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Abstract

Structural neural network architecture patterns in the human brain could be related to 

individual differences in phenotype, behavior, genetic determinants, and clinical outcomes 

from neuropsychiatric disorders. Recent studies have indicated that a personalized neural 

(brain) fingerprint can be identified from structural brain connectomes. However, the accuracy, 

reproducibility and translational potential of personalized fingerprints in terms of cognition is not 

yet fully determined. In this study, we introduce a dynamic connectome modeling approach to 

identify a critical set of white matter subnetworks that can be used as a personalized fingerprint. 

Several individual variable assessments were performed that demonstrate the accuracy and 

practicality of personalized fingerprint, specifically predicting the identity and IQ of middle age 

adults, and the developmental quotient in toddlers. Our findings suggest the fingerprint found by 
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our dynamic modeling approach is sufficient for differentiation between individuals, and is also 

capable of predicting general intellectual ability across human development.
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Structural connectivity; Connectome fingerprinting; Network analysis; Developmental 
neuroscience; Neurological identity and function

1. Introduction

In neurobiology, structure is a critical factor for function (Buzsáki, 2006). With magnetic 

resonance imaging (MRI), it is now possible to map white matter connectivity across the 

entire brain, the so-called brain connectome, providing rich information about global and 

regional conformations of whole-brain neural network architecture (Sporns, 2011; Sporns 

et al., 2005). The investigation of personalized patterns of structural brain architecture 

constitutes a promising new avenue for research with theoretical and practical implications 

across a variety of fields, including neurogenetics, behavior, and clinical settings.

A particular challenge has been the identification of personalized structural connectivity 

patterns in connectome data, commonly known as fingerprints, given the high variability of 

network configurations across individuals. Hence, this is a problem best suited for machine 

learning algorithms given the richness and the complexity of whole brain connectivity. 

Machine learning applied to the connectome can attempt to learn connectivity patterns in a 

variety of ways. On the one hand, it can focus on region-to-region connectivity information 

(Fig. 1A), which represents a local measure of connectivity by focusing on two connected 

brain regions at a time. On the other hand, machine learning can learn patterns derived from 

hub-based network analysis (Fig. 1B), taking into consideration regional or global network 

topology1 in an abridged way. The latter are important components of the connectome as 

they can overcome the limitations of assessing only node or edge properties of indirect 

paths between regions, which depict an incomplete assessment of the brain’s network. To 

overcome this problem, Mišić et al. recently reported a novel approach to best evaluate 

connectome properties by measuring dynamic spreading models (Mišić et al., 2015). By 

considering direct and indirect patterns of information spread, connectome dynamics have 

the potential to unravel more complex pathways and better model the latent properties of 

neural network architecture. To date, connectome dynamics, which may provide a better 

assessment of the properties and clinical translational potential of core individual neural 

network configurations, have not been used to assess personalized fingerprints.

Existing studies using a structural or functional connectivity fingerprint have reported the 

ability to recognize the identity of a person (Finn et al., 2015; Yeh et al., 2016), predict 

cognitive or motor skill development (Finn et al., 2015; Liu et al.; Kawahara et al., 2017; 

Ball et al., 2015; Girault et al., 2019), or even the intelligence quotient (IQ) based on 

morphometric connectivity technique (Seidlitz et al., 2018). Nonetheless, it remains unclear 

whether a critical set of structural subnetworks are important for cognitive development 

from childhood to adult years. More specifically, do fingerprints depend on a set of 

core subnetworks that remain important from childhood to adulthood, and can they be 
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used to estimate various personalized variables such as individual cognitive performance 

or neurodevelopment over different age demographics with a high degree of accuracy? 

In this study, we specifically tested whether connectome dynamics could identify linked 

brain regions constituting a structural subnetwork whose properties: a) can serve as a 

personalized structural brain fingerprint used to tell individuals apart, and b) relate to 

individualized behavioral performance. We hypothesize that connectome dynamics could 

contribute to the development of neural network individuality, developmental trajectories, 

and neuropsychological profiles.

To fully assess connectome dynamics, we propose a novel approach that leverages the 

technique introduced by Mišić et al. in which hub regions are likely to shape communication 

pathways. In particular, node hubness information is included in Dijkstra’s single-source 

shortest path algorithm (Cormen et al., 2009) to identify subnetworks that form these 

core communication pathways. By assessing connectome dynamics that take into account 

node hubness, rather than region-to-region information, we propose that indirect and direct 

pathways can be fully accounted for, while also incorporating the influence provided by 

nodes that act as hubs, which likely have a profound influence in orchestrating neuronal 

communication (Mišić et al., 2015) and determining functional properties (i.e., relate to 

cognition). We propose that the resulting connectome dynamic will thus be a shorter, 

simpler, communication path representing a more biologically plausible solution (Fig. 

1C). Using a data-driven approach, i.e., no prior anatomical or clinical assumptions, 

we used deep learning to detect and test whether our connectome dynamics approach 

could accurately recognize the identity of a person and do so with higher classification 

accuracy than single-measure edge weight or hub-based approaches alone. Lastly, we test 

if our connectome dynamic characteristics could reliably predict individual performance in 

childhood (neurodevelopment) and adulthood (intelligence quotient).

2. Materials and methods

2.1. Person identification dataset

Twenty adult participants with no history of neurological or psychiatric disorder were 

included in this MRI study that was approved by the Institutional Review Board at the 

University of Göttingen. Each participant underwent three separate MRI study scans at the 

University of Göttingen in Germany, and the number of males and females were 8 and 12, 

respectively. The mean age at the first scan was 34.6 years (SD = 10.7). The second scan 

session was performed using the same scanner as the first session, and had the exact same 

scan parameters (SI Appendix: MRI scan parameters). On average, the second scan was 

126.4 (SD = 102.8, range 12–442) days after the first scan. Lastly, the third scan session was 

performed in a different scanner, however employed the same scan protocol as the first and 

second. On average, the third scan was 158.4 (SD = 103.6, range 21–465) days after the first 

scan.

2.2. Early learning dataset

One hundred and forty-one children were included in this study. All children underwent 

MRI scans (SI Appendix: MRI scan parameters) and received a cognitive assessment at 
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age two using the Mullen Scales of Early Learning that was approved by the University 

of North Carolina at Chapel Hill’s Institutional Review Board. Their mean age at image 

scan was 27 months (SD = 29 weeks), the maximum achievable cognitive assessment score 

was 150, and the number of males and females were 85 and 56, respectively. Cognitive 

ability was assessed at age two using the Mullen Scales of Early Learning (MSEL). Child 

measures of fine motor, visual reception, expressive and receptive language were collected 

by experienced testers. Age-standardized T-scores from these four scales were combined 

into an Early Learning Composite (ELC) standardized score (range: 49 to 155, mean = 100, 

SD = 15). The ELC has high internal consistency (median = 0.91) and reliability (median = 

0.84 for the cognitive scales during these testing ages), and principal factor loadings of the 

scales lend support for the construct validity of the ELC as a general measure of cognitive 

ability, much like an intelligence quotient.

2.3. IQ dataset

Fifty-eight participants with no history of neurological or psychiatric disorder were included 

in this study after signing an informed consent that was approved by the Institutional Review 

Board at the Medical University of South Carolina. Their mean age at image scan (SI 

Appendix: MRI scan parameters) was 54.7 years (SD = 8.7), the maximum achievable 

IQ score was 128.7, and the number of males and females were 13 and 45, respectively. 

All the participants underwent verbal performance assessment using the North American 

Adult Reading Test Revised version (NART-R) as an estimator of IQ levels and intellectual 

function. Verbal intelligence was calculated in accordance with the NART-R as: Estimated 
Verbal Scale IQ = 128.7–0.89 x NART-R errors.

2.4. Structural connectome

The following steps were used to build each participant’s connectome using an automated 

connectome processing pipeline (or connectome pipeline for short) that sequentially 

performed the following steps: (i) segmented the T1-weighted images using SPM12’s 

unified segmentation-normalization process to determine the probabilistic grey matter (GM) 

and white matter (WM) maps; (ii) divided the probabilistic GM map into m = 83 cortical 

and subcortical anatomical regions (or ROIs) based on the Lausanne anatomical atlas (SI 

Appendix: Supplementary Table S1); (iii) registered the WM and GM parcellation maps into 

the DTI space; (iv) computed GM pairwise probabilistic DTI fiber tracking; Probabilistic 

tractography was performed using each of the m cortical ROIs in the diffusion space as 

the seed region by the FMRIB Diffusion Toolbox (FDT) probabilistic method (Behrens 

et al., 2007) with FDT’s BEDPOST being used to build default distributions of diffusion 

parameters at each voxel, followed by probabilistic tractography using FDT’s probtrackX. 

To minimize motion artifacts, our automated pipeline incorporated well known QC protocols 

(Andersson et al., 2003, 2016) that detected slice-wise and gradient-wise intensity and 

motion artifacts, replaced gradients of poor quality, and then corrected for motion and eddy 

current effects. Lastly, to reduce undetected connectome failures, visual QC checks were 

manually performed to ensure GM and WM surfaces were properly registered to the DTI 

space. A whole-brain connectivity matrix, or connectome, was constructed using results of 

step (iv). More specifically, connectivity was measured by the number of probabilistic white 

matter (WM) fiber tract streamlines arriving at ROI j when ROI i was seeded, averaged 
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with the number of probabilistic WM fiber tract streamlines arriving at ROI i when ROI 

j was seeded. This step was iteratively repeated to ensure all 83 ROIs were treated as 

seed regions resulting in a symmetric m x m connectivity matrix C, where C i, j  was the 

weighted undirected network connection between ROIs i and j. Note that since the number 

of streamlines are averaged between each ROI, C is symmetric with respect to the main 

diagonal, i.e., C i, j = 0 when i = = j.

2.5. Connectome dynamic

Before the proposed connectome dynamic can be computed, region-to-region connections 

and region hubness measures are combined using a simple, and straight forward, approach 

that turns an undirected region-to-region connection (Fig. 3A) to a pair of hub-directed 
connections (Fig. 3B). In a grapth-theoretic sense, a weighted undirected graph (Fig. 3C) is 

converted to a weighted directed graph (Fig. 3D). In particular, given a m x m undirected and 

symmetric connectivity matrix C, a m x m directed non-symmetric connectivity matrix D is 

constructed using the sequence of steps provided below.

1. First a set of ROI hubness values H = ℎi i = 1
m  was computed using the undirected 

connectivity values in C, where ℎiis the hubness measure for ROI I that is 

calculated using one of three hub-based graph-theoretic measures (SI Appendix: 

Hubness measures).

2. The undirected WM connection C i, j  between ROIs i and j (Fig. 3A) was 

converted into a pair of directed connections using C i, j  and ROI hubness values 

ℎi and ℎj (Fig. 3B). Specifically, D i, j = ℎj + C i, j  and D j, i = ℎi + C j, i , where 

direction is encoded using the hubness value of ROI b in the a, b  2-tuple.

3. Step-2 was repeated for each i and j in C.

Next, an N = m m‐1) dimension connectome dynamic vector f= f1, …, fα, …, fN  was created 

by applying Dijkstra’s single source shortest path algorithm to the m x m directed non-

symmetric connectivity matrix D, where α = (s, e) is an index (α) to 2-tuple (s, e) mapping 

that defined the source s  and destination e  ROIs that were provided to the shortest 

path algorithm with s ≠ e. Importantly, since the single source shortest path algorithm can 

be applied to a directed graph, the connectome dynamic vector can be found without 
any modification to the shortest path algorithm. Since most, to all, versions of Dijkstra’s 

algorithm find the minimum shortest path, i.e. path with the least cost, the inverse value was 

computed for each element in D that had a value greater than zero. Furthermore, the natural 

logarithm2 was also applied to the inverse values in D to ensure, as best as possible, the 

underlying distribution of directed network connections was normally distributed before the 

algorithm is ran. After algorithm completion, smaller dynamic connectome feature values 

where converted to larger ones, and vice versa, by taking the inverse of each feature value in 

f. This step is necessary because the person identification classification model (Section 2.6) 

applies a supervised learning approach that required larger input feature values.
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2.6. Personalized fingerprint

The overall approach (Fig. 3) used to estimate the personalized fingerprint is outlined in 

the seven-step procedure below. It is important to note, even though each feature in the 

connectome dynamic vector represented a path between two different ROIs in the brain, in 

the context of this study, were refer to each pair of ROIs as subnetwork. Here, the definition 

of subnetwork is not related to the nine well-known resting-state functional networks (van 

den Heuvel et al., 2009) or based on pre-existing neuroanatomy brain network models. 

Rather, the sub-networks found by our connectome dynamic modeling approach (detailed in 

Step-7) were purely graph-theoretic and not biological in nature. Since Dijkstra’s algorithm 

was used to find the shortest path, the resulting subnetwork could represent a single edge 

that connected two different brain regions, i.e. no intermediate brain regions are in the path 

between the source and destination brain regions.

1. A set of connectomes C = Ci i = 1
n  was created (Section 2.4) using each 

participant image scan in the person identification dataset (Section 2.1). Since 

each participant had three image scans, the total number n  of connectomes was 

sixty (20 participants x 3 scans = 60 connectomes). For the supervised learning 

process a set of participant identity labels Y = yi i = 1
n  was also created, where yi

is a 20-dimension binary label vector that defined the participant binary label for 

connectome Ci. For example, binary label vectors y1, y2, and y3 would be (1, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) for participant one connectomes C1, 

C2, and C3.

2. A set of connectome dynamic feature vectors X = fi i = 1
n  was estimated (Section 

2.5) for each connectome in C.

3. The input feature data X  and the label data Y  were used to construct deep-

learning DL  a person identification model (SI Appendix: Neural network 

architecture). In general, the person identification model had one input (a 

connectome dynamic feature vector) and twenty outputs (one for each participant 

in the person identification dataset).

4. Person identification model performance was evaluated using a three-fold cross-

validation strategy that incorporated a two-dimension grid search procedure 

which was used to identify the optimal momentum and learning rate neural 

network parameters. In particular, three-folds were selected because each adult 

participant had three different connectome dynamic vectors, (i.e. first fold had 20 

connectome dynamic vectors, one for each participant in the first scan session; 

second fold has 20 connectome dynamic vectors, one for each participant in the 

second scan session; and the third fold has 20 connectome dynamic vectors, one 

for each participant in the third scan session). Thus, two vectors were used to 

train the model and the remaining unseen vector was used to test the model. For 

each connectome dynamic vector, in each test fold, classification accuracy was 

evaluated using the known participant labels, where a score of 100% meant the 

identity of all twenty participants were correctly recognized (Section 3.1: Person 

identification classification performance).
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5. For each person identification model generated by the 3-fold evaluation process, 

the neural network backtrack technique (Girault et al., 2019) was applied to 

identify which input connectome dynamic features had the greatest contribution 

to classification accuracy. In particular, after the backtrack technique was 

applied to a trained person identification model, each feature in the connectome 

dynamic vector was assigned a normalized backtrack contribution weight value 

in the [0 1] range, where a value of one implied the feature had the greatest 

contribution to classification accuracy. Lastly, the three normalized backtrack 

contribution weight value results (for the three trained models) where then 

averaged to produce the final backtrack contribution weights values (Section 

3.2: Connectome dynamic feature selection).

6. Unfortunately, because the number of input connectome dynamic features was 

very large, the number of non-zero contribution weight values was also very 

large, i.e. even though more than 75% of the weight values were zero, the 

number of non-zero weight values would still be in the thousands, which is 

not desirable. To further reduce the number of non-zero backtrack contribution 

weights found int Step-5 above, an iterative feature reduction approach (SI 

Appendix: Iterative feature reduction approach) was additionally performed to 

identify the optimal number of connectome dynamic features k  that had the 

greatest influence on classification accuracy (Section 3.2: Connectome dynamic 

feature selection).

7. The k optimal connectome dynamic features selected in Step-6 were converted 

back into the subnetwork S  path originally identified by single source shortest 

path algorithm. Next, a majority vote technique (Fig. 4) was applied to find 

the majority subnetwork (S) across all participants in the person identification 

dataset. This step was required because, even though the source and destination 

brain region were the same for one particular connectome dynamic feature, both 

the number of brain regions along the subnetwork path (i.e. path length), and 

the specific brain regions along the subnetwork path were likely to differ by 

a small amount across all the participants. Finally, the personalized fingerprint 

F = Si i = 1

k
 is formed that defines the k majority subnetworks (Section 3.3: 

Personalized fingerprint).

2.7. Personalized fingerprint and percent whole brain WM connectivity

The total amount of fingerprint WM connectivity TS s found by

TS = ∑
∀p ∈ p

∑
∀S ∈ F

f Cp(S) ,

Eq.1

where P  is a set of study participants, F  is the personalized fingerprint, Cp is the connectome 

for participant P , and f( ⋅ ) is a function that sums the region-to-region connections in Cp

that make up majority subnetwork S. It is important to point out, does not include any 
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hubness information, just white matter connectivity. The total amount of whole brain WM 

connectivity TW is found by

TW = ∑
∀p ∈ P

striu Cp ,

Eq.2

where striu( ⋅ ) is a function that sums the region-to-region WM connections in the upper 

triangular portion in Cp not including the diagonal. Lastly, the fraction of fingerprint WM 

connectivity to whole brain connectivity is TS/TW (Section 3.5: Personalized fingerprint and 

percent whole-brain WM connectivity).

2.8. Personalized fingerprint and cognitive prediction modeling

To demonstrate that person identity classification accuracy was independent of dataset 

employed and demographic population the personalized fingerprint (Section 2.6) was 

applied to a connectome dataset and then used to predict individual cognitive performance 

(Fig. 5). In general, the prediction modeling approach is outlined below.

1. A set of connectomes C = Cj j = 1
n  was created (Section 2.4) using each 

participant image scan in a cognitive dataset (Section 2.2 Early learning dataset; 

Section 2.3 IQ dataset), where n is the total number of participants. A response 

variable vector y = y1, y2, …, yj, …, yn  was also created, where yj is the cognitive 

measure (ELC or IQ) for participant j.

2. The ROI hubness values ℎi i = 1
m  for connectome Cj was computed, and then 

for each majority subnetwork (S) defined in the personalized fingerprint 

(Section 2.6: Step-7), a k-dimension fingerprint connectome dynamic vector 

fj = f1
j, f2

j, …, fk
j  was created. Specifically, connectome dynamic feature 

fi
j = ∑∀(a, b)εSi ℎb + Cj(a, b), where (a, b) is a connection between ROIs a and b

in majority subnetwork Si. This step is repeated for each connectome in C.

3. Multiple linear regression was then applied to a n × k dimension predictor 

variable matrix (created with the n fingerprint connectome dynamic feature 

vectors) and the response variable vector y. For the early learning prediction 

model, the dependent variable was the 2-year ELC score, and for the IQ 

prediction model the dependent variable was the IQ score. The prediction 

accuracy of both models was evaluated using a leave-one-out cross-validation 

procedures and the absolute error measure (Section 3.4: Personal fingerprint and 

cognitive prediction performance).

2.9. Anatomo-functional contextualization

We employed the decoder method in Neurosynth (Yarkoni et al., 2011) to evaluate the 

functional loadings of each anatomical atlas region composed in each majority subnetwork 

(Section 2.6) in relationship to broader cognitive search terms, such as: memory, motor, 

language, vision, visuospatial, taste, disgust, emotion, auditory, pain, somatosensory, 
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conflict, conditioning, switching and inhibition. The result was a Pearson correlation 

between each region, NIFTI images in the person identification dataset were coded as 

one for the voxels in the ROI, and zero elsewhere, and the reverse inference meta-analysis 

functional map, i.e., the probability map of regional activation given the cognitive term. Of 

course, this is an artificial correlation since all regions were input as one. Nonetheless, they 

represent a weighted measure of functional loadings. The resulting values (Section 3.3, Fig. 

8) were normalized in a min-max scaling approach per each majority subnetwork Section 

3.3, Fig. 7) and their anatomo-functional contextualization (Supplementary Table S2).

3. Results

3.1. Person identification classification performance

The classification accuracy of the deep-learning (DL) person identification models (Section 

2.6; Step-3) were evaluated and then compared to the classification accuracy of linear 

multi-class support vector (SV) person identification models (Table 1). The optimal model 

parameters found by the 3-fold grid search procedure (Section 2.6; Step-4) that yielded the 

highest accuracy were: momentum set to 0.5 and learning-rate set to 0.001 for DL models, 

and regularization penalty (C) set to 0.75 for SV models. Additionally, the same optimal 

model parameters values were used to train DL and SV person identification models that 

used hub-only, region-to-region, and existing dynamics measures. Using the optimal model 

parameters, the 3-fold process was repeated twenty times (to assess the stability of our 

modeling approach) and the reported classification accuracy was computed by finding the 

mean and standard deviation of the sixty test folds (i.e. 3-fold process executed twenty times 

results in sixty test folds).

The classification accuracy of DL and SV person identification models were evaluated 

using different connectome features, specifically: 1) proposed connectome dynamic features 

(Section 2.5), 2) hubness only features (SI Appendix: Hubness measures), 3) region-to-

region WM connectivity features (Section 2.4), and 4) graph topology dynamic features 

based on region-to-region communicability4 (Estrada and Hatano, 2008) or mean first 

passage time5 (Goñi et al., 2013).

Independent of the machine-learning algorithm (DL vs. SV), the reported classification 

accuracies (Table 1) suggest that person identification models that use our connectome 

dynamic provides a richer descriptor of subtle brain network pathway differences that 

are likely intrinsic to a particular individual. More specifically, compared to person 

identification models that use simple features such as WM region-to-region connectivity 

(Section 2.4) or region hubness (SI Appendix: Hubness measures), or more complex features 

such as communicability or mean first passage time, the classification performance of 

models that use our connectome dynamic feature were, on average, ~26% more accurate 

than models that used hubness, communicability, or first mean passage time features, and 

~39% more accurate than models that used region-to-region features.

When considering machine-learning algorithm, DL person identification models were, on 

average, ~18% more accurate than SV person identification models. Furthermore, DL 

person identification models that used our connectome dynamic were, on average, ~21% 
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more accurate than SV models that used our connectome dynamic. Lastly, DL person 

identification models that used connectome dynamic features were, on average, ~33% more 

accurate than models that used communicability features and ~24% more accurate than 

models that used mean first passage time features.

Furthermore, DL person identification models that use connectome dynamic features were, 

on average, 91% accurate. By contrast, DL models based solely on region-to-region 

connections, hub-based features, or topological features were, on average, 41%, 62%, or 

63% accurate, respectively. Among the connectome dynamic approaches that incorporate 

brain region hubness in the dynamic calculation (Section 2.5), Eigenvector centrality yielded 

the highest classification accuracy.

Lastly, since the connectomes in the person identification dataset (Section 2.1) were 

acquired on two different MRI scanners, the reported classification accuracies (Table 1) 

suggest that for our modeling approach (that uses connectome dynamic features) there is 

little to no discrepancy in classification accuracy between the two MRI scanners. If scanner 

discrepancies did exist, the mean accuracy would likely be 67%, that is, the third participant 

connectome (acquired on a different scanner) would be consistently misclassified. However, 

the reported mean accuracy for our highest performing connectome dynamic, that used 

Eigenvector centrality hubness, was ~93%, and the mean accuracy for our lowest performing 

connectome dynamic, that used clustering coefficient hubness, was ~89%.

3.2. Connectome dynamic feature selection

Our connectome dynamic feature selection approach was applied to the sixty person 

identification models (3-fold cross-validation procedure repeated twenty times) that used the 

connectome dynamic with the highest mean classification accuracy, specifically, connectome 

dynamic features that included Eigenvector centrality hubness in the dynamic calculation. 

Specifically, the backtrack technique generated a final backtrack contribution weight vector 

(Section 2.6; Step-5) that reduced the number of connectome dynamic features from 

N = 6806 features to 1384 (~79% reduction). Next, our iterative approach (Section 2.6; 

Step-6) was then applied to the final backtrack contribution weight vector to further reduce 

the number of connectome dynamic features from 1384 to k=16 (~98% reduction) (Fig. 6).

3.3. Personalized fingerprint

The top k=16 connectome dynamic features that incorporated the Eigenvector centrality 

hubness measure in the dynamic calculation were converted back into the original shortest 

path found by single source shortest path algorithm, and then the sixteen majority 

subnetworks were found (Section 2.6; Step-7). The brain regions involved in each of 

majority subnetworks were categorized into quartiles (Figs. 7 and 8), namely, the top 1-to-4 

(Q1), 5-to-8 (Q2), 9-to-12 (Q3), and 13-to-16 (Q4). Overall, top majority subnetworks 

involved both ipsilateral and contralateral connections mostly, but not exclusively, involving 

frontal and temporal lobes as well as regions throughout the parietal and occipital regions 

typically playing an associative role. In addition, cortico-subcortical links were noted. The 

relationship between the brain regions identified in the top sixteen majority subnetworks 

and a meta-analytic compendium of functional reverse inference maps was also performed 
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(Fig. 7 right most column). The average functional loading for the brain regions in 

each majority subnetwork grouping is shown (next to the anatomical connectivity paths). 

All functional loadings were normalized to facilitate visualization (Section 2.9: Anatomo-

functional contextualization). In summary, Q1 had higher loadings on emotion, taste and 

conditioning, Q2 on conflict and inhibition, Q3 on vision and auditory processing, and Q4 

on auditory and emotional functions.

3.4. Personalized fingerprint and percent whole-brain WM connectivity

The relationship of WM connectivity in the entire brain to the WM connectivity in the 16 

majority subnetworks that form our personalized fingerprint (Section 3.3, Fig. 7) was also 

analyzed. Using Eqs. (1) and (2) (Section 2.7), for the sixty adult connectomes in the person 

identification dataset, approximately 8.2% of all the WM connectivity in the entire brain is 

expressed in the personalized fingerprint (Fig. 9). For the one hundred and forty-one toddler 

connectomes in the early learning dataset approximately 5.4% of all the WM connectivity in 

the entire brain is expressed in the personalized fingerprint (Fig. 9), and for the fifty-eight 

adult connectomes in the IQ dataset approximately 4.2% of all the WM connectivity in the 

entire brain is expressed in the personalized fingerprint (Fig. 9).

3.5. Personalized fingerprint and cognitive modeling performance

Using the 16 majority subnetworks that form our personalized fingerprint (Section 3.3, 

Fig. 7), and our predictive modeling approach (Section 2.8, Fig. 5), early learning 2-year 

prediction LOOCV mean absolute error was 7.7 points (SD = 7.1) (Fig. 10; Toddler ELC), 

and the mean correlation coefficient of the one hundred and forty-one prediction models 

created by the LOOCV procedure was 0.70 R2 = 0.49, SD = 0.16 . The validity of our 

predictive modeling approach was also assessed by creating incorrect connectome dynamics 

derived from one hundred and forty-one toddler connectomes that had randomized6 

connections (Maslov and Sneppen, 2002). The LOOCV procedure was repeated on the 

randomized connectomes and the mean absolute error was 22.1 points (SD = 11.8), and the 

mean correlation coefficient was 0.14 R2 = 0.02, SD = 0.08 .

Similarly, using the 16 majority subnetworks that form our personalized fingerprint, and 

our predictive modeling approach, the IQ prediction model LOOCV mean absolute error 

was 4.1 points (SD = 6.8) (Fig. 10; Adult IQ), and the mean correlation coefficient of the 

fifty-eight prediction models created by the LOOCV procedure was 0.76 (R2 = 0.58, SD = 

0.12). Likewise, the LOOCV procedure was repeated on the randomized connectomes and 

the mean absolute error was 24.3 points (SD = 0.6), and the mean correlation coefficient was 

0.10 (R2 = 0.01, SD = 0.05).

In addition to LOOCV, a 10-fold approach was also performed, and the 10-fold mean 

absolute prediction error for both the ELC and IQ models was within ±0.12 points, and the 

SD was within ±0.26 of the LOOCV mean absolute prediction error results. This suggests 

predictive models constructed with connectome dynamics derived from our personalized 

fingerprint were not dependent on the cross-validation procedure.
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4. Discussion

This study sought to explore whether machine-learning could accurately identify individuals 

based on their structural brain connectivity and their behavioral performance. We 

demonstrated that models based on unique dynamic properties within specific brain 

networks are capable of singling out individuals and also predict cognitive development 

during childhood and IQ during adulthood with fairly high accuracy. Overall, our findings 

indicate that a personalized fingerprint in the brain is formed by a core set of sixteen 

subnetworks, is sufficient for differentiation between individuals, and can predict individual 

differences in intellectual development and function. To our knowledge, this is the 

first fingerprinting study to successfully predict personalized identity but also behavioral 

performance, such as individual identity and/or neurodevelopmental measure, in longitudinal 

image scan data collected at separate sites.

4.1. Whole-brain data-driven approach

In contrast with other connectome fingerprinting approaches that limit their analysis to a 

core set of known brain regions or subnetworks defined a priori, our data-driven approached 

used whole-brain connectivity to guide fingerprint construction. In doing so, the core set 

of sixteen subnetworks that form our personalized fingerprint (Figs. 7 and 8) were not 

based on prior knowledge or pre-assumptions. For instance, Yeh et al. (2016) identified 

a structural connectome fingerprint that demonstrates the highest classification accuracy 

based on connectivity localized to the corpus callosum, a known fiber-dense brain region. 

Using functional data, Finn et al. (2015) proposed a functional connectome fingerprint 

that demonstrates the highest classification accuracy, roughly 99%, when the approach 

was based on two well-known functional subnetworks that are localized to the medial 

frontal and frontoparietal brain regions. More recently, Liu et al. (Liu et al.) employed a 

sliding time-window approach to resting state functional MRI time-series data to pinpoint 

highly localized spatial patterns capable of identifying individuals with approximately 90% 

accuracy.

4.2. Neurodevelopment

A handful of connectome fingerprint studies (Finn et al., 2015; Kawahara et al., 2017; Ball 

et al., 2015; Girault et al., 2019) have constructed individual neurodevelopment (cognitive 

or motor ability) models that show good prediction performance. For instance, Finn et al. 

(2015) applied their functional connectome fingerprint to predict fluid intelligence in adult 

participants, and Ball et al. (2015) focused entirely on structural connectivity (region-to-

region connections) localized to the thalamus and cerebral cortex (thalamocortical) regions 

to predict a cognitive score at two years old. Similar to Ball’s work, Kawahara et al. 

(2017) developed a convolutional neural network to predict a cognitive score at eighteen 

months old using custom structural connectivity filters (e.g. edge-to-edge, edge-to-node, 

and node-to-graph) however, the topological patterns learned by these customized filters are 

still localized to a specific brain region or neighboring connections. More recently, Girault 

et al. (2019) was able to predict the cognitive ability of children at 2 years old with a two-

step machine learning approach that used whole-brain structural connectivity information 

(region-to-region connections) from full-term infants. However, it is unknown if the infant 
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connectome fingerprints developed in these studies (Finn et al., 2015; Kawahara et al., 

2017; Ball et al., 2015; Girault et al., 2019) can be applied to adolescent, teenage, or adult 

structural connectome data to predict a neurodevelopment measure with some reasonable 

amount of accuracy. Our fingerprinting approach, that uses connectome dynamics, intends to 

overcome this limitation.

4.3. Imaging modality considerations

Even though great advances have been made in functional connectome fingerprint 

approaches (Finn et al., 2015; Liu et al.), some challenges typically posed by functional 

approaches are related to motion, width of the sliding windows, parcellation schemes, 

and global signal removal (Chai et al., 2012; Schölvinck et al., 2010). Structural network 

information, by comparison, is not organized with time or spatial alignment. Accordingly, 

data derived from diffusion sequences tends to be less confounded by hemodynamic 

changes typically affecting the BOLD signal such as sleep, cardiovascular changes, and 

other autonomic nervous system fluctuations (Wu and Marinazzo, 2016; Glover, 2011). 

In fact, core features of this study’s design were based previous work demonstrating that 

the structural connectome is more stable (and thus reproducible) across scanners and over 

time when focusing on probabilistic tractography, especially when considering graph theory 

measures that reflect the topology of the network (Bonilha et al., 2015). Lastly, even though 

the scan duration of diffusion sequences are typically shorter than functional sequences, a 

subject is likely to move, which can introduce motion confounds in the connectome data. 

However, well known diffusion data QC protocols (Andersson et al., 2003, 2016), including 

visual QC inspections, are incorporated our connectome pipeline (Section 2.4) to minimize 

the impact of motion artifacts.

4.4. Connectome dynamic

The performance of person identification models that used connectome dynamic 

features were compared to models that used two existing graph dynamic features, i.e. 

communicability and mean first passage time, that, like our connectome dynamic take into 

account the entire graph topology. And even though all three dynamics measure amount 

of neuronal communication along the WM pathway between two different GM ROIs, our 

connectome dynamic outperformed mean first passage time and communicability dynamics 

(Table 1). In general, there are two important methodology limitations that may contribute to 

the discrepancy in classification accuracy.

I. Mean first passage time and communicability are both undirected graph 

measures, where the pathway measurement between ROIa, ROIb  is equivalent 

to ROIb, ROIa  and ROIa ≠ ROIb. Alternatively, our connectome dynamic is 

directed graph measurement (Section 2.4, Fig. 2) that is sensitive to hub-directed 

pathway differences.

II. Mean first passage time and communicability are estimating the mean undirected 

pathway occurrence or sum of all undirected pathway occurrences, respectively. 

Our connectome dynamic approach, on the other hand, does not perform a 

mathematical (average or sum) operation on potentially thousands of undirected 
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pathway solutions. Instead, our dynamic uses a shortest-path graph algorithm 

that represents a unique and optimal directed pathway solution (Section 2.4).

These limitations may render the mean first passage time and communicability dynamics 

insensitive to subtle pathway differences that are capable of singling out individuals. More 

specifically, the desired dynamic properties should minimize: data smoothing operations 

(such as those introduced by an averaging operation) that may remove subtle pathway 

information, and pathway summation operations that may enhance noise artifacts. To better 

understand the desired properties of our connectome dynamic, a correlation analysis was 

performed (SI Appendix: Connectome feature correlation analysis) that suggests including 

hubness in the dynamic calculation will likely: reduce path-length (create shorter, simpler, 

pathways) and thus suppress noise artifacts, and enhance subtle pathway information by 

routing through highly connected pathways.

In addition to the individual-level sensitivity limitations listed above, for the graph dynamic 

modeling approach to be practical, the dynamic must represent a physical brain subnetwork 

(Section 2.6; subnetwork definition) that:

a. exists in a structural connectome (based on a known parcellation),

b. is universal, i.e. exists in the brain of all individuals,

c. is preserved across human development.

As outlined in (II) above, because mean first passage time and communicability dynamics 

are not unique and/or optimal, these two approaches would not satisfy (a,b), and would not 

be a suitable solution.

Obviously, (a,b) is dependent on a specific brain parcellation, however since our dynamic 

is a pathway found by the shortest path algorithm, (a) is satisfied because a simple and 

straightforward technique exists to convert our connectome dynamic to a unique subnetwork 

that is defined in the participant’s connectome. To satisfy (b), a simple majority analysis 

(Fig. 4) was on performed on each subnetwork then applied to each participant connectome 

in the dataset to identify a majority subnetwork for each subnetwork.

Satisfying (c) is more difficult, however existing studies (Baker et al., 2015; Ball et al., 

2014; van den Heuvel and Sporns, 2011; van den Heuvel et al., 2015; Cao et al., 2016; 

Yap et al., 2011; Huang et al., 2015; Hagmann et al., 2010) that use various graph-theoretic 

approaches propose the existence of an underlying connectome blueprint in adults, children, 

and neonates alike. More importantly, Batelle et al. (Batalle et al., 2017) suggest that two 

types of structural connections exist in neonates: core connections that remain intact and 

largely unaltered even if born premature (<thirty-seven weeks gestational age), and local 
connections that are altered in premature neonates. Based on these existing studies, and 

since our dynamic modeling approach is able to predict person identity of adults with ~90% 

accuracy (Table 1), the real ELC score of a two-year-old toddler with ~7 points (Fig. 10), 

and the real IQ score of an elderly adult within ~4 points (Fig. 10), these results further 

support the practicality of our fingerprinting approach. More specifically, the core set of 

subnetworks that form our personalized fingerprint (Figs. 7 and 8) likely represent: simpler, 
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shorter, pathways (as discussed above) that are present at birth, and likely remain unchanged 

across human development (Fig. 9).

4.5. Machine-learning algorithm

The choice of supervised machine-learning algorithm was also evaluated to determine its 

impact on model performance (Table 1), and in general, the classification accuracy of DL 

person identification models were better than SV person identification models. Interestingly, 

even though DL outperformed SV, the top twenty-five features found by DL backtrack 

technique (Section 2.6; Step-5) and the SV algorithm (i.e. support vectors that had the 

largest weight coefficients) were in agreement. Moreover, they were also in agreement for 

classification models that used our three dynamics (Eigenvector centrality, betweenness 

centrality, and clustering coefficient). This finding suggests why DL models have improved 

classification accuracy. In particular, when connectome dynamics are combined in a 

multiple-layer hierarchical (deep-learning) modeling approach, verse a single-layer (support 

vector) modeling approach, the hierarchical weighted linear combination of the most 

influential connectome dynamics is able to reveal a complex feature pattern that boosts 

classification accuracy by approximately 20% (from 70% to 90%).

4.6. Clinical relevance

The ability to reliably single out a personalized variable from a sample based exclusively on 

the structural connectome has potentially important theoretical and practical implications. 

On the one hand, it highlights that individual variability may be tied to a structural 

connectome fingerprint formed by a core set of subnetworks (Figs. 7 and 8) that is largely 

intact from a relatively young age (two years old) to middle age (approximately sixty-five 

years old), and the neuroplasticity of these subnetworks are less likely to change from 

childhood to adulthood (Fig. 9). The personalized fingerprint results emphasize that the 

structural connectome may be a useful biomarker of many aspects of cognitive function 

(Fig. 10). Since many neuropsychiatric disorders are associated with impaired cognitive 

function and have origins in early childhood brain development, there is a pressing need to 

identify early neuroimaging biomarkers that predict risk for neuropsychiatric disorders and 

allow early identification and intervention (Gilmore et al., 2018). As such, the personalized 

fingerprint may be an early biomarker candidate of risk that deserves further study.

4.7. Methodology considerations

Since our connectome dynamic is based on an anatomical atlas parcellation (Section 2.4), 

it is unknown if core set of subnetworks that form our fingerprint (Figs. 7 and 8) would be 

similar if a different atlas was used. However, there is evidence to suggest the fingerprint 

created by our modeling approach may not be restricted to a specific atlas parcellation. Even 

though the atlas parcellations are different, higher order cognitive function is increasing 

recognized as resulting from widely distributed networks in the human brain involving 

frontal, cingulate, parietal and temporal cortices (Seidlitz et al., 2018; Dehaene and 

Changeux, 2011), this finding is consistent with core set of sixteen subnetworks that 

form our personalized fingerprint. Additionally, the brain regions in the core set of sixteen 

subnetworks are noticeably similar to the core brain regions found by Batelle et al. (Batalle 

et al., 2017) in that both include the superior frontal, precentral, insula, fusiform, pallidum, 
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hippocampus, superior temporal, and parietal brain regions. These observations, suggest our 

approach may scale favorably to other atlas parcellations.

It is possible that one (or more) of the majority subnetworks that form our personalized 

fingerprint may not be present in every possible connectome. However, our analysis each 

majority subnetwork in our fingerprint was present in each participant, in each of the three 

datasets. In general, we expect this condition because our connectome dynamic represents 

simpler, shorter, pathways (as that are likely present at birth and remain unchanged across 

human development (Section 4.4).

Lastly, even though motion artifacts are processed by our connectome pipeline (Section 

4.3), it is possible motion could influence the classification accuracy (Section 3.1, Table 

1), or prediction accuracy (Section 3.5, Fig. 10), of our modeling approach. However, since 

our analysis is applied to different datasets, collected at different sites, that have different 

age demographics, if motion is influencing the classification or prediction accuracy of our 

models, it is overall impact is minimal.

5. Conclusion

We present a new connectome dynamic modeling approach that applies the single source 

shortest path algorithm to a directed weighted graph that fully accounts for direct and 

indirect pathways of communication. Conceptually, this graph-theoretic type of pathway 

design may allow machine-learning techniques to more accurately identify dynamic patterns 

with potential utility in understanding individual variability in healthy adults and children. 

In general, the identity recognition and neurodevelopment prediction results suggest the 

core set of subnetworks that form the personalized fingerprint appear to be preserved 

across human development. Finally, the implications for neuroscience are vast since the 

personalized fingerprint can be measured and used to assess brain health and cognitive 

function as well as define individual characteristics that influence the manifestations of 

neurological and psychiatric diseases.
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Fig. 1. 
Example connectivity based on (A) region-to-region values (e.g. in graph terminology the 

weight of an edge that connects two nodes), and (B) hub-based values, i.e. the Eigenvector 

centrality measure annotated in parenthesis above or below the node. (C) Using region-to-

region values in Dijkstra’s single source shortest path may not be biologically plausible 

solution, however when region-to-region and hubness values are combined (our proposed 

dynamic) a more plausible shortest path solution may be found.
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Fig. 2. 
Converting a weighted region-to-region undirected connectome edge to weighted directed 

connectome edge. (A) Example undirected edge weight C i, j  that connects ROI i and j. 
(B) Example directed edge weight D(i, j) = ℎj + C(i, j) from ROI i to ROI j where ℎj is a 

graph theoretic hubness value for ROI j and C i, j  is the undirected edge weight value. (C) 

an example weighted undirected graph (i.e. connectome), and (D) is the weighted directed 

graph that is used to calculate our connectome dynamic. Note: R is short for ROI in the 

above illustration.
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Fig. 3. 
Overall approach to estimate the personalize fingerprint using the connectome dynamic 

vectors of the 20 participants in the personal identification dataset. In general, seven 

sequential steps are performed to estimate the personalized fingerprint.
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Fig. 4. 
Example that illustrates how we estimate the majority subnetwork. Given a small dataset of 

n = 3 participants S1
i

i = 1
n  for subnetwork S1 that begins at ROI 10 (red) and ends at brain 

ROI 20 (blue), the majority subnetwork path length L is found where |S| is the number of 

ROIs (including start and end). Next, the remaining intermediate ROIs that have the greatest 

occurrence are identified, e.g. ROI 32 is in two of the three subnetworks so the occurrence 

value is 2/3. The top intermediate brain region occurrence values are thus selected and then 

combined with the begin and end ROIs to form the majority subnetwork S. Note: R is short 

for ROI in the above illustration.
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Fig. 5. 
Prediction modeling approach to evaluate the relationship between personalized fingerprint 

connectome dynamics and cognitive measures of two different age demographics (i.e. early 

learning composite score in sample of toddlers, and IQ in a sample of adults).
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Fig. 6. 
Results of iterative feature reduction approach. At each iteration, the top final backtrack 

weighted connectome dynamic features were used to train neural networks with the correct 

participant labels, and to train neural networks with randomly permutated participant labels. 

At each iteration the difference in classification accuracy is recorded, and the greatest 

difference was achieved when the top k = 16 connectome dynamic features are used.
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Fig. 7. 
The top 16 majority subnetworks that form the personalized fingerprint, categorized in to 

groups of four. Table cells with bold font indicate brain regions that are present in more 

than one majority subnetwork. Bankssts refers to the cortical areas around superior temporal 

sulcus.
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Fig. 8. 
Individual subnetworks formed by the top (A) 1-to-4, (B) 5-to-8, (C) 9-to-12, and 

(D) 13-to-16 majority subnetworks, shown grouped together in (E). The first columns 

demonstrate the schematic location of brain regions and connections, whereas columns 2 to 

4 demonstrates the locations of white matter tracts representing the same connections. For 

clarity, the connections to the brain stem are not included in columns 2 to 4. The right-most 

column demonstrates functional loadings to the nodes in each subnetwork based on reverse 

inference maps from a large database of functional imaging studies included in Neurosynth 

(Yarkoni et al., 2011). Note: brain regions are represented by red nodes and the size of 

the node is the related to the number of times the brain region is present in one, or more, 

majority subnetworks.
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Fig. 9. 
Total white matter (WM) connectivity percentages. The “red” shows the percent WM 

described by the personalized fingerprint when applied to the following connectome 

datasets: person identification, early learning, and IQ. The “yellow” is the total ROI-to-ROI 

WM percentage minus the WM fingerprint percentage.
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Fig. 10. 
Toddler ELC and adult IQ model results. The ELC and IQ models were constructed and 

evaluated only using the k = 16 majority subnetworks that form the personalized fingerprint.
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Table 1

Comparision of person identification model performance using two different machine-learning approaches: 

deep-learning (DL) and multi-class support vector (SV) based on a linear kernel3. Both modeling approaches 

were evaluated using different connectome features (i.e. proposed connectome dynamic, graph theoretic 

measures, WM region-to-region connectivity, and existing dynamics based on graph topology).

Connectome Feature Deep learning (DL) classification 
model

Support vector (SV) classification 
model

Mean SD (±) Mean SD (±)

Proposed dynamic (Section 2.5)

Directed shortest path using eigenvector centrality hub measure 93% 4% 72% 7%

Directed shortest path using betweenness centrality hub measure 92% 6% 71% 9%

Directed shortest path using clustering coefficient hub measure 89% 6% 69% 9%

Graph theoretic hubness measure (SI Appendix)

Betweenness centrality 65% 9% 45% 10%

Eigenvector centrality 65% 9% 47% 11%

Clustering coefficient 57% 7% 48% 10%

WM connectivity (Section 2.4)

Region-to-Region 41% 12% 44% 11%

Existing dynamics based on graph topology

Communicability (Yarkoni et al., 2011) 60% 7% 49% 10%

Mean first passage time (Estrada and Hatano, 2008) 66% 8% 42% 9%
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