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Abstract
Deep learning (DL) has recently emerged as a pivotal technology for enhancing magnetic resonance imaging (MRI), a criti-
cal tool in diagnostic radiology. This review paper provides a comprehensive overview of recent advances in DL for MRI 
reconstruction, and focuses on various DL approaches and architectures designed to improve image quality, accelerate scans, 
and address data-related challenges. It explores end-to-end neural networks, pre-trained and generative models, and self-
supervised methods, and highlights their contributions to overcoming traditional MRI limitations. It also discusses the role 
of DL in optimizing acquisition protocols, enhancing robustness against distribution shifts, and tackling biases. Drawing on 
the extensive literature and practical insights, it outlines current successes, limitations, and future directions for leveraging 
DL in MRI reconstruction, while emphasizing the potential of DL to significantly impact clinical imaging practices.
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Introduction

Magnetic resonance imaging (MRI) has long been at the 
forefront of medical imaging, in that it offers unparalleled 
ability to visualize the human body’s internal structures and 
functions. Because it is noninvasive and has exceptional soft 
tissue contrast, it has become an indispensable tool in mod-
ern diagnostic medicine. From detecting subtle pathological 
changes to guiding therapeutic interventions, MRI’s versa-
tility is unmatched. However, the full potential of MRI is 

often constrained by inherent limitations in imaging speed 
and resolution, which are crucial for accurate diagnosis and 
patient comfort [1].

Long acquisition times represent a major barrier in clini-
cal MRI, primarily due to the inherent trade-off between 
image quality and speed of imaging [2–8]. High-resolution 
images, which are crucial for accurate diagnosis, require 
extended scan durations that can be uncomfortable for 
patients and increase the risk of motion artifacts [9]. This 
challenge is particularly significant in dynamic imaging, 
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such as in cardiac and abdominal studies, where fast physio-
logical movements can lead to blurring and other distortions. 
Moreover, sequences with long repetition times (TRs) like 
those used in diffusion MRI, extensive field-of-view (FOV) 
coverage, and protocols that require multiple contrasts sig-
nificantly extend the duration of MRI scans. Additionally, 
the acquisition of 3D images, which provide comprehensive 
spatial detail for better clinical evaluation, also necessitates 
longer scan times due to the increased volume of data being 
collected. These complexities highlight the pressing need for 
advancements in faster imaging techniques to reduce MRI 
acquisition times while maintaining high image quality.

Significant research efforts have been dedicated to accel-
erating MRI. Central to these endeavors is the development 
of methods for image reconstruction from under-sampled 
data. Techniques based on parallel imaging (PI) introduced 
in the 1990s were an important watershed [3–8]. These tech-
niques leverage the spatial diversity of multiple coil arrays 
to reconstruct images, thus allowing for reduced scan times 
by acquiring less data. The early 2000s saw the emergence 
of compressed sensing (CS) methods, which constituted a 
novel approach to MRI reconstruction [10–17]. CS over-
comes the sparsity of MRI images by enabling the recon-
struction of high-quality images from a much smaller set of 
measurements than traditionally required. The development 
of these techniques represented major milestones in MRI, 
and contributed to substantial reductions in scan duration and 
improvements in image quality.

However, both parallel imaging and CS methods have 
their limitations, each affecting their practicality in clinical 
settings. Parallel imaging is highly dependent on the geome-
try and sensitivity of the coil arrays, with suboptimal config-
urations leading to uneven image quality and potential arti-
facts. It also faces a practical limit on acceleration, beyond 
which significant noise can degrade the image quality. CS, 
on the other hand, is computationally demanding due to the 
complex optimization problems it involves, particularly with 
non-Cartesian trajectories, and often involve excessive com-
pute times. It also relies heavily on hand-crafted priors for 
image reconstruction, which may not be applicable across 
different types of scans, thus limiting its adaptability. Fur-
thermore, in low-rank CS MRI, the challenge of choosing an 
appropriate rank to balance image fidelity and computational 
efficiency often leads to a trade-off between reconstruction 
accuracy and speed. These challenges underscore the need 
for continued advancements in MRI technology to balance 
speed, image quality, and usability in clinical environments.

In recent years, the advent of deep learning (DL) has 
heralded a new era in MRI by offering promising solutions 
to these longstanding challenges. DL, a subset of machine 
learning characterized by algorithms based on computational 
neural networks, has had remarkable success in extracting 
complex patterns from large datasets [18–21]. In the realm 

of MR image reconstruction, DL methods focus on learn-
ing from vast amounts of data to transform under-sampled 
or noisy data into high-fidelity images. These methods have 
demonstrated their ability to mitigate artifacts, enhance reso-
lution, and accelerate the imaging process [22–31]. There are 
already multiple public datasets curated to enable training 
of DL models on MRI, e.g. [32–36], as well as community 
challenges related to MRI reconstruction problems [37–41].

This review provides a comprehensive overview of recent 
advances and applications of deep learning (DL) to the 
reconstruction of magnetic resonance (MR) images. Given 
the rapid pace at which this field is evolving, encapsulat-
ing the entirety of the published literature is a formidable 
challenge. Previous reviews have laid the groundwork by 
detailing the fundamental components of DL architectures 
and providing theoretical analysis [26–30, 42–49]. Here we 
cover a broad range of approaches, and highlight emerging 
methods such as self-supervised learning and diffusion mod-
els. Furthermore, we also review closely related topics, such 
as DL methods for k-space trajectory optimization, pulse 
sequence design, quantitative MRI, motion correction, and 
multi-task pipelines. Moreover, we address areas where DL 
encounters significant hurdles, including susceptibility to 
distribution shifts, instabilities, and inherent biases. Finally, 
building on our hands-on experience, we propose action-
able strategies for effectively enhancing the robustness of 
DL models to such challenges.

Background on MRI reconstruction

In this section, we describe the image formation process 
and forward model, and discuss conventional, optimization-
based, non-DL image reconstruction methods.

Image formation and forward model

The acquisition process in many imaging schemes can be 
modeled by an operator A applied on the continuous domain 
image x , where the process of collecting measurements 
is described by y = A(x) + n . In MRI, the measurement 
operator A commonly corresponds to a multi-coil Fourier 
sampling operator. Although the acquisition is continuous, 
the general practice is to discretize the problem. Thus, we 
consider the reconstruction of an image vector x from linear 
measurements, modeled by a matrix A , by:

The above equation is a numerical model for the imag-
ing device, and is often referred to as the forward model. 
In many imaging methods, the forward model is known 

(1)y = Ax + n.
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precisely. However, there are many applications where the 
forward model is unknown or only partially known. Exam-
ples include imaging in the presence of motion during the 
acquisition, trajectory errors, and field inhomogeneity effects 
in MRI acquisitions.

Due to the MRI’s long scan duration, many scans are 
accelerated by sampling k-space at a sub-Nyquist rate. In 
these cases, the forward model A is often rank-deficient, 
making the recovery of x an ill-posed problem. In MRI, 
the forward map A includes undersampling, the Fourier 
transform, and sensitivity maps.

Conventional model‑based image recovery

When the recovery of x is ill-posed, many MRI schemes 
such as SENSE [5] pose the recovery as an optimization 
problem x = argminx L(x) with an objective function

where the first term is often called a data consistency term, 
and the second term is called a regularization prior. The 
objective (2) is sometimes called a variational objective [24].

The prior R ∶ ℂ
n
→ ℝ+ is used to restrict the solutions 

to the space of desirable images. The prior R(x) has a 
large value when x is an undesirable image and is small for 
a desirable image. A common prior used in compressive 
sensing methods is wavelet-domain sparsity, where the 
number of non-zero wavelet coefficients or their surrogates 
are used as priors [10, 11]. In this case, the optimization 
algorithm facilitates the recovery of an image x that has 
few non-zero wavelet coefficients.

From a Bayesian perspective, the above formulation can 
be viewed as an a-posterior estimate [28, 50], where the 
goal is to find an image x that maximizes the posterior 
distribution p(x|y) = p(y|x) ∗ p(x)∕p(y) . The estimate is 
obtained by minimizing the negative log posterior

Here, the first term is the data consistency term. It yields 
the mean-squared error in Eq. (1) if the noise vector n has 
i.i.d. Gaussian entries. Data consistency terms appear in 
both compressed sensing [10] and DL methods [51], as they 
ensure that the reconstructed images adhere closely to the 
acquired data. The second term incorporates prior informa-
tion on the images [50, 52].

Over the past few decades, substantial research efforts 
have been dedicated to crafting effective priors. Tikhonov 
regularization, for instance, employs a Gaussian prior on 

(2)
L(x) = ‖Ax − y‖2

2
⏟⏞⏞⏞⏟⏞⏞⏞⏟
data consistency

+� R(x)
⏟⏟⏟

regularization

,

(3)
− log p(x|y) = − log p(y|x)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
data consistency

− log p(x)
⏟⏟⏟

prior

.

x , resulting in a regularization term R(x) = ‖x‖2 , and 
compressed sensing methods mentioned earlier promote 
sparsity.

Optimization algorithms

The loss in Eq. (2) is typically minimized by applying itera-
tive first-order optimization algorithms such as gradient 
descent. Starting from x0 with a stepsize of �t , iteration t + 1 
of gradient descent is described by

where H denotes a Hermitian transpose (i.e., conjugate 
transpose). The above algorithm depends on the gradient of 
the regularizer ∇R . When R(x) = log p(x) is the log-prior 
as mentioned earlier, ∇R(x) = ∇ log p(x) , which is often 
referred to as the score of the distribution. This term moves 
the estimate towards a signal with higher likelihood.

Other popular fast iterative algorithms for minimizing 
the objective (2) include the alternating direction method 
of multipliers (ADMM) [53] and the fast iterative shrink-
age thresholding algorithm (FISTA) [54]. For example, the 
ADMM scheme considers the equivalent problem,

The above problem is solved by alternating between the fol-
lowing steps

where u is the Lagrange multiplier and v is an auxiliary vari-
able introduced in the ADMM algorithm to split the original 
optimization problem into smaller, more manageable sub-
problems. The second step of the above optimization scheme

can be viewed as a denoising step to clean the current solu-
tion x , thus yielding v . For many penalties (e.g. �1 norm), 
the solution to (9) can be evaluated as proximal mapping. 
Here, � is a continuation parameter that can be interpreted 
as 1∕�2

�
 , where �� is the variance of noise in x that decreases 

with the iterations. The first step (67) involves an inversion 
step to reduce the cost function composed of the linear com-
bination of the data consistency error and the deviation from 

(4)
xt+1 = xt − �t∇L(xt)

= xt − �t
(
AH(Axt − y) + ∇R(xt)

)
.

(5)x = argmin
x

min
v

‖Ax − y‖2
2
+ �R(v) such that v = x

(6)xt+1 = argmin
x

‖Ax − y‖2
2
+ �‖x − (vt − ut)‖2

(7)
vt+1 = argmin

v
�‖vt −

�
xt+1 − ut

�

⏟⏞⏞⏞⏟⏞⏞⏞⏟
x

‖2 + �R(v)

(8)ut+1 =ut + (xt+1 − vt+1)

(9)v = argmin
v

�‖v − x‖2 + �R(v) = D�(x)
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the denoised image v . This provides an iterative denoising 
interpretation, which is used in plug-and-play algorithms 
(discussed below, in “Pretrained plug-and-play (PnP) meth-
ods”). One challenge with the above convex optimization 
schemes is their high computational complexity, which is 
due to the numerous iterations required for convergence. In 
particular, the data consistency step (67) involves the evalu-
ation of the forward model and its adjoint, which is often 
computationally expensive.

DL reconstruction: approaches 
and architectures

In this section we provide an overview of the main 
approaches and architectures in the MRI reconstruction 
landscape. While many different methods are available, and 
those often incorporate elements from other techniques, we 
classify them into five main categories: (i) neural networks 
trained end-to-end; (ii) approaches based on pre-trained 
denoisers, often called plug-and-play (PnP) methods; (iii) 
approaches based on generative models; and (iv) un-trained 
methods; (v) self-supervised methods. Additionally, we 
identify several recent architectures, e.g. transformers and 
dual-domain networks, that are used in various classes.

Interestingly, the top performing models in both the 2020 
FastMRI challenge and the 2024 CMRxRecon challenge all 
used neural networks trained end-to-end [41, 55]. However, 
relative comparisons of algorithms depend on the problem 

setup and metrics. In addition, the field is progressing rap-
idly, so that new and diverse benchmarking studies would 
be valuable (Fig. 1). 

Neural networks trained end‑to‑end

Neural networks trained end-to-end are commonly trained 
to map the acquired data, which is often noisy and degraded 
by undersampling artifacts, to a target, ground-truth image. 
Their training hence commonly requires such paired data.

Let f� be a neural network, which receives the measure-
ments as input and produces clean, reconstructed images as 
output. Given a training set consisting of pairs of measure-
ments and target images {(y1, x1),… , (yn, xn)} , the network 
is trained by minimizing the loss between the prediction of 
the network and the target images, i.e.,

Networks mapping a noisy measurement to a clean image

Many architectures have been developed for mapping an 
image with noise and undersampling artifacts to a clean 
image. Here we review some of the most well-known 
approaches. One of the early architectures is known 
as AUTOMAP (Automated Transform by Manifold 

(10)L(�) =

n∑

i=1

loss(f�(yi), xi).

Fig. 1  Overview of the DL-based MRI reconstruction landscape. While many different methods are available, and those often incorporate ele-
ments from other techniques, we classify them into five main categories
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Approximation) [22]. It utilizes a fully connected network 
followed by a convolutional network as the architecture f� in 
Eq. (10). This architecture does not incorporate the known 
forward model directly. Instead, it maps data from k-space to 
image domain, and learns the forward model from the data. 
A representative AUTOMAP application is shown in Fig. 2.

Other architectures commonly utilize image-to-image neu-
ral networks and incorporate the forward map. This class of 
approaches maps a coarse reconstruction of the image, for 
example an image generated from the zero-filled k-space, 
to a target image. In the notation above, the architecture f� 
consists of a linear map computing the zero-filled image fol-
lowed by application of an image-to-image neural network.

The architecture of the image-to-image network is most 
commonly a convolutional neural network (CNNs). One of 
the pioneering works in this area was by Wang et al. [57], 
which demonstrated that using a CNN as the image-to-
image network enables substantial improvements in both 
speed and image quality. Another pioneering work was by 
Jin et al. [58], which showed that this approach is applicable 
to a wide range of linear forward models.

Additionally, numerous other studies have embedded 
UNET, ResNet or recurrent neural networks as the back-
bone architecture [26–30, 42–45]. More recently, vision 
transformers have been utilized instead of a CNN as the 
image-to-image network. Several studies demonstrated that 
transformers can provide improvements  [59–61]. How-
ever, they are computationally more expensive. In practice, 
a UNET architecture is often chosen as a simple starting 
point, as it provides a good trade-off between image qual-
ity and computational performance. However, the choice of 

architecture depends on the problem at hand, the database 
size, the acceleration rate, and the desired reconstruction 
accuracy.

Architectures of unrolled networks

Currently, some of the best-performing neural networks are 
based on unrolled architectures [55]. These networks are 
obtained by unrolling an iterative algorithm such as gradient 
descent. The idea of unrolled networks was first introduced 
by [62], and several pioneering works applied it in the con-
text of MRI reconstruction [24, 25, 63, 64]. These architec-
tures iterate between two types of blocks: (i) data-consistency 
blocks, which can be computed using different algorithms [51], 
and (ii) blocks that remove noise and artifacts, which are com-
monly implemented by a deep neural network.

One of the early works in this context was by Hammernik 
et al. [24], who introduced the variational network (Fig. 3). 
This approach relies on a gradient descent algorithm to mini-
mize the variational objective (2) where the regularizer R is 
taken as the total-variation norm. In this case, the gradient of 
the regularizer in the gradient descent iterations (4) takes the 
form of a convolution. Thus, the gradient descent iterations can 
be interpreted as a neural network that applies data consistency 
operations (originating from the gradient of the least-squares 
loss) and the application of a convolutional network (originat-
ing from the gradient of the regularizer). Motivated by this 
observation, these so-called variational networks initialize 
x0 = AHy and then perform the following computations with 
a neural network:

Fig. 2  Elimination of hardware artifacts at low field MRI (6.5 mT) 
using AUTOMAP. Two slices from a 3D bSSFP (NA  =  50) are 
shown. When reconstructed with IFFT (a, b), a vertical artifact (red 
arrows) is present across slices. When the same raw data was recon-
structed with AUTOMAP (c, d), the artifacts are eliminated. The 

error maps of each slice with respect to a reference scan (NA = 100) 
is shown for both IFFT and AUTOMAP reconstruction. e–g Uncor-
rupted k-space (NA  =  50) was reconstructed with AUTOMAP (e) 
and IFFT (f). Adapted and modified from Koonjoo, N. et al. Sci Rep 
11, 8248 (2021). https:// doi. org/ 10. 1038/ s41598- 021- 87482-7 [56]

https://doi.org/10.1038/s41598-021-87482-7
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Here, both the parameter �t and the parameters of the CNN 
are learnable. The original variational network [24] used a 
relatively shallow CNN, inspired by the parameterization 
provided by the total variation norm and its generalizations; 
specifically, the fields-of-experts-model. This yields a well-
performing network with very few parameters. Later work 
has also shown that using a UNET within the unrolled net-
work can improve the overall performance. [25, 65].

Other unrolled methods adopted alternate algorithms to 
minimize the variational loss (4) (described in “Optimi-
zation algorithms”). Those replaced the CNN in Eq. (11) 
with other image-to-image architectures; see [25, 63, 64, 
66, 67] for a few examples. Furthermore, other architectures 
replaced the image-domain CNN with either a k-space CNN, 
a dual-domain (k-space and image domain) network [68–70] 
or a transformer [66].

Computational considerations The unrolling step requires 
multiple physical realizations of the CNN block during train-
ing, which translates into a high memory demand during train-
ing. This restricts their application in higher dimensional (e.g. 
3D, 4D) applications. Programming solutions such as gradi-
ent check-pointing are now available to reduce the memory 
demand, at the expense of increased computational complex-
ity. An alternative approach relies on deep equilibrium mod-
els [71, 72]. These models use a single CNN block and iter-
ate the steps (67) and (8) until convergence to a fixed point, 

(11)xt+1 = xt − �tA
H(Axt − y) + CNNt(xt).

similar to PnP methods. These methods then implement the 
fixed point iterations for back propagation. These methods 
thus enable the evaluation of the forward and back propagation 
using a single physical CNN block, thus reducing the memory 
demand. The MOL [73] method also imposes a local Lipschitz 
constraint on the CNN block, which offers theoretical guaran-
tees and robustness without sacrificing performance.

Pretrained plug‑and‑play (PnP) methods

Early CS methods relied on convex priors R(x) , such as the 
total-variation norm. Plug-and-play (PnP) methods make it 
possible to solve inverse problems with pre-trained denoisers. 
Another benefit is that they work with arbitrary forward mod-
els, where the prior incorporates information about the image.

ADMM and FISTA are iterative optimization methods for 
solving the a regularized least-squares problem and involve 
evaluations of the proximal operator proximal operator D� in 
(9) of the regularizer. One class of PnP methods replaces the 
proximal operator with a pre-trained denoiser; two well-known 
examples are PnP-ADMM and PnP-FISTA [74, 75]. While 
early methods relied on off-the-shelf image denoisers such as 
BM3D [76], pre-trained CNN denoisers are now considered 
to be more effective [74, 75, 77, 78]. Note that the proximal 
step in (9)

(12)D1∕2�2(x) = argmin
v

1

2�2
‖v − x‖2 + �R(v)

Fig. 3  Variational network (VN) training procedure. The objective is 
learning a set of VN parameters during an offline training procedure. 
For this purpose, the current reconstruction of the VN is compared to 
an artifact-free reference using a similarity measure. This yields the 

reconstruction error which is propagated back to the VN to compute 
a new set of parameters. Reproduced with permission from Ham-
mernik, K. et al. (2018) Magn. Reson. Med., 79: 3055–3071. https:// 
doi. org/ 10. 1002/ mrm. 26977. [24]

https://doi.org/10.1002/mrm.26977
https://doi.org/10.1002/mrm.26977
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can be seen as the maximum a-posteriori (MAP) estimate of 
x from its noise corrupted measurements

Here, n ∼ N(0, I) is a sample from a Gaussian distribution 
with variance �2 . The CNN modules are hence pre-learned 
from training data as MAP denoisers, where noise-corrupted 
images are fed as input and the model is trained to yield 
noise-free images. During inference, steps (6)-(7) and (8) 
are iterated until the algorithm converges to a fixed point. 
Similar to CS methods, several iterations are often needed 
for convergence, which translates into higher computational 
complexity than the unrolled approaches described in “Pre-
trained plug-and-play (PnP) methods”.

Another PnP framework is known as regularization by 
denoising (RED) [79]. This framework is more general the 
above because it does not rely on any specific optimiza-
tion algorithm, i.e. it enables using other methods, not only 
ADMM and FISTA. Furthermore, it offers great flexibility in 
choosing the denoising algorithm, as it enables incorporat-
ing almost any denoiser. Further information can be found 
in recent reviews of PnP methods [74, 75].

Generative priors

Another successful approach to DL-based MRI reconstruc-
tion is to learn an image prior parameterized by a generative 
neural network. Several major classes of generative methods 
have emerged, based on variational autoencoders [80, 81], 
Generative Adversarial Networks (GANs) [82–88], and very 
recently, diffusion models [89–95]. Here we focus on the 
two latter ones, which have attracted substantial attention.

One of the major advantages of generative approaches for 
image reconstruction is that they are flexible with regard to 
changes of the forward model, and at the same time perform 
well for reconstructing high-quality images from undersam-
pled data. Furthermore, their probabilistic nature provides 
measures for uncertainty quantification, which is highly 
important for clinical imaging [96–98].

GANs

GANs [82] are a framework for generative modeling. A GAN 
consists of two competing neural networks: a generator, 
which aims to produce data indistinguishable from a given 
dataset of real images, and a discriminator, whose role is to 
distinguish between the generator’s output and the real data. 
GANs are trained using an adversarial loss [82]; this process 
enables the generator to learn to generate high-quality real-
istic images. After training, the generator can be used either 
to generate images that look similar to those in the training 
set, or as a prior for image reconstruction.

(13)v = x + � n.

In the context of MRI reconstruction, GANs have attracted 
substantial attention over the last few years [83–88]. For 
example, DAGAN (Deep De-Aliasing Generative Adver-
sarial Networks) [83] was a pioneering work that proposed a 
conditional GAN with a refinement-learning stage, and used 
a loss function comprised of an adversarial and a perceptual 
component. Mardani et al. [99] proposed a reconstruction 
framework where GANs were used for learning the low-
dimensional manifold that underlies high-quality MR images. 
However, images generated by the generator are not neces-
sarily consistent with the acquired measurements. To ensure 
such consistency, they included an affine projection opera-
tion, conducted by a layer placed between the generator and 
discriminator. Another approach for tackling this was pro-
posed by Quan et al. [85], who introduced a novel cyclic loss 
in their GAN architecture to enforce data consistency. These 
methods, and many others [87, 100] showcased the potential 
of GANs to produce clinically viable MRI reconstructions.

Diffusion models

Diffusion models, a class of generative models that have 
garnered substantial attention in recent years, are making 
an impact in a variety of fields, including MRI reconstruc-
tion  [89–95, 101]. These models operate by learning to 
reverse a diffusion process that gradually transforms random 
noise into structured images, and have shown a remarkable 
capability to generate high-quality, detailed images.

Diffusion models have been derived using different 
approaches [89], including discretized corruptions, e.g., 
denoising diffusion probabilistic models (DDPMs) [93], 
denoising score matching [102], and continuous formula-
tions based on stochastic differential equations (SDEs) [103].

For a general probability density function p(x), these 
approaches approximate the score function, defined by 
∇x log p(x) , using a neural network s�(x) . To do so, the net-
work is used to approximate a series of conditional score 
functions, st(xt) = ∇xt

log p(xt|xt+1) , which guide the denois-
ing process from pure noise, i.e., xT drawn from a normal 
Gaussian distribution for some maximum iteration value T, 
to a clean sample x0 ∼ p(x) . Once trained, these models can 
be used to sample unconditionally from the prior distribution 
by running the reverse diffusion process, and hence generate 
new samples.

In the context of inverse problems in general, and MRI 
reconstruction in particular, the diffusion process can be 
hijacked to approximately sample from the conditional 
posterior distribution, p(y|x) instead. One method involves 
conditioning on the k-space measurements y and applying 
Bayes’ rule to the series of score functions, i.e.,

(14)∇log p(xt|y, xt+1) = ∇log p(y|xt) + ∇log p(xt|xt+1).
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The second term, corresponding to the prior conditioned on 
the denoising process, is unchanged from the original dif-
fusion model and can be learned by training on clean, fully 
sampled images. The first term, corresponding to the likeli-
hood conditioned on the denoising process, can be approxi-
mated through various approaches [93, 94, 104]. In a naive 
approximation,

given the MRI forward model.
A growing body of work demonstrates that diffusion mod-

els work well for accelerated MRI and exhibit flexibility when 
handling various sampling patterns [94–96, 98, 105, 106]. For 
example, in a pioneering work, Jalal et al. [107] demonstrated 
that training a score-based generative model using Langevin 
dynamics, without making any assumptions on the measure-
ment system, could yield competitive reconstruction results 
for both in-distribution and out-of-distribution data. Chung 
et al. [96] demonstrated that score-based diffusion models 
trained solely on magnitude images can be utilized for recon-
structing complex-valued data. Luo et al. [97] described a 
comprehensive approach using data-driven Markov chains for 
MRI reconstruction which not only facilitates efficient image 
reconstruction across variable sampling schemes, but also 
enables the generation of uncertainty maps.

The flexibility afforded by explicitly decoupling the 
image prior (which is learned with diffusion models) and 
the statistical measurement model has also enabled other 
extensions. These include incorporating errors into the for-
ward model, e.g., due to motion [108] and field inhomogene-
ity [109] and incorporating multiple image contrasts [110].

Un‑trained neural networks

Un-trained methods are DL models that do not rely on train-
ing data apart from hyper-parameter tuning. Instead of con-
ventional training on large datasets, these methods are typi-
cally based on fitting a randomly initialized neural network 
to a specific measurement. Here we discuss two types of 
methods: un-trained neural networks based on CNNs, and 
methods based on coordinate-wise implicit neural networks.

Un‑trained CNNs for single image recovery

CNNs can be used as an image prior by fitting a randomly 
initialized CNN with gradient descent to a measurement. 
This approach, termed the deep image prior (DIP), was 
introduced in a pioneering work by Ulyanov et al. [111]. 
The optimization problem is formulated by,

(15)∇log p(y|xt) ≈ AH(Axt − y),

(16)x = argmin
�

‖Ax − y‖2 such that x = G�(z),

where G� is a CNN generator whose input z is a noise vec-
tor drawn from some noise distribution. The optimization is 
performed using gradient descent or ADAM [112], starting 
with random initialization of the network weights, and early 
stopping is used for regularization. The image quality first 
improves with the number of iterations, and then degrades 
as the network begins to fit the measurement noise in y . 
This behavior is caused by the implicit bias of CNN net-
works to natural images: when trained with gradient descent, 
CNNs fit the smooth images before the noise, as formalized 
in [113].

Un-trained networks perform very well for denois-
ing  [111, 114] and compressive sensing (e.g., acceler-
ated MRI). These methods can provably denoise smooth 
signals [113] and can provably reconstruct undersampled 
smooth images [115]. Un-trained networks also work quite 
well for accelerated MRI; they provide significant improve-
ment over sparsity-based methods for 2D accelerated 
MRI [116].

One key benefit of un-trained networks is that they do 
not need training data. However, this benefit comes at the 
expense of performance; the images produced by DIP meth-
ods are commonly not comparable to those from the pre-
trained networks discussed above. In addition, DIP often 
suffers from longer run times compared to the unrolled and 
direct inversion approaches because of the need for ADAM 
or gradient descent optimization during reconstruction.

Un‑trained CNNs for joint recovery of multiple images

Recently, the DIP framework was extended to dynamic 
imaging applications [117, 118] where the images in a time 
series are modeled as the output of a generator

Unlike the fixed noisy input used in the original DIP 
work [111], here zt are low dimensional latent vectors at 
a specific time point t. G� is a deep CNN generator, whose 
weights � are independent of t. For example, in a free-breath-
ing cardiac MRI, the images in the time series at a specific 
time t can be viewed as non-linear functions of cardiac and 
respiratory phases captured by zt . This model (17) can be 
viewed as a non-linear mapping/lifting from a low-dimen-
sional subspace Z to the image space. The low-dimensional 
nature of the latent vectors enables the exploitation of the 
non-local redundancies between images at different time 
points, thus facilitating the fusion of information between 
them as in [119, 120].

The network parameters � and the latent variables z are 
jointly optimized for by minimizing the cost function

(17)�t(r) = G�

[
zt
]
.
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The network regularization is an �2 penalty on the weights 
� , which was shown to minimize the need for early stop-
ping and provide improved performance. The latent vector 
regularization term involves a smoothness regularization to 
capitalize on the temporal smoothness of the images in the 
time series.

The above approach can also be extended to 3D applica-
tions, where the joint alignment and recovery of data from 
different slices obtained using different acquisitions may 
differ in cardiac/respiratory motion. Different sets of latent 
vectors are used for different slices to account for differ-
ences in breathing patterns and cardiac motion. In this case, 
a Kullback–Leibler divergence term is used to encourage the 
latent vectors of all the slices to follow a zero-mean Gauss-
ian distribution, thus facilitating the alignment of data from 
different slices.

Coordinate‑based networks

Coordinate-based neural representations, also known as 
implicit neural representations (NeRF-type networks), have 
recently emerged as an efficient way to represent and work 
with images, 3D shapes, and other signals [121]. They are 
commonly used for representing scenes and performing 
view syntheses in vision [122, 123]. To represent a 2D or 
3D object, these models map a coordinate input (e.g., (x, y) 
coordinates for 2D or (x, y, z) coordinates for 3D) to a pixel 
value, for example to a real number for a gray-scale image 
and to two real numbers for a complex-valued image.

Coordinate-based networks can be used in an analo-
gous fashion to un-trained CNNs to reconstruct an 
image [124–129]. Specifically, they can replace the CNN 
in an un-trained network and can be fitted to measurement 
data. Networks with Fourier-feature input (like NerF [122], 
SIREN [130], and Fourier Feature inputs [125]) impose a 
smoothness prior similar to the un-trained CNN discussed 
in the previous section.

Networks with Fourier-feature inputs take a coordinate 
input (e.g., an (x, y)-coordinate z ) and map it to a feature rep-
resentation with the map [sin(C0z), cos(C0z)] ∈ ℝ

2m , where 
C0 are parameters initialized randomly. The parameters C0 
can be fixed or trainable. Those features are then mapped 

(18)

C(z, �) =
N�

t=1

‖A
t
G�[zt] − y

t
‖2 + �1 ‖∇zG�‖2

⏟⏞⏟⏞⏟

network

regularization

+ �2 R(z)
⏟⏟⏟

latent

regularization

.

with a standard MLP with trainable parameters to an output. 
If two coordinates are close, the Fourier features are close, 
and how close can be controlled by the scale (variance) of 
the initialization.

If used as an image prior, compared to un-trained CNNs, 
coordinate networks with Fourier features perform worse in 
terms of image quality. In the context of MRI reconstruction, 
coordinate networks have been shown to be useful for rep-
resenting high-dimensional objects such as 3D volumes and 
scenarios with motion. For example, [124] used coordinate 
networks to perform cardiac MRI reconstruction by fitting 
a network to the k-space data. This can be computationally 
efficient since the undersampled k-space data is sparse. [131] 
also used coordinate networks for free-breathing cardiac 
MRI reconstruction, by fitting a coordinate in the image 
domain.

Self‑supervised methods

Neural networks, such as the end-to-end networks discussed 
in “Neural networks trained end-to-end”, are usually trained 
in a supervised manner (see Eq. (10)). This requires pairs of 
measurement and target (ground-truth) images. However, in 
practice, such pairs cannot always be acquired, e.g., due to 
scan time constraints, signal decay effects along echo trains, 
or physiological motion. Therefore, self-supervised meth-
ods are attracting increased research interest. These methods 
make it possible to train networks without target or ground-
truth data by either making assumptions on the measure-
ments or using additional noisy or partial measurements. 
A plethora of approaches has been developed, including 
methods for learning from under-sampled data [132, 133], 
unpaired data [134], or limited-resolution data [135]. Here 
we describe several approaches that are architecture-agnos-
tic. For recent reviews on this topic see [134, 136, 137].

Learning of algorithms based on Stein’s Unbiased Risk 
Estimate (SURE)

We start with a method that is based on assumptions on the 
noise distribution, called Stein’s Unbiased Risk Estimate 
(SURE) [138]. We consider the estimation of x , denoted by 
x̂ from its noisy measurements v = x + n . Here n is zero-
mean Gaussian noise with a variance of �2 . In practice, the 
estimate x̂ is derived from the noisy measurements v using 
a deep network as x̂ = f�(v) . When the noiseless reference 
image x is available, the true mean-square error (MSE), 
denoted by
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can be used.
By contrast, the SURE  [138] approach uses the loss 

function

which is an unbiased estimate of (19). Note that the expres-
sion in (20) does not depend on the noise-free images x ; it 
only depends on the noisy images v and the network param-
eters � . In (20), ∇u ⋅ f�(u) represents the network diver-
gence, which is often estimated using Monte-Carlo simula-
tions [139]. Several researchers have adapted SURE as a loss 
function for the unsupervised training of deep image denois-
ers [140, 141] and demonstrated performance approaching 
that of supervised methods.

The SURE approach was extended to inverse problems 
with a rank-deficient measurement operator known as the 
generalized SURE (GSURE) [142]. The GSURE provides 
an unbiased estimate of the projected MSE, which is the 
expected error of the projections in the range space of the 
measurement operator. The GSURE approach was recently 
used for inverse problems in [140]. The experiments in [140] 
showed that the GSURE-based projected MSE was a poor 
approximation of the actual MSE in the highly undersampled 
setting. To improve performance, the authors trained the 
denoisers at each iteration in a message-passing algorithm 
in a layer-by-layer fashion using classical SURE, which was 
termed LDAMP-SURE [140]. This approach approximates 
the residual aliasing errors at each iteration to be Gauss-
ian random noise. As this assumption is violated in many 
inverse problems, the performance of this layer-by-layer 
training approach is not as good as supervised methods.

The ENSURE framework circumvents the poor approxima-
tion of the true MSE by GSURE by considering different sam-
pling operators for different images. Similar to classical SURE 
metrics [142, 143], the ENSURE loss metric has a data consist-
ency term and a divergence term. The data consistency term 
in ENSURE is the sum of the weighted projected losses [142] 
from multiple subjects; the weighting depends on the class of 
sampling operators. When different sampling patterns from dif-
ferent subjects fully cover k-space, the ENSURE metric is an 
unbiased estimate of the true image-domain MSE and hence 
is a superior loss function than projected SURE [142]. The 
comparison of the above methods shows that the the ENSURE 
approach can provide performance comparable to that of super-
vised training.

Self‑supervised DL based on Noise2noise

Noise2noise [144] is a well-established framework, which 
constructs a self-supervised loss based on independent noisy 

(19)MSE = �x ‖x̂ − x‖2

(20)SURE(f�(v), v) = ‖f�(v) − v‖2
2
+ 2�2∇v ⋅ f�(v) − N�2,

measurements of the same object. Recall that for single-coil 
accelerated MRI, the forward map is A = MF , where M is 
an undersampling mask and F is the Fourier transform.

Suppose we are given two measurements y = MFx and 
y� = M�Fx , where M and M′ are two different random 
undersampling masks. From these measurements, we can 
construct the self-supervised loss

It can be shown that in expectation over the random meas-
urements, a minimizer of the self-supervised loss is also 
a minimizer of the expectation of the supervised loss (see 
Prop. 2 in [145]). Thus, with enough training examples, such 
self-supervised training can approach the performance of 
supervised training [145].

One notable method that has implemented this approach 
successfully for MRI reconstruction is Self-Supervised 
Learning via Data Undersampling (SSDU)  [132]. This 
method partitions the available k-space measurements into 
two disjoint sets; the first set is used in the data consistency 
units of the unrolled network, i.e., for the forward pass, and 
the other one is used for computing the loss, i.e., for supervi-
sion. SSDU can hence be trained using under-sampled data 
alone. In their work, Yaman et al. [132] demonstrated that 
SSDU achieved comparable performance to fully supervised 
learning methods while offering practical advantages in real-
world MRI applications.

Recently, Millard and Chiew [146] introduced a general 
theoretical framework that extends Noiser2Noise [147] and 
also explains SSDU. Unlike the SSDU formulation, where 
one set is recovered from the other, they applied two sub-
sampling masks to the data. They proposed a weighted �2 
loss, computed in k-space, with a weighting that compen-
sates for the sampling and sampling-partitioning densities. 
They derived the framework analytically and showed that 
when the weighting matrix W is rank-deficient and fulfils 
certain conditions, the method boils down to SSDU. They 
showed analytically that SSDU with an �2 k-space loss 
approximates fully sampled reconstruction, on expectation. 
It is worth mentioning that their analysis was done for an �2 
k-space loss, while the original SSDU method was trained 
with a mixed �1∕�2 loss.

Self‑supervised DL using k‑space bands

The self-supervised methods described above focused on 
learning from under-sampled data acquired with variable-
density or parallel-imaging schemes. Although such data-
sets have undersampling artifacts, they effectively con-
stitute high-resolution data, because the sampling masks 
commonly cover the entire k-space extent (note that under-
sampling creates artifacts but does not necessarily reduce 

(21)�SS(f�(y), y
�) = ‖‖M

�Ff�(y) − y�‖‖
2
.



345Magnetic Resonance Materials in Physics, Biology and Medicine (2024) 37:335–368 

the resolution). However, the acquisition of high-resolution 
data can be challenging. In dynamic MRI, for example, there 
is often a trade-off between the spatial and temporal resolu-
tions, which requires acquisition compromises.

Recently, the k-band framework was proposed for 
self-supervised learning from partial, limited-resolution 
data [135]. This framework is based on the acquisition of 
k-space bands, where each band acquires data with high res-
olution in the MRI readout dimension and limited resolution 
in the phase encoding (PE) dimension. The authors sug-
gested acquiring different bands from different subjects, and 
randomizing the bands’ orientation across subjects; funda-
mentally, this randomization serves to expose the network to 
all k-space areas across the training iterations (Fig. 4). Thus, 
even though the network does not get a full k-space from any 
single subject, it can learn connections across all the k-space 
regions. To enable self-supervised learning from limited-
resolution data without limiting the resolution during infer-
ence, the authors introduced an optimization method dubbed 
stochastic gradient descent (SGD) over k-space subsets.

In this framework, the loss is computed in k-space and 
formulated by

where B ∈ {Bi}i=1,...,180 is a binary band sampling operator 
that samples a band with angle i, and W is a loss weighting 
mask

(22)�k_band = ‖WB(Ff�(y) − Fx)‖1

(23)W = 180

(
180∑

i=1

Bi

)−1

.

This loss-weighting compensates for the over-exposure of 
the network to low-frequency k-space data and enhances 
learning in the k-space periphery. This is beneficial because 
in the k-band acquisition setting, the center of k-space is 
included in all bands (Fig. 4), unlike the periphery. The 
authors showed analytically that when this loss-weighting 
mask is applied, the self-supervised training process sto-
chastically approximates fully supervised training, on 
expectation. They demonstrated that learning from limited-
resolution data can hence result in performance compara-
ble to supervised and self-supervised methods trained on 
high-resolution data, and hence offers a practical solution 
for cases where such data are unavailable.

Loss‑weighting

Several recent studies have independently proposed apply-
ing spatially varying weighting to k-space loss functions 
and demonstrated that such weighting can improve the 
performance of self-supervised DL methods [133, 135]. 
Interestingly, this general concept emerged even though 
the studies analyzed different sampling schemes and loss 
functions. For example, Millard and Chiew [133] analyzed 
SSDU with variable-density sampling masks that cover 
the entire k-space area, and an �2 k-space loss function. 
In contrast, the authors of k-band [135] explored training 
on band-limited data using an �1 k-space loss function. 
Despite these differences, these studies arrived at similar 
conclusions: they derived loss-weighting masks that weigh 
down the loss in the center of k-space and enhance it in the 
periphery. These masks hence inhibit the learning of low-
frequency data and facilitate learning of high-frequency 

Fig. 4  Example of the input training data for three DL reconstruction 
methods. The fully-supervised MoDL method [25] receives var-dens 
sampled data as input and uses the entire k-space for supervision. The 
self-supervised SSDU method [132] receives var-dens data as input, 
splits it into two subsets, and uses one set for data consistency and the 
other for supervision. In this example, the var-dens data were sampled 
from parallel-imaging (equispaced) acquired data, as in  [132]. The 

k-band method [135] receives var-dens sampled data from a k-space 
band, and uses data from the whole band for supervision, without any 
supervision outside the band. Different bands are acquired from dif-
ferent subjects, with random orientations. At inference, the input to 
all three methods is var-dens data from the entire k-space, similar to 
that shown here for MoDL
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details, so that eventually all frequencies are weighted 
equally.

A related concept was proposed by Huang et al., who 
developed a neural implicit k-space representation model 
for cardiac MRI [124]. To account for the large variations 
in k-space values they proposed a log transform that inhib-
its high-magnitude k-space data to make their magnitude 
values similar to those of of low-magnitude data. How-
ever, because such a non-linear transform has an undesired 
effect on the noise distribution, the authors proposed an 
approximation using a linear function [148]. Altogether, 
this is an alternative approach for balancing the different 
parts of k-space.

Recent architectures

Transformers and dual‑domain networks

In addition to the training methods described above, much 
progress has also been made in the development of advanced 
architectures. For example, two architectures that recently 
garnered substantial attention are transformers and dual-
domain networks. Transformers [149, 150] have powerful 
computational capabilities due to their use of an attention 
mechanism [151] that makes it possible to weigh the impor-
tance of different parts of the input data and capture long-
range dependencies. Transformers first made a substantial 
impact in the field of natural language processing [152, 153] 
and then became highly influential in computer vision [149].

In the context of MRI reconstruction, recent studies dem-
onstrated that transformers offer excellent performance and 
ability to deliver improved structural and textural fidelity. 
For example, Korkmaz et al. [154] developed an unsuper-
vised MRI reconstruction method based on a generative 
vision transformer. Their method utilizes cross-attention 
transformer blocks, which receive both global and local 
latent variables as input and progressively map them to MR 
images with increasing spatial resolution. This style-gen-
erative architecture enhances representational learning and 
improves model invertibility. Feng et al. [155] introduced the 
T2Net for simultaneous MRI reconstruction and super-reso-
lution. This network has two branches dedicated to these two 
tasks, and incorporates a task transformer module to facili-
tate effective feature sharing between them. Guo et al. [61] 
introduced the ReconFormer, an architecture that leverages 
recurrent pyramid transformer layers and scale-wise atten-
tion mechanisms. It effectively captures multi-scale informa-
tion and deep feature correlations, leading to efficient, high-
quality image reconstruction and computational efficiency.

Another emerging type of architecture is known as dual-
domain networks, which commonly integrate information 
from the image and k-space domains [69, 156–159]. This 
approach, exemplified by MD-Recon-Net [158], leverages 

the complementary strengths of these two domains to 
enhance reconstruction quality. A study by Souza et al. [156] 
demonstrated the effectiveness of such networks in multi-
channel MRI reconstructions. Singh et al. [159] demon-
strated that layers utilizing joint learning of image and 
frequency domain features can directly replace standard con-
volutional layers. This is useful for numerous tasks, includ-
ing image reconstruction, motion correction and denoising.

Transformers and dual-domain networks have recently 
been integrated, leading to state-of-the-art architectures. For 
example, Zhao et al. [160] introduced SwinGAN, a dual-
domain Swin Transformer-based GAN. This network com-
bines frequency-domain and image-domain generators, both 
utilizing Swin Transformer backbones. This design allows 
for effective capture of long-distance dependencies in MR 
images. SwinGAN also features a contextual image relative 
position encoder, which enhances its ability to capture local 
information. Wang et al. introduced DCT-Net, a dual-domain 
transformer network for MRI reconstruction [70], which 
integrates image and frequency domain information through 
its cross-attention and fusion-attention blocks. DCT-Net is 
designed to enhance MRI reconstruction performance, par-
ticularly under low sampling rates, by leveraging the comple-
mentary strengths of both domains. In summary, these recent 
architectures offer high computational power to improve 
image reconstruction quality.

Recent architectures incorporating diffusion models

Recently, some of the architectures mentioned earlier have 
been integrated with diffusion models, yielding state-of-the-
art methods. For example, Korkmaz et al. [161] introduced 
the Self-Supervised Diffusion Reconstruction (SSDiffRecon) 
method, which poses a diffusion model as an unrolled net-
work, with interleaved cross-attention transformer blocks 
and physics-driven data-consistency steps. Furthermore, 
Zhao et al. [162] introduced DiffGan, an architecture that 
combines a local vision transformer with a diffusion model, 
which mitigates computational challenges in training gen-
erative models.

DL for acquisition optimization

The previous chapter discussed various reconstruction 
approaches for retaining data integrity and accuracy when 
k-space sub-sampling takes place. This chapter will high-
light two complementary deep-learning-based interventions 
at the acquisition step that further assure optimized perfor-
mance, while suggesting additional acceleration. First, we 
explore methods that optimize the k-space sampling trajec-
tories in tandem with the reconstruction. Next, we describe 



347Magnetic Resonance Materials in Physics, Biology and Medicine (2024) 37:335–368 

recent advances in harnessing DL to design and refine MRI 
pulse sequences.

Optimizing k‑space trajectories

The computational design of sampling patterns has a long 
history in MRI. Generally, two types of approaches have 
been taken. Algorithm-agnostic methods, e.g. [163–167], 
consider specific image properties (e.g., the Cramér-
Rao bound or image support) and optimize the sampling 
pattern to improve the measurement diversity for that 
class. Algorithm-dependent methods, on the other hand, 
e.g. [168–171], optimize the sampling pattern assuming 
specific reconstruction algorithms. These are typically CS 
algorithms, which employ regularizers such as TV, wave-
let-domain sparsity, or pre-trained diffusion models [171].

The main challenge with the above computational 
approaches is their high computational complexity. In par-
ticular, algorithm-dependent schemes need to solve the 
CS problem for each image in the dataset, to evaluate the 
loss for a specific sampling pattern. The design of sam-
pling pattern thus involves a nested optimization strategy; 
the optimization of the sampling patterns is performed in 
an outer loop, while image recovery is performed in the 
inner loop to evaluate the cost associated with the sam-
pling pattern.

DL provides an opportunity to speed up the computa-
tional design, because DL inference schemes enable rapid 
evaluation of the loss for each sampling pattern. This 
enables a joint strategy that simultaneously optimizes 
the acquisition scheme and the reconstruction algorithm. 
Early DL-based joint optimization schemes solved for a 
binary sampling mask [172, 173]. The PILOT method, for 
example, solves for a hardware-constrained k-space trajec-
tory [172]. The LOUPE method, on the other hand, learns 
the optimal sampling density in tandem with a reconstruc-
tion network [173]. It was first developed for 2D Cartesian 
imaging [173] and later extended to non-Cartesian sam-
pling [174]. Other studies have focused on 3D Cartesian 
sampling with a variational reconstruction network [175].

More recent work represents the sampling locations � 
as continuous variables and jointly solves for them and 
for the parameters of the DL algorithms. These methods 
consider a forward model A� , where � denotes the sam-
pling locations. This forward model may be represented 
either by using an analytical Fourier transform [176] or 
a non-uniform Fourier transform [177]. We denote the 
reconstruction algorithm (which can be unrolled, direct 
inversion, or plug-and-play) by

(24)x̂ = M𝜃,𝜙(y),

where � denotes the parameters of the reconstruction algo-
rithm and � are the sampling locations corresponding to the 
forward model. Joint optimization schemes, e.g. [176, 177], 
are designed to optimize the sampling pattern Φ and the 
CNN parameters � in tandem, i.e.,

Several methods have been developed within this frame-
work. For example, J-MODL focuses on a model-based 
reconstruction and utilizes an unrolled network [176]. In 
a different work, Wang et al. [177] parameterized trajecto-
ries with quadratic B-spline kernels, and performed optimi-
zation under penalties describing realistic MRI hardware 
constraints, e.g. the slew rate and gradient amplitude. This 
work was later extended to a generalized Stochastic optimi-
zation framework for 3D NOn-Cartesian samPling trajec-
torY (SNOPY) [178], which can accommodate several opti-
mization objectives. Chaithya and Ciuciu [179] introduced 
the PROJeCTOR framework, which enables joint learning 
of non-Cartesian trajectories and reconstruction networks 
by using a projected gradient descent algorithm. Alkan 
et al. [180] introduced joint sampling and reconstruction 
optimization through variations in information maximiza-
tion, where they used an encoder to represent non-uniform 
sampling and a decoder in an unrolled neural network. Xie 
et al.  [181] introduced the PUERT method for learning 
probabilistic sampling patterns along with an interpretable 
reconstruction method; their learning module incorpo-
rated a dynamic gradient estimation strategy. Finally, Zou 
et al. [182] demonstrated that joint optimization can reduce 
the bias and uncertainty of pharmacokinetic parameter esti-
mation in dynamic contrast enhanced MRI, and hence con-
tribute to higher diagnostic value. Altogether, these methods 
have shown significant benefits from jointly optimizing the 
sampling pattern and the reconstruction algorithm.

Pulse sequence design

The previous section focused on accelerating MRI scans via 
k-space sub-sampling. The complementary element to this 
effort is the optimization of the remaining pulse sequence 
parameters by a set of radio-frequency (RF) powers, shapes, 
and duration that enable the shortest possible scan time, 
while retaining sufficient contrast, SNR, and consistency 
with conventional (and lengthy) alternatives.

The pulse sequence design task was traditionally hand-
crafted by MR experts, who combined strong intuitions and 
an understanding of spin physics with mathematical solu-
tions of the Bloch equations. While a remarkable number 
of contrast mechanisms and imaging schedules have been 
developed since the invention of MRI, the reliance on 

(25){�∗,�∗} = argmin
�,�

N�

i=1

‖M�,�

�
A�(xi)

�
− xi‖22.
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solvable differential equations severely limits our ability to 
reach a globally optimized schedule and reduce the scan 
time. Recent developments in DL architectures and com-
putational frameworks have created new opportunities for 
the automatic and efficient optimization of rapid acquisition 
protocols.

Zhou et al. [183, 184] introduced the representation of 
the Bloch equations as a computational graph. By treating 
each of the acquisition parameters as a neural network node 
weight, an efficient gradient-descent-based optimization 
was realized, where simulated signal trajectories were fed 
into the network, enabling an automatic generation of pulse 
sequences. The resulting protocols were characterized by 
non-intuitive gradient waveforms, where continuous off-res-
onant excitation applied as the receive channel was continu-
ously and simultaneously recorded. This approach yielded 
an ultra-short scan time for T1∕T2 mapping at 1D. By 
expanding for 2D imaging, Lee et al. [185] used automatic 
differentiation to optimize the Cramér-Rao Lower Bound 
(CRLB) of multiple-echo spin echo T2 mapping, driven equi-
librium single pulse observation of T1 (DESPOT1) mapping, 
and the MRF IR-FISP sequence.

Loktyushin et al. [186] developed a supervised learning 
framework termed MR-Zero where a target contrast of inter-
est is used for learning the optimal set of RF events, the gra-
dient moment, and the delay times (Fig. 5). One important 

feature of this approach is the use of a task-driven cost 
function that provides the user with the flexibility to prior-
itize the characteristics required from the output protocol, 
such as high data fidelity, short scan time, or the specific 
absorption rate (SAR) limits. In a later study, the same group 
used this approach to optimize the refocusing flip angles 
and minimize T2-induced blurring in accelerated spin echo 
sequences [187].

In the molecular MRI field, an end-to-end DL-based 
framework was developed for the discovery of rapid, quan-
titative chemical exchange saturation transfer (CEST), 
semisolid magnetization transfer acquisition and recon-
struction protocols [188]. The system was based on a com-
putational graph representation of the Bloch-McConnell 
analytical solution which receives the molecular imaging 
scenario of interest as input, and outputs an optimized set 
of acquisition parameters and the corresponding recon-
struction network that translates the raw data into quan-
titative parameter maps. In  vivo experiments showed 
it could acquire in-vivo data in merely 35 s and recon-
struct parameter maps in less than 1 s. The use of recur-
rent neural networks and training over a wide range of 
saturation pulse frequency offsets has further increased 
the robustness of this conceptual approach for B0 and B1 
inhomogeneity [189].

All these approaches exploit DL-based strategies 
to optimize and derive novel acquisition routes offline. 
Recently, a different optimization paradigm was suggested 

Fig. 5  Automated discovery of MRI acquisition protocols using 
supervised learning . A differentiable MR scanner utilizes the Bloch 
equations for in-silico signal generation and the later reconstruction 

of the target contrast of interest from real, acquired data. Reproduced 
from Loktyushin et al. Magn. Reson. Med. 2021; 86: 709-724 [186]



349Magnetic Resonance Materials in Physics, Biology and Medicine (2024) 37:335–368 

where the acquisition parameters are modified and adapted 
on the fly, during data acquisition [190]. By combining a 
Bayesian framework, CRLB calculation, and model-based 
reconstruction, the acquisition parameters for a series of 
images can be optimized in real-time based on the previ-
ous image history. This concept has demonstrated up to a 
3.3 fold acceleration of multi-echo sequences in human 
subjects and molecular imaging phantoms.

As an intermediate conclusion, while the concept of 
machine-learning-based pulse sequence design is rela-
tively young and not heavily explored, the first reports 
suggest a promising new avenue for optimizing image con-
trast, shortening the scan time, and finding new acquisition 
schemes beyond human intuition.

Advanced techniques and applications

In this section we discuss DL methods for quantitative MRI 
and dynamic MRI.

DL methods for quantitative MRI

The goal of quantitative MRI is to extract one or more tissue 
parameter maps from a series of qualitative images [191]:

where Im denotes the contrast-weighted images for m=1,...,M 
acquisitions, � denotes the spin density, Tparam denotes the 
tissue parameters ( T1 , T2 , etc.), and Φm is the biophysical 
function connecting the acquisition parameters with the 
resulting contrast-weighted images. The mapping of tissue 
properties enables de-biasing imaging protocols and harmo-
nization of the final diagnosis across sites, vendors, and phy-
sicians. It thus provides sensitive and standardized tools for 
reproducible interpretation of MRI-based information [192]. 
The classical approach to MR property mapping mandates 
repeated acquisition, where all the protocol parameters are 
held fixed, and only a single parameter is slowly and gradu-
ally varied (e.g., the flip angle or the repetition time across 
different M acquisitions). The resulting long scan time 
hinders the widespread use of quantitative MRI in clinical 
settings [193]. The reconstruction of the acquired raw data 
series demands a lengthy parameter-fitting procedure that is 
computationally intensive and slow.

The development of powerful DL architectures such as 
CNNs, UNets, GANs, ResNets and recurrent neural networks 
has been leveraged to accelerate and enhance the perfor-
mance of quantitative MRI [194]. To accelerate relaxometry 
studies, Liu et al. [195] developed a model-augmented neu-
ral network that receives a series of incoherently-sampled 

(26)Im = �m(Tparam)�

multi-echo images and uses a CNN to reconstruct the T2 
parameter maps. The supervised learning was guided by a 
parameter-space loss, which compares the reconstructed T2 
maps to the ground truth reference, and a k-space loss. The 
latter was designed to ensure that the physical-model-based 
synthetic undersampled k-space measurements matched the 
originally acquired k-space information. In a later work, the 
same group developed a model-guided self-supervised DL 
framework for rapid T1∕T2 mapping [196], to obviate the 
need for fully sampled training references.

While many DL-based quantitative mapping strategies 
are focused on k-space sub-sampling, a further acceleration 
potential lies in reducing the number of contrast-weighted 
images acquired. In a very recent work, Li et  al.  [197] 
trained a deep residual CNN network to receive just three 
k-space under-sampled contrast weighted images and output 
the corresponding T1rho and T2 parametric maps (which are 
particularly useful for the study of osteoarthritis).

Magnetic resonance fingerprinting (MRF), which was 
first reported in a 2013 Nature paper [198] and increasingly 
studied since then, constitutes a paradigm shift in MRI-
based tissue characterization. Unlike traditional relaxom-
etry studies, MRF starts with the acquisition of tens or hun-
dreds of images, using a pseudo-random acquisition pattern 
accommodating a series of short repetition times, small flip 
angles, and heavily under-sampled k-space data (e.g., via a 
single variable density spiral trajectory). Although each of 
the resulting raw images is extremely noisy, the temporal 
evolution of the signal at each pixel entails a unique finger-
print. By comparing the experimental trajectory to a Bloch-
equation-derived dictionary of simulated signals, the inverse 
problem can be solved to uncover the associated parameter 
maps ( Tparam).

While the resulting acquisition times are incredibly short 
(e.g., <13 s [198, 200]) the quantitative image reconstruc-
tion step (via pattern matching) may take hours, because the 
similarity between each acquired signal trajectory and all 
possible dictionary entries needs to be calculated.

In recent years, several DL-based strategies have been 
suggested to overcome this challenge. Cohen et al. [201] 
trained a fully connected neural network using synthetic 
signal dictionaries to reconstruct MRF data in less than 
100 ms. To take advantage of the inherent dependencies 
between adjacent image pixels, Balsiger et al. [202] designed 
a spatiotemporal CNN where the time-evolution dimension 
is the third dimension of the CNN patch kernel. In-vivo 
human brain validation studies using this approach dem-
onstrated improved performance compared to alternative 
MRF networks [201, 203]. To accommodate 3D imaging, 
Gomez et al. [204] combined fully connected reconstruc-
tion networks with radial and spiral readout trajectories, 
and achieved whole-brain reconstruction in less than 7 min 
(compared to > 1.5 h using traditional reconstruction).
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Another MRF-associated bottleneck relates to the time 
required to generate the synthetic signal dictionary, which 
increases exponentially with the number of simulated param-
eters [205]. Even when high-end computer clusters are used 
for this task, the computation time may reach hours/days 
for complex multi-pool imaging [206, 207]. Recently, this 
challenge was addressed by training a fully connected neural 
network using a variety of dictionaries to learn the nonlin-
ear relations embedded in the physical model. The resulting 
system enabled the rapid generation of simulated signals for 
various protocols and imaging scenarios [208]. NN-based 
simulators can be further combined with reconstruction 
networks to provide a unified rapid method for MRF analy-
sis [209]. A different approach to circumvent the need for 
exhaustive dictionary generation involves the direct synthesis 
of multi-contrast images (e.g., T1-weighted, T2-weighted, and 

FLAIR) from raw MRF data. While synthetic images can be 
derived from quantitative MRF data by forward model acti-
vation using the desired acquisition parameters [210, 211], 
Wang et al. [212] showed that a dictionary-free conditional 
GAN (trained on MRF raw data and paired ground truth 
weighted images) can perform the same task much faster. 
For cases where full quantitative information is required, a 
different work demonstrated that multi-parameter maps can 
still be extracted with GANs, even when merely 30% of the 
acquired MRF data is used [199] (Fig. 6).

Dynamic MRI

Deep learning has become a transformative force in the 
realm of dynamic MRI, particularly in addressing the chal-
lenges related to limited acquisitions and motion correction, 

Fig. 6  A demonstration of two MRI quantification strategies/
architectures.  a Deep learning reconstruction of quantitative mag-
netic resonance fingerprinting (MRF) information. A fully connected 
neural network is trained using simulated signal trajectories. During 
inference, it receives a series of raw MRF images pixel-wise (gray-
scale images, left), as well as auxiliary maps (color, top left), yielding 

quantitative parameter maps (top right). b A further acceleration in 
quantitative MRI scan time can be achieved by training a generative 
adversarial network (GAN) using a smaller subset of raw input data 
to yield the same quantitative output maps. Reproduced and modified 
from Weigand-Whittier et al. [199]
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which constitute substantial hurdles in clinical imaging [9, 
45, 213, 214]. DL excels at learning signal evolution [157, 
215], a critical factor when aiming to accurately visualize 
and interpret dynamic changes in the body.

Motion‑resolved reconstruction

Motion-resolved algorithms can effectively learn spatio-
temporal correlations and reconstruct images from highly 
undersampled sequential data [216, 217]. These methods 
have primarily been developed in the context of cardiac 
MRI [64, 120, 213, 216, 218, 219]. For instance, supervised 
unrolled algorithms have been used to recover cardiac cine 
MRI from breath-held MRI using using 4D (3D+Time spa-
tial) convolutions [64, 213]. In other studies, architectures 
included unrolled algorithms that combine manifold [120] 
or low-rank priors [216, 218], and joint learning of motion 
estimation and segmentation in cardiac MRI [219]. From a 
clinical perspective, DL has been found useful for measur-
ing myocardial displacement [220], noninvasive diagnosis of 
myocardial ischemia [221], and evaluation of cardiac func-
tion in pediatric imaging [222].

To tackle the scarcity of training data, unsupervised 
implicit learning approaches have recently been introduced 
for dynamic MRI [217, 223] (for more information see “Un-
trained CNNs for joint recovery of multiple images” and 
“Coordinate-based networks”). These methods were also 
extended to multi-slice dynamic MRI data [224], where the 
dynamic data from slice xi(t) are acquired sequentially at 
different time points. The above model has been generalized 
to recover a pseudo-3D reconstruction by modeling the data 
as xi(t) = G�

(
zi(t)

)
 , where zi(t) are allowed to vary for dif-

ferent slices.

Motion‑compensated reconstruction

The development of DL techniques for motion estimation 
and correction is a highly active research field, as DL can 
accurately detect and compensate for both rigid and non-
rigid motion artifacts, which leads to more diagnostically 
valuable images. A thorough review of motion estimation 
and correction techniques is beyond the scope of this manu-
script. Here we highlight some of the main applications, 
and more information can be found in recent reviews [44, 
45, 225–227].

One of the main applications where DL is highly effective 
for motion correction is brain MRI, which is characterized 
by rigid-body motion [226–229]. One of the early works in 
this field, by Johnson and Dragnova [230], proposed condi-
tional GANs to infer clean images from motion-corrupted 
data. More recent techniques include co-optimization for 

jointly estimating the motion parameters and reconstructed 
image [134, 228], methods for detection and correction of 
motion-corrupted k-space lines [229, 231], and the use of 
score-based generative models [232].

DL approaches are also highly useful for tackling non-
rigid, irregular motion. Applications include imaging of 
the body trunk  [233], fetal MRI  [234, 235], abdominal 
MRI [236, 237], and MR angiography [238]. Unsupervised 
implicit learning methods that recover the deformable 
motion fields at each time point have also been introduced 
and found to be effective in motion-compensated recov-
ery [239]. DL is also making strides in the field of real-time 
interventional MRI. Here, the rapid processing capabilities 
of DL algorithms enable real-time feedback and guidance 
during medical procedures, thus enhancing both the safety 
and efficacy of interventions. [240–242]

Multi‑task pipelines

The fundamental goal motivating the acquisition of diagnos-
tic-quality MR images is to extract clinically useful insights 
to further clinical care or to interrogate disease activity. 
Consequently, efficient, high-quality image acquisition is 
just the first step (typically referred to as upstream DL) in 
the imaging workflow, which is followed by image analysis 
and insight extraction (typically referred to as downstream 
DL) [243]. In many applications, these upstream and down-
stream processes are disconnected, leading to insufficient 
insights as to whether a novel MRI acceleration and recon-
struction technique can reliably produce the requisite diag-
nostic information [244]. As a result, there is a substantial 
need to combine the upstream and downstream processes to 
ultimately harness advances in MRI physics, hardware, and 
DL for end-to-end acquisition-to-analysis workflows.

Conventional and DL-based reconstruction techniques 
can potentially be combined with downstream task of clini-
cal utility to guide useful model development. Specifically, 
MRI reconstruction workflows can be combined with three 
different downstream tasks that use whole images as inputs: 
(i) image classification, which performs binary identification 
(via a yes/no) to identify the presence of one or multiple 
disorders; (ii) abnormality detection, which performs locali-
zation via bounding boxes to accurately depict where one 
or multiple disorders are present in images; (iii) image seg-
mentation, which performs image classification at the voxel 
level to distinguish voxels that belong to a particular tissue 
or disease class. The DL sub-field of multi-task learning 
can learn multiple tasks simultaneously with positive task 
transfer, where learning one task improves the performance 
of other tasks.

In the context of accelerated MRI, combining the 
upstream task of MRI reconstruction with the downstream 
tasks of classification, detection, or segmentation can 
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improve performance on all tasks. It also contributes to opti-
mizing reconstruction techniques with clinically informed 
metrics. One of the greatest challenges in doing so, however, 
is the lack of available datasets that can merge both sets of 
tasks. The fastMRI raw-data dataset was recently supple-
mented with the fastMRI+ dataset that includes classifica-
tion and detection bounding box annotations for knee and 
brain abnormalities at the slice level [245]. Such datasets 
can enable the design of end-to-end techniques to optimize 
reconstruction, subject to high performance on lesion detec-
tion [246]. Similarly, even beyond end-to-end methods, such 
abnormality labels can be used to design clinical task-spe-
cific undersampling trajectories [247].

Beyond fastMRI+, SKM-TEA datasets include raw 
k-space data as well as classification labels, detection 
bounding boxes, segmentation masks, and quantitative T2 
relaxation time maps [35]. The original work profiled how 
different reconstruction approaches combined with differ-
ent segmentation tools affected a common musculoskeletal 
biomarker of cartilage T2 relaxation time. Despite differ-
ences in the performance of the individual DL blocks, the 
overall impact on regional cartilage T2 values was small, 
a surprising finding that has been replicated for cartilage 
morphology and T2 tasks [248, 249]. Recent work has evalu-
ated new approaches that combine generic pre-training tasks 
such as image reconstruction with fine-tuning for different 
clinically-relevant downstream tasks [250]. This approach 
achieves high performance in image acceleration as well as 
segmentation. Similar to these findings, the K2S challenge 
at MICCAI 2022 combined knee MRI reconstruction with 
bone/cartilage segmentation and bone shape analysis [40]. 
Yet again, there were only weak correlations between the 
metrics of reconstruction and segmentation quality, with one 
of the best segmentation models producing highly artifactual 
reconstructions but high quality segmentations.

Joint estimation of sensitivity maps 
and reconstruction

The power of DL has also been harnessed for improving 
parallel multi-coil MRI, where the coil sensitivity maps must 
be estimated and incorporated in the image reconstruction 
process. Many DL methods utilize the popular ESPIRiT 
algorithm [251] for computing the sensitivity maps prior to 
the reconstruction process. However, joint estimation of the 
sensitivity maps and reconstructed data could contribute to 
improving image quality, as indicated in different studies, 
first with classical approaches [252, 253] and later using 
DL [254–257]. DL frameworks were hence recently devel-
oped for joint estimation of the sensitivity maps and recon-
struction data. For example, the well-known E2E-VarNet 
method [254] included a module for sensitivity maps esti-
mation and incorporated it into a larger unrolled network, 

trained end-to-end. A similar approach was taken by Jun 
et al., who proposed the IC-Net [255]. Luo et al. suggested 
using a deep image prior [256], and Zhang et al. proposed 
a zero-shot learning method which is trained solely on data 
from a specific subject and jointly estimates the sensitivity 
maps and temporal data [258]. Most recently, Hu et al. [257] 
introduced the self-supervised SPICER method, which ena-
bles joint reconstruction and sensitivity maps estimation 
with training only on noisy data.

Other applications

The powerful capabilities of DL have also been exploited for 
other computational tasks in the MRI workflow aside from 
image reconstruction. A detailed review of these applica-
tions is beyond the scope of this manuscript, which focuses 
on MRI reconstruction. Specific examples include the joint 
recovery of multi-contrast MRI data [110, 259], the synthe-
sis of missing contrasts or synthesis of quantitative maps 
based on anatomical data [259, 260], super-resolution [261, 
262], B0 estimation and off-resonance correction [263], 
enhancement of low-field MRI data, where the low SNR 
degrades image quality  [56, 264], and automated scan 
prescription [265].

Datasets and software

Datasets

The availability of public datasets and open-source code 
repositories has played a crucial role in the rapid develop-
ment of DL techniques [266]. In the MRI reconstruction 
field, several major databases such as fastMRI [32], SKM-
TEA [35], mridata.org [33], and Calgary-Campinas [34] 
catalyzed development by making available large amounts of 
raw k-space data, which are useful for developing and bench-
marking methods [51, 267]. Other resources provide valu-
able data for specific applications, including MR imaging 
of speech production [268], cardiovascular imaging [269], 
and low-field MRI [270]. Many other MRI datasets are also 
available on the web, but those were commonly designed 
for downstream, non-reconstruction tasks, hence they do 
not always contain raw k-space data. Examples include the 
Human Connectome project [271], IXI [272], BRaTS [273, 
274], ADNI [275], UK-biobank [276] and OASIS [277]

Open‑source software

The adoption of open-source frameworks has significantly 
accelerated the development of DL methods as they pro-
vide researchers robust, flexible platforms to develop new 
algorithms. The two most prominent general-purpose DL 
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frameworks are PyTorch [278] and TensorFlow [279], which 
offer extensive libraries that facilitate the design, training, 
and deployment of DL models.

Several open-source software frameworks have been 
developed specifically for MRI. These offer useful compu-
tational tools for handling raw k-space data, implementation 
of algorithms and computation of MRI-related metrics. For 
example, BART (Berkeley Advanced Reconstruction Tool-
box) [280] is a large and highly popular software package. 
It enables efficient data processing and contains implemen-
tations of different iterative reconstruction algorithms. The 
recent versions of BART also contain general-purpose tools 
that are highly useful for the development of DL reconstruc-
tion models, e.g., an automated differentiation framework 
compatible with complex-valued data, and implementations 
of well-established DL models [281]. Gadgetron [282] is 
another popular package, which offers extensive tools for 
image reconstruction, data management, and implementa-
tions of iterative solvers. A different package is MRIReco.
jl [283], which is written entirely in Julia and utilizes the 
ISMRMRD file format. This package offers many building 
blocks for data management, simulations, and image recon-
struction. Another example is Sigpy [284], which offers a set 
of operators, blocks, and algorithms that are highly suitable 
for iterative reconstruction. Unlike other toolboxes, Sigpy is 
written entirely in Python and can hence be integrated easily 
into frameworks such as PyTorch.

While the above packages focused on data management 
and image reconstruction, SNOPY (non-Cartesian sampling 
trajectory) [178] is a framework that offers practical tools 
for optimizing k-space sampling trajectories. These tools 
include a differentiable MRI system model and loss func-
tions corresponding to constraints on image quality, e.g. 
hardware (e.g., maximum slew rate and gradient strength) 
and peripheral nerve stimulation (PNS) constraints. Finally, 
a different framework is Yarra (https:// cai2r. net/ resou rces/ 
yarra/), which provides tools for automated collection of raw 
k-space data. These can facilitate acquisition of datasets and 
the creation of new datasets.

Another key area is pulse sequence development. One 
of the main challenges in reproducing complex pulse 
sequences across different sites and scanners is the dedi-
cated prototyping environment and software used by each 
vendor. Pulseq [285] is a rapid, hardware-independent pulse 
sequence prototyping framework, which enables intuitive 
high-level programming of acquisition protocols in Matlab 
or Python. It enables easy deployment across different field 
strengths and hardware. Importantly, the spin physics associ-
ated with the specific acquisition protocol compiled at the 
scanner can be accurately simulated as part of the Pulseq 
framework or its derivatives  [286]. Techniques for data 
harmonization can help mitigate challenges in transferring 
protocols across different systems [287].

In the context of quantitative imaging, the qMRLab soft-
ware was developed to facilitate reproducibility across MRI 
systems [288]. It consists of practical tools for analyzing 
and processing quantitative MRI data acquired by different 
vendors. The user-friendly interface and modular design of 
qMRLab enable researchers to easily implement and share 
quantitative MRI techniques.

Many other open-source codes can also be found on 
online platforms such as GitHub, articles with code (https:// 
paper swith code. com/), and the two dedicated websites of 
the ISMRM: MR-Hub (https:// ismrm. github. io/ mrhub/), 
which hosts toolboxes, and MR-Pub (https:// ismrm. github. 
io/ mrpub/), which hosts git repositories published together 
with articles.

The toolboxes and platforms described above are essen-
tial for enhancing reproducible research in the MRI com-
munity. The development of a unified data format, the ISM-
RMRD [289] can also facilitate easy translation of datasets 
and methods across sites and research groups. The recent 
development of techniques for federated learning  [290, 
291] are also useful for training algorithms collaboratively 
without sharing the data; this can help address data-privacy 
issues.

Robustness challenges

In this section we discuss challenges related to developing, 
evaluating, and benchmarking DL reconstruction methods, 
and suggest approaches for mitigating them.

Distribution shifts

In deep learning, generalization refers to the ability of a 
trained model to accurately reconstruct images that it has 
never seen before, particularly when these new images differ 
substantially from the training data. Good generalization of 
DL-based MRI reconstruction models is critical for clini-
cal workflows. However, achieving a good generalization 
is challenging because MRI data can vary substantially in 
terms of different factors, e.g. MRI hardware, vendor-spe-
cific scanning protocols, patient populations, and the ana-
tomical regions being imaged. This variability can lead to a 
model that performs well on data from one source but poorly 
on data from another, a phenomenon known as domain shift 
or distribution shift. Here we review some of the main chal-
lenges related to this issue.

Domain shifts have been studied from several perspec-
tives. Johnson et al. [292] analyzed the robustness of the 
models submitted to the 2019 fastMRI challenge to dis-
tribution shifts, e.g. small structural changes, addition of 
noise to k-space data, and changes in the number of coils. 
The study found that many of these models were sensitive 

https://cai2r.net/resources/yarra/
https://cai2r.net/resources/yarra/
https://paperswithcode.com/
https://paperswithcode.com/
https://ismrm.github.io/mrhub/
https://ismrm.github.io/mrpub/
https://ismrm.github.io/mrpub/
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to the distribution shifts. Darestani et al. [293] evaluated 
the robustness of DL reconstruction methods with regard 
to out-of-distribution data, and found that both trained and 
untrained networks were affected by distribution shifts. 
Avidan et al. studied another type of distribution shift [294], 
related to sampling; methods trained on specific sampling 
schemes may not generalize well to other schemes. Alto-
gether, distribution shifts can lead to substantial perfor-
mance drops in MRI and can hence be a major limiting fac-
tor in practice.

Potential mitigation strategies. In cases where only a 
few training examples from a target domain are available, 
pre-training a network on other data and fine-tuning it to 
the target domain can improve performance [295–297]. In 
the challenging case where no target data are available for 
fine-tuning, test-time-training, which involves adapting to a 
single training at inference, is a viable performance-enhanc-
ing alternative [298]. Another good strategy that can help 
mitigate the performance drop due to distribution shifts is 
to train on broad and diverse data [299].

A growing body of work has pointed out the advantages 
of diffusion models in robustifying networks to distribu-
tion shifts. As described above (“Diffusion models”), dif-
fusion models decouple the image prior from the statistical 
measurement model. They can hence generalize easily to 
various anatomies and sampling patterns [94–96, 98, 105, 
106]. Another technique to robustify networks to shifts in 
sampling patterns is to provide the network with the under-
sampling mask, and train the network to generalize to vari-
ous sampling masks [294]. In addition, generative networks 
can be trained solely on magnitude images and applied to 
complex-valued data with different sub-sampling patterns 
and out-of-distribution data [98].

Bias and “data crimes”

In the field of AI, the term bias is often associated with 
gender-related or population-related bias. This can occur 
when models are trained on datasets that do not contain 
equal distributions of subjects having different genders, dif-
ferent ethnicities, or even data that only contain a narrow 
set of medical conditions [300]. This training can lead to 
algorithmic failure for under-served populations [301, 302] 
or rare conditions [300].

However, when solving inverse problems, bias can also 
arise from a naive, seemingly-appropriate use of open-access 
datasets. One of the primary challenges in the development 
of DL reconstruction methods is the need for raw k-space 
data, which are scarce and difficult to acquire due to the 
high cost of MRI scans and the long scan duration. While 
several databases offer such data, e.g. [32–35, 250, 268], 
there are many other databases that offer non-raw MRI data. 

Those are generally designed for downstream tasks, e.g., 
segmentation and classification, hence they are frequently 
preprocessed. Nevertheless, due to their high availability, 
researchers sometimes download and use them for synthe-
sizing k-space data, for training DL reconstruction models. 
This has been referred to as “off-label” data use, because 
those datasets are used for a different task than the one they 
were were designed for [303].

Surprisingly, training DL reconstruction algorithms 
using “off-label” data could give rise to good-looking 
results; nevertheless, those are often biased and overly 
optimistic, i.e. they are “too good to be true” [303]. This is 
due to subtle preprocessing steps which, although imper-
ceptible to the naked eye, impact algorithm performance. 
Common preprocessing steps include k-space zero-pad-
ding, coil combination, and JPEG data compression. The 
authors of [303] demonstrated that CS, dictionary learn-
ing, and DL algorithms are all sensitive to these preproc-
essing steps and yield biased results. This underscores 
their potential risk, as these algorithms are aimed for 
clinical purposes. The findings also demonstrated that DL 
algorithms trained on preprocessed data may not be able 
to generalize well to real-world clinical data, and could 
potentially eliminate crucial clinical details [303].

Another concerning finding is that popular error met-
rics, e.g., the normalized root mean square error (NRMSE) 
and SSIM could be blind to the preprocessing [303], and 
miss the bias. This is because those metrics compare the 
reconstructed and reference image, but those come from 
the same underlying data, i.e. both are preprocessed. The 
error metrics thus cannot measure the true image quality. 
Therefore, DL algorithms may achieve “good” NRMSE 
and SSIM scores even when their performance is poor. 
This makes the head-to-head comparison of results across 
papers very difficult, because some papers report experi-
ments with raw k-space data while others report results for 
preprocessed data, where the metrics tend to be better. To 
raise awareness of this phenomenon, the authors dubbed 
the publication of misleading results “data crimes”.

Potential mitigation strategies. In the context of gen-
der-related or population-related biases, the best strategy 
is to train on large, diverse datasets [300–302]. In the con-
text of bias that stems from training on preprocessed data, 
the optimal strategy is to train solely on raw k-space data. 
When raw, zero-padded k-space data are available, and 
such data have not been subject to any other preprocess-
ing steps, one simple correction step is to crop k-space to 
its original size. However, this scenario is quite rare. In 
practice, other preprocessing steps are often applied, e.g. 
coil-combination (e.g. using root-sum-of-squares opera-
tion) and JPEG compression. Those steps are irreversible, 
hence there is no simple technique to remedy them, and 
the bias cannot be easily prevented.
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Techniques for data synthesis. When raw k-space data 
are unavailable, one possible strategy is to train on syn-
thetic data [304–306]. When magnitude data are available, 
synthetic complex-valued data can be obtained, for exam-
ple, by adding a synthetic phase to the magnitude images 
and training a generative model to learn priors of complex-
valued images [306]. Multi-coil data can be synthesized 
by multiplying the phase-enhanced magnitude data with 
sensitivity maps [304]. Another approach is to leverage 
the Bloch equations to simulate realistic data [305, 307]. 
However, it should be emphasized that the synthesis of 
complex-valued data does not guarantee good performance 
for real-world data; i.e., it cannot automatically prevent 
the bias described above. Models trained on synthetic data 
must therefore be tested using real-world, raw k-space 
data.

Hallucinations

The term hallucinations refers to the generation of false, 
realistic-looking features which are not present in the actual 
data. This can arise from the use of inaccurate priors [308], 
e.g., when there is a distribution shift between the training 
and test data, as described above. Strikingly, the team that 
organized the second FastMRI challenge found that many 
of the top-performing models produced hallucinations, and 
that these hallucinations were not captured by image quality 
metrics such as SSIM [37]. They also noticed that hallu-
cinations could morph abnormal structures into seemingly 
normal ones.

Several studies have also highlighted and explored 
manifestations of hallucinations. For example, Cohen et al. 
(2018) [309] discussed how distribution matching losses in 
medical image translation can lead to hallucinated features. 
Bhadra et al. [308] reported hallucinations in the context of 
tomographic image reconstruction and introduced the con-
cept of hallucination maps to identify and understand the 
impact of prior information in regularized reconstruction 
methods. Gottschling et al. [310] explored hallucinations 
from a theoretical perspective, and highlighted problem-
atic scenarios of in-distribution hallucinations. The issue 
of hallucinations is a critical concern in DL-based image 
reconstruction, as it can lead to misleading results and false 
diagnoses.

Potential mitigation strategies. At present, there is a 
pressing need for techniques to mitigate hallucinations. Cur-
rently, the best strategy is to have radiology experts evaluate 
the reconstructed images, in the hope that they will be able 
to detect hallucinations. However, more research and devel-
opment are required.

Adversarial attacks and instabilities

Neural networks for image classification are known to be 
sensitive to adversarial attacks, i.e. small, imperceptible, 
adversarially chosen perturbations. Generally, such attacks 
are not a major concern for clinical MRI systems, as those 
systems are typically closed and require password access. 
However, adversarial attacks have been utilised for analys-
ing robustness of DL reconstruction methods and this topic 
attracted substantial attention  [309–312]. For example, 
Antun et al. [312] provided simulations demonstrating that 
small, adversarially selected perturbations in undersampled 
measurements can result in severe reconstruction artifacts. 
They also showed that there is a trade-off between robust-
ness and performance, and that classical sparsity-based 
reconstruction methods are also sensitive to adversarially 
selected perturbations.

Robustness to adversarial attacks is still an open issue. 
For example, at present there is no conclusive evidence indi-
cating that DL reconstruction methods are more sensitive 
than classical methods such as sparsity-based reconstruc-
tion to worst-case perturbations. Krainovic et al. [313] pro-
vided theoretical results on a worst-case optimal estimator. 
Morshuis et al. [314] found that simple end-to-end vari-
ational networks are as sensitive to perturbations as U-nets, 
and Darestani et al. [293] showed that both un-trained and 
trained networks are sensitive to such perturbations.

Strategies for enhancing robustness. Goujon et al. [315] 
demonstrated that the robustness of reconstruction algo-
rithms can be improved by constraining the CNN module 
to be convex or using a monotone constraint [72]. However, 
a global convexity or monotone constraint often translates 
into reduced performance [72, 315], as predicted by Antun 
et al. [312]. A recent work showed that the global mono-
tone constraint described in [72] can be replaced by a local 
constraint around the image manifold  [316], to achieve 
improved robustness without compromising on performance. 
Following the approach implemented in non-convex algo-
rithms, this algorithm is theoretically guaranteed to converge 
to a minimum, provided it is initialized with SENSE recon-
structions. From a different perspective, [317] and [318] 
suggested the use of adversarial attacks during training to 
reduce false negatives.

Benchmarking challenges

When evaluating various techniques comparing the per-
formance of different reconstruction and image analysis 
methods, it is crucial to have appropriate benchmarks that 
can characterize true clinical utility. Conventionally, image 
quality metrics such as the mean square error (MSE), peak 
signal-to-noise ratio (PSNR), and the structural similarity 
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metric (SSIM) [319] are used to assess the image qual-
ity of reconstructed MR images. These metrics have been 
described extensively in the computer vision literature and 
have a moderate correspondence with human-perceived 
image quality  [319]. However, as there is a substantial 
domain shift between natural images and medical images, 
studies have shown that such traditional image quality met-
rics do not correlate well with radiologist-perceived met-
rics [320]. One likely reason for this phenomenon is that 
not all pixels in a given image have similar diagnostic value. 
Consider, for example, knee MRI scans, e.g. those contained 
in the popular fastMRI database. Most abnormalities in knee 
scans are likely to be located in small, subtle regions in the 
cartilage, meniscus, and ligaments, while the tissues that 
are visible in the scans, such as bone and muscle, are likely 
to have substantially fewer abnormalities. Computing tra-
ditional image quality metrics that weigh all image pixels 
similarly may therefore not reflect how a radiologist per-
ceives the images. Thus, it is essential to define metrics that 
correspond to downstream clinical utility so that the same 
metrics can be used for benchmarking models.

Another issue of concern is that the performance of DL 
reconstruction algorithms is typically evaluated using a 
relatively narrow test set, which is similar in nature to the 
training data. The evaluation results can thus be misleading, 
since they do not yield a reliable estimation of the model’s 
generalization ability; i.e., the ability to perform well on test 
data that deviate from the training data, which is of critical 
importance in clinical settings.

Yet another challenge is related to the common train/test 
data split. Even for a single dataset, different research groups 
or studies may apply different splits, and hence train and test 
the model with different data subsets. For example, even 
if two identical studies used the same number of training 
images, it is not always possible to verify whether they used 
the same images. Previous work has shown that there can be 
a significant variation in how well the same deep learning 
models perform on different imaging exams within the same 
larger dataset [293]. Consequently, even if the number of 
training examples is maintained across studies, some exam-
ples may be easier or more challenging to train and evaluate. 
This makes a head-to-head comparison of published litera-
ture difficult to interpret.

Strategies for mitigating benchmarking challenges. Ini-
tiatives such as the large-scale fastMRI database and chal-
lenge [32] allow multiple different methods to be compared 
on identical training, validation, and testing data splits. This 
type of consistent evaluation platform allows for head-to-
head comparisons across different methods and can shed 
light on their pros and cons.

More recent studies dealing with image quality assess-
ment have gone beyond PSNR and SSIM metrics and used 
perceptual metrics of image quality instead of relying on 

handcrafted metrics [321]. Perceptual metrics utilize repre-
sentations extracted from pre-trained neural networks and 
have been used for evaluating and optimizing MR recon-
struction quality [322, 323]. For example, Learned Percep-
tual Image Patch Similarity (LPIPS) is commonly used for 
assessing the quality of natural images. A similar analog 
of Self-Supervised Feature Distance (SSFD) has been pro-
posed for assessing MR image quality [324, 325]. When 
using these perceptual metrics, a reference image and an 
evaluation image can be fed into the same pre-trained net-
work, and the differences in their representations is com-
pared and taken as the similarity between the two images. 
The impact of common image perturbations on such deep 
feature metrics is shown in Fig. 7. These perceptual metrics 
can be computed using networks that were pre-trained either 
on natural images or medical images. A recent study dem-
onstrated that although there may not be considerable dif-
ferences between these two types of networks, i.e., between 
the networks used for generating the representations, using 
perceptual metrics is better than using traditional image 
quality metrics when evaluating against radiologists’ per-
ceived image quality [322]. However, due to the challenges 
in developing image quality metrics that reflect radiological 
assessment, further research is needed in this context.

Beyond the metrics of image quality, another approach 
for benchmarking reconstruction models aims to directly 
benchmark the downstream value provided by the MR 
image. For example, the SKM-TEA dataset is designed to 
enable the evaluation of downstream tasks such as clinical 
classification, segmentation, and articular cartilage T2 quan-
tification [35]. This dataset emphasizes the combination of 
automated cartilage segmentation with T2 quantification, a 
known metric with clinical and research significance [326, 
327]. Similarly, the K2S dataset aims to optimize cartilage 
volume and thickness quantification, whereas the fastMRI+ 
dataset assesses classification and detection tasks [40, 246]. 
Such benchmarking metrics, which relate to clinical signifi-
cance, provide a promising path forward for assessing image 
quality when used in conjunction with traditional or percep-
tual image quality metrics. Doing so can contribute to opti-
mizing both image quality and image value for radiologists.

Uncertainty estimation

Connecting both upstream and downstream DL tools with 
clinical practice first requires promoting confidence among 
the users of these tools. Robustly characterizing the uncer-
tainty of DL models may help increase the trust of down-
stream users in the outputs of DL algorithms prior to their 
integration into routine clinical practice. Uncertainty quan-
tification, a popular subfield of DL research, can encour-
age building such trust among downstream users, regarding 
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both image reconstruction and automated image analysis 
algorithms.

Several works have proposed methods to evaluate 
the uncertainty of accelerated MRI reconstructions [97, 
328–332]. Given that MRI reconstruction is an ill-posed 
problem where several high-quality images can correspond 
to the same low-quality image, quantifying the uncertainty 
of a sample reconstruction can help guide the fidelity of 
the overall reconstruction process. The developed uncer-
tainty approaches leverage the variational formulation of 
inverse image recovery for sampling not only a single out-
put of reconstruction, but a variety of different outputs using 
a learned model of the posterior distribution. Sampling a 
multitude of image outputs makes it possible to evaluate the 
variance at the voxel-level to compute uncertainties within 

a given image. This technique of uncertainty quantification 
can be used to determine whether specific regions of inter-
est have high uncertainty values around abnormal image 
findings.

For downstream image analysis tasks, techniques like 
Monte Carlo Dropout have gained popularity for estimat-
ing output uncertainty [333]. Although dropout is typically 
employed for model regularization and reducing overfitting 
during training by randomly setting parameters to zero, it can 
also be applied at inference time. This involves producing 
multiple outputs with different neural network weights set 
to zero. This Monte Carlo Dropout approximates a Gauss-
ian process, which facilitates the computation of uncertainty 
across the variance of all the generated inputs. Although 

Fig. 7  Impact of common image perturbations on image qual-
ity metrics . A variety of image perturbations applied to a sample 
image from the fastMRI dataset (top row: noise addition, image blur-
ring, pixel rolling (where an image is shifted by a number of pixels), 
and physics-based subject motion. The impact of these corruptions 
is shown for conventional image quality metrics (SSIM, PSNR) and 

deep feature distance metrics (LPIPS—made for natural images, 
SSFD—made for MR images). The deep feature metrics exhibit a 
larger dynamic range to the noise, blurring, and motion corruptions, 
but present very little change due to pixel rolling, since the image 
quality does not change. These qualities of deep feature metrics are 
ideal for assessing MRI reconstruction quality
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straightforward to implement, this approach requires multi-
ple forward passes during inference.

Looking forward, despite our ability to generate voxel-
level uncertainties, the optimal utilization of these gener-
ated uncertainty maps still remains unclear. This elicits a 
number of intriguing research questions concerning the ways 
in which these uncertainties can be utilized beyond simply 
presenting them to end-users. For instance, it is unlikely that 
a radiologist would review both the output of a deep learning 
reconstruction and the corresponding uncertainty map since 
doing so would nearly double clinical read durations, and the 
radiologist may not necessarily know how to contextualize 
regions of high and low uncertainty.

Alternatively, these uncertainty maps could be applied in 
iterative reconstruction techniques [334]. In this approach, 
the uncertainty associated with a specific step in an image 
reconstruction pipeline could serve as input for the subse-
quent step. The reconstruction network’s objective would be 
to reconstruct the same image but with the new constraint 
of reducing the underlying uncertainty. This type of for-
mulation holds potential for adaptive, case-based sampling 
schemes tailored to individual patients.

Another promising area of research involves directly 
integrating uncertainties from MR image reconstruction 
with those of the relevant downstream parameters of inter-
est [335]. This methodology could serve to estimate maxi-
mum acceleration rates without compromising quantitative 
clinical parameters. Achieving such end-to-end analysis 
necessitates datasets that can provide raw case-based data 
alongside downstream image analysis datasets (e.g. SKM-
TEA, fastMRI+, K2S, etc).

Implementation issues

To practically reproduce, implement, and further develop the 
DL-based strategies discusses in the review, one must have 
access to the appropriate hardware resources. This section 
will highlight the main computational challenges expected, 
especially for large networks. For purposes of illustration, 
we focus on the case of unrolled networks.

Memory demands of unrolled algorithms. PnP and 
score-based algorithms that pre-train deep learning mod-
ules as denoisers are associated with low memory demand. 
In contrast, unrolled algorithms, which offer state-of-the art 
performance compared to PnP methods, involve a number 
of iterations and their training is restricted by the memory 
of the GPU devices during training. This often limits the 
applicability of unrolled algorithms to large-scale multi-
dimensional problems.

Strategies for computational efficiency. Several strate-
gies have been introduced to overcome the memory limita-
tions of unrolled methods. For an unrolled network with N 

iterations and shared CNN modules across iterations, the 
computational complexity and memory demands of back-
propagation are O(N) and O(N) , respectively. The forward 
steps can be recomputed during backpropagation, which 
reduces the memory demand to O(1) , while the compu-
tational complexity increases to O(N2) . Forward check-
pointing [336] saves the variables for every K layers dur-
ing forward propagation, which reduces the computational 
demand to O(NK) , while the memory demand is O(N∕K) . 
Reverse recalculation has been proposed to reduce the 
memory demand to O(1) and computational complexity to 
O(N) [337]. However, the approach in [337] requires mul-
tiple iterations to invert each CNN block, resulting in high 
computational complexity in practical applications. The 
deep equilibrium (DEQ) model [338] was recently adapted 
to inverse problems to significantly improve the memory 
demand  [71, 72] of unrolled methods. Unlike unrolled 
methods, DEQ schemes run the iterations until conver-
gence, similar to PnP algorithms. This property makes it 
possible to perform forward and backward propagation using 
fixed-point iteration involving a single physical layer, which 
reduces the memory demand to O(1) , while the computa-
tional complexity is O(N) ; this offers better tradeoffs than 
the alternatives discussed above [336, 337]. The runtime of 
DEQ methods that are iterated until convergence are variable 
compared to unrolled methods, which use a finite number of 
iterations. In addition, the convergence of the iterative algo-
rithm is crucial for the accuracy of backpropagation steps in 
DEQ, unlike in unrolled methods. Convergence guarantees 
were introduced in [71, 72].

In summary, while computational infrastructure is 
increasingly evolving and expanding, both within research 
institutes and as cloud services, deep-learning-based recon-
struction algorithms may require tremendous storage, RAM, 
and parallelization capabilities, to facilitate the training 
and inference of massive and complex models. Computa-
tional efficiency should, therefore, be considered an impor-
tant aspect, when assessing the applicability of a new ML 
approach.

Conclusion

The introduction and rapid development of deep-learning-
based strategies for MRI reconstruction have brought about 
a dramatic acceleration in acquisition time, paved the way 
for rapid and accurate parameter mapping, and facilitated 
automatic schedule optimization. While several key chal-
lenges still lie ahead, especially in terms of robust generali-
zation, careful considerations of the training data diversity, 
ongoing model validation, and potentially, the development 
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of adaptive or continuous learning systems are expected to 
enable adjustment to new data distributions over time.
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