. Res 91, 585 (2002). 
[PubMed: 12364386] 

[86]. Xie LH and Weiss JN, Arrhythmogenic consequences of intracellular calcium waves, Am. J. 
Physiol. Heart Circ. Physiol 297, H997 (2009). [PubMed: 19561309] 

[87]. Aistrup GL, Shiferaw Y, Kapur S, Kadish AH, and Wasserstrom JA, Mechanisms underlying the 
formation and dynamics of subcellular calcium alternans in the intact rat heart, Circ. Res 104, 
639 (2009). [PubMed: 19150887] 

[88]. Song Z, Liu MB, and Qu Z, Transverse tubular network structures in the genesis of intracellular 
calcium alternans and triggered activity in cardiac cells, J. Mol. Cell Cardiol 114, 288 (2018) 
[PubMed: 29217432] 

[89]. Romero L, Alvarez-Lacalle E, and Shiferaw Y, Stochastic coupled map model of subcellular 
calcium cycling in cardiac cells, Chaos 29, 023125 (2019) [PubMed: 30823735] 

[90]. Qu Z, Garfinkel A, Weiss JN, and Nivala M, Multi-scale modeling in biology: How to bridge the 
gaps between scales? Prog. Biophys. Mol. Biol 107, 21 (2011). [PubMed: 21704063] 

[91]. Shiferaw Y, Aistrup GL, and Wasserstrom JA, Synchronization of triggered waves in atrial tissue, 
Biophys. J 115, 1130 (2018) [PubMed: 30195941] 

Huang et al. Page 27

Phys Rev E. Author manuscript; available in PMC 2024 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[92]. Colman MA, Alvarez-Lacalle E, Echebarria B, Sato D, Sutanto H, and Heijman J, Multi-scale 
computational modeling of spatial calcium handling from nanodomain to whole-heart: Overview 
and perspectives, Front Physiol 13, 836622 (2022). [PubMed: 35370783] 

Huang et al. Page 28

Phys Rev E. Author manuscript; available in PMC 2024 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 1. 
Spatially discordant action potential duration (APD) and Ca alternans in a rabbit heart. (a) 

An image of a rabbit heart and the optical mapping area. (b) Simultaneous recordings of 

voltage and Ca from three different sites marked in (a). (c) Nodal lines (white) in APD 

alternans map. (d) Nodal lines (white) in the Ca alternans map. Modified from Hayashi et al. 
[44].
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FIG. 2. 
Schematic diagrams of cell-to-cell coupling and Ca and voltage coupling. (a) A schematic 

diagram of coupling between cells and coupling between voltage and Ca in a chain of 

cardiac cells. (b) Ca–to–action potential duration (APD) coupling. Increasing Ca (black 

dashed) can either lengthen APD (positive Ca-to-APD coupling) or shorten APD (negative 

Ca-to-APD coupling). (c) APD-to-Ca coupling. Lengthening APD in the first beat causes 

shortening of diastolic interval (DI), which may result in either a smaller Ca (positive 

APD-to-Ca coupling) or a larger Ca (negative APD-to-Ca coupling) in the second beat. See 

main text for more detailed description.
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FIG. 3. 
Electromechanically concordant and discordant spatially discordant alternans (SDA). (a) 

An example of an electromechanically concordant SDA in which action potential duration 

(APD) and Ca alternate in-phase. Top: APD vs cell no. for two consecutive beats. Middle: 

Peak Ca vs cell no. for the same two consecutive beats. Bottom: Alternans amplitude 

of APD (Δa) and Ca Δc  calculated from the two beats. (b) Same as (a) but for an 

electromechanically discordant SDA in which APD and Ca alternate in antiphase. (a) and 

(b) are simulation results of the coupled map lattice (CML) model (see the Appendix) 

with the following parameters: T = 250ms, γ = 0.002, σR = 0.8, τa = 40, and β = 4 for (a) and 

T = 250ms, γ = − 0.002, σR = 0.8, τa = 38, and β = 4.6 for (b).
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FIG. 4. 
Synchronization of Ca–spatially discordant alternans (SDA) to action potential duration 

(APD)-SDA patterns in the amplitude equation (AE) model without Ca-to-APD coupling 

γ = 0 . (a) Plots of function f Δc  [Eq. (12)] for different σΔa values. (b) Space-time plots of 

Δc for σ = 0.1 (left) and σ = 0.5 (right) for a one-node APD-SDA as indicated. (c) Space-time 

plots of Δc for σ = 0.1 with two noise strengths: D = 500 (left) and D = 1000 (right). (d) Svc

vs noise strength D. For each D, 20 simulations with different random initial conditions 

are carried out with the corresponding Svc plotted. In the simulations in (b)-(d), the initial 

conditions for Ca-SDA are spatially random in which Δc is a binary number, randomly 

chosen as either −100 or 100. Δa is a one-node SDA as indicated in (b). α = 0.5 and ρ = 0.5.
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FIG. 5. 
Synchronization of action potential duration (APD)–spatially discordant alternans (SDA) 

to Ca-SDA in the amplitude equation (AE) model without APD-to-Ca coupling σ = 0 . 

(a) Schematic plot of synchronization of an APD-SDA (blue) to a Ca-SDA (red). Arrows 

indicate that an initial APD-SDA node away from the Ca-SDA node drifts toward 

the Ca-SDA node. (b) Simulation of the AE model showing the scenarios in (a). (c) 

Synchronization of APD-SDA to a Ca-SDA pattern when the spatial scale of Ca-SDA 

pattern is large. (d) Same as (c) but the spatial scale of Ca-SDA pattern is small. (e) Svc vs 

the spatial scale l  of the Ca-SDA pattern. α = 0.5, ρ = 0.5, and γ = 0.5. In the simulations 

in (c)-(e), the initial conditions are spatially random SDAs in which Δa and Δc are binary 

numbers, randomly chosen as either −100 or 100 with spatial segmentation length l . l = 80
cells for (c), and l = 10 cells for (d). In (e), 20 random initial conditions are used for each l.
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FIG. 6. 
Spatiotemporal Ca and action potential duration (APD) dynamics in the amplitude equation 

(AE) model for γσ > 0. (a) Stability boundaries (colored lines) in the ρ − α plane for different 

spatial modes of the linear stability analysis of the steady state. Shown are the boundary 

for k = 0 (red), 4 (blue), and 50 (green). γ = 0.5 and σ = 0.5. (b) Steady-state Δa (black) 

and Δc (red) in space for beat no. 100 with 1 node in both Δa and Δc. (c) Same as (b) 

but with 20 nodes in both Δa and Δc. (d) Space-time plots of Δa and Δc with an initial 

condition of Δa = 0 and random Δc in which Δc is a binary number, uniformly chosen as 

either −100 or 100. γ = 0.5 and σ = 0.5. (e) Same as (d) but with σ = 0.1. (f) Svc vs σ. For 

each σ, 20Svc values from different initial conditions as in (c) and (d) are plotted. γ = 0.5. (g) 

Color map of Svc vs α and ρ. For each set of α and ρ, one random initial condition (spatial 

scale l = 1 cell) is simulated. γ = 0.5 and σ = 0.3. The white line is the synchronization 

boundary predicted by Eq. (13) under γ = 0, showing that positive Ca-to-APD coupling 

(γ > 0) enhances spontaneous synchronization. (h) Same as (g) but with a larger spatial scale 

of the initial conditions: l = 20 cells.
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FIG. 7. 
Spatiotemporal Ca and action potential duration (APD) dynamics in the amplitude equation 

(AE) model for γσ < 0. (a) Stability boundaries (colored lines) in the ρ − α plane for different 

spatial modes of the linear stability analysis of the steady state. Shown are the boundaries 

for k = 0 (red), 4 (blue), and 50 (green). The spatial mode is stable inside (in the lower-left 

direction of) the solid lines. γ = − 0.5 and σ = 0.5. (b) Steady-state Δa (black) and Δc (red) 

showing an electromechanically concordant spatially discordant alternans (SDA) in which 

Δa and Δc are in-phase. α = 0.6 and ρ = − 0.8, marked by the circle in (a). (c) Steady-state 

Δa (black) and Δc (red) showing an electromechanically discordant SDA in which Δa and Δc
are antiphase. α = − 0.7 and ρ = 0.5, marked by the square in (a). (d) Space-time color-scale 

plots of Δa (left) and Δc (middle) showing a quasiperiodic SDA in which Δa and Δc are 

not phase-locked but quasiperiodic (right). α = 0.6 and ρ = − 0.3, marked by the diamond in 

(a). (e) A uniform initial condition leads to a stable steady state (left, no alternans), but a 

nonuniform (one-node) initial condition leads to multinode electromechanically discordant 

SDA (right). α = − 0.5 and ρ = 0.4, marked by the triangle in (a). (f) A one-node initial 

condition leads to a quasiperiodic SDA (left), but a multinode initial condition leads to a 

multinode electromechanically discordant SDA. α = 0.6 and ρ = 0.4, marked by the pentagon 
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in (a). In (e) and (f), the upper panels are color-scale plots of Δa, and the lower panels are 

those of Δc.
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FIG. 8. 
Color maps of Svc vs σ and γ in the amplitude equation (AE) model. (a) Purely random initial 

conditions of Δa and Δc (spatial scale l = 1 cell). (b) Random initial conditions with a spatial 

scale of l = 20 cells. α = 0.5 and ρ = 0.5. Note that in the upper-left and lower-right quadrals, 

γσ < 0, the spatially discordant alternans (SDA) dynamics is quasiperiodic, Svc measured 

at the last beat depends on the status the SDA pattern, which varies from beat to beat. 

Therefore, the Svc values in these two quadrals exhibit a randomlike pattern in the color map. 

In the upper-right (electromechanically concordant) and lower-left (electromechanically 

discordant) quadrals, the SDA patterns are phase-locked and stable.
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FIG. 9. 
Spatiotemporal Ca and action potential duration (APD) dynamics in the coupled map lattice 

(CML) model for γ > 0. (a) Stability boundary in the τa − β plane for k = 0 (or a single cell). 

(b) Δa and Δc vs cell no. recorded from beat no. 999 and no. 1000 with a single node. (c) 

Same as (b) but with multiple nodes. (d) Δa and Δc vs n with a random initial condition. (e) 

Same as (d) but with a weaker coupling, σR = 0.3. (f) Svc vs σR. 20 different random initial 

conditions are used for each σR. (g) Svc vs T . 20 random initial conditions are used for each 

T . Arrows mark the T  for the transition between desynchronized and synchronized SDA 

patterns. In (f) and (g), the cases of Svc = 1 correspond to SCA. (h) a and c vs T  for a single 

cell. The default parameters are T = 270ms, τa = 40, β = 4, γ = 0.002, and σR = 0.4.
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FIG. 10. 
Spatiotemporal Ca and action potential duration (APD) dynamics in the coupled map lattice 

(CML) model for γ < 0. (a) Phase diagram showing different Ca and APD dynamics vs τa

and β in a single cell. White: stable steady state; cyan: electromechanically concordant 

alternans; green: electromechanically discordant alternans; and red: quasiperiodicity. 

γ = − 0.002, σR = 0.8, and = 250ms. (b) Steady-state Δa (black) and Δc (red) showing an 

electromechanically concordant spatially discordant alternans (SDA). τa = 24 and β = 5.7, 

marked by the circle in (a). (c) Steady-state Δa (black) and Δc (red) showing an 

electromechanically discordant SDA. τa = 38 and β = 4.6, marked by the square in (a). 

(d) Space-time color-scale plots of Δa (left) and Δc (middle) showing a quasiperiodic 

SDA (right). τa = 24 and β = 5.3, marked by the diamond in (a). (e) A uniform initial 

condition leads to a stable steady state (left, no alternans), but a nonuniform (one-node) 

initial condition leads to multinode electromechanically discordant SDA (right). τa = 32
and β = 4.6, marked by the triangle in (a). (f) A one-node initial condition leads to 

a quasiperiodic SDA (left), but a multinode initial condition leads to a multinode 

electromechanically discordant SDA. τa = 27 and β = 4.5, marked by the pentagon in (a). 

In (e) and (f), the upper panels are color-scale plots of Δa, and the lower panels are those of 

Δc.
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FIG. 11. 
Action potential duration (APD)–spatially discordant alternans (SDA) and Ca-SDA patterns 

in a one-dimensional (1D) cable of the rabbit ventricular cell model. (a) Bifurcation 

diagrams showing a and peak ci vs the pacing period T . (b)-(f) Steady-state APD-SDA 

and Ca-SDA patterns for different initial conditions. The spatial scales of random initial 

conditions in (d)-(f) are l = 50 cells, l = 10 cells, and l = 1 cell, respectively. T = 180ms. 
Random initiation conditions are set by random initial values of the sarcoplasmic reticulum 

(SR) Ca load.
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FIG. 12. 
Action potential duration (APD)–spatially discordant alternans (SDA) and Ca-SDA nodal 

ring dynamics in two-dimensional (2D) tissue of the amplitude equation (AE) model. (a) 

Schematic plots to illustrate the effects of Ca-SDA nodal ring (red) and curvature on 

APD-SDA nodal ring (dashed blues). The blue arrows indicate the force of the Ca-SDA 

nodal ring, and the green arrows indicate the force of the curvature on the APD-SDA ring. 

(b) The critical ring radius rc  vs σ determined via computer simulations of the AE model 

[Eqs. (20) and (21)]. α = 0.5, ρ = 0.5, and γ = 0.1. (c) Ring radius r vs beat no. for different 

initial ring radius for σ = 0.1. Left: The initial APD-SDA nodal ring (blue) radius r > rc. 

Right: The initial APD-SDA nodal ring (green) radius r < rc. (d) Ring radius r vs beat no. for 

different initial ring radius for σ = 0.3. Left: The initial APD-SDA nodal ring (blue) radius 

r > rc. Right: The initial APD-SDA nodal ring (green) radius r < rc. Simulations are done in a 

2D tissue of 800 × 800 cells.
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FIG. 13. 
Synchronization of action potential duration (APD)–spatially discordant alternans (SDA) 

and Ca-SDA patterns when both APD and Ca are unstable. Simulations are done in the 

amplitude equation (AE) model with α = 0.5, ρ = 0.5, and γ = 0.1. Tissue size is 800 × 800 

cells. (a) Svc vs σ for different spatial scales of the initial condition with random block sizes: 

1 × 1 cell (black), 10 × 10 cells (red), 20 × 20 cells (blue), 50 × 50 cells (green), and 100 

× 100 cells (magenta). Note: Only one random initial condition is used for each σ for the 

calculation of Svc. When σ < σc ≈ 0.19, Svc depends strongly on the block size of the initial 

condition. (b) Example APD-SDA (left) and Ca-SDA (right) patterns for σ = 0.3. The initial 

condition block size is 100 × 100 cells. The calculated synchronization index is Svc = 0.93. 

(c) Example APD-SDA (left) and Ca-SDA (right) patterns for σ = 0.1. The initial condition 

block size is 100 × 100 cells. The calculated synchronization index is Svc = 0.75. In (b)-(c), 

the white lines are the nodal lines (Δa = 0 or Δc = 0).
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FIG. 14. 
Action potential duration (APD)–spatially discordant alternans (SDA) and Ca-SDA 

dynamics in two-dimensional (2D) tissue when alternans is driven by Ca alone. Simulations 

are done in the amplitude equation (AE) model with α = − 0.5, ρ = 0.5, and γ = 0.1. Tissue 

size is 800 × 800 cells. (a) Steady-state APD-SDA (black) and Ca-SDA (red) nodal rings. 

σ = 0.1. (b) Ring radius vs beat no. showing the time evolution for the APD-SDA (blue and 

green) and Ca-SDA (red) nodal rings shown in (a). (c) Svc vs σ for different spatial scales 

of the random initial condition. Block sizes: 1 × 1 cell (black), 10 × 10 cells (red), 20 × 20 

cells (blue), 50 × 50 cells (green), and 100 × 100 cells (magenta). (d) Example APD-SDA 

(upper) and Ca-SDA (lower) patterns for σ = 0.1. The initial condition block size is 160 × 

160 cells. The calculated synchronization index is Svc = 0.99. (e) Example APD-SDA (upper) 

and Ca-SDA (lower) patterns for σ = 0.1. The initial condition block size is 20 × 20 cells. 

The calculated synchronization index is Svc = 0.54. In (d) and (e), the white lines are the 

nodal lines (Δa = 0 or Δc = 0).
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FIG. 15. 
Action potential duration (APD)–spatially discordant alternans (SDA) and Ca-SDA 

dynamics in a two-dimensional (2D) tissue of the rabbit ventricular cell model. Tissue 

size is 800 × 800 cells and T = 180ms. (a) Steady-state APD-SDA (black) and Ca-SDA 

(red) nodal rings. (b) Ring radius vs beat no. showing the time evolution of the APD-SDA 

(blue) and Ca-SDA (red) nodal rings. (c) Example APD-SDA (upper) and Ca-SDA (lower) 

patterns. The initial condition block size is 100 × 100 cells. The calculated synchronization 

index is Svc = 0.93. (d) Example APD-SDA (upper) and Ca-SDA (lower) patterns. The initial 

condition block size is 50 × 50 cells. The calculated synchronization index is Svc = 0.76. (e) 

Example APD-SDA (upper) and Ca-SDA (lower) patterns. The initial condition block size is 

20 × 20 cells. The calculated synchronization index is Svc = 0.66. In (c)-(e), the white lines 
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are the nodal lines (Δa = 0 or Δc = 0). Random initiation conditions are set by the random 

initial values of the sarcoplasmic reticulum (SR) Ca load and the gating variable of IKs.
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