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Abstract
Rule learning is an important ability that enables human beings to adapt to nature and
develop civilizations. There have been many discussions on the mechanism and character-
istics of algebraic rule learning, but there are still controversies due to the lack of theoreti-
cal guidance. Based on the dual-process theory, this study discussed the following
arguments for algebraic rule learning across human and animal studies: whether algebraic
rule learning is simply Type 1 processing, whether algebraic rule learning is a domain-
general ability, whether algebraic rule learning is shared by humans and animals, and
whether an algebraic rule is learned consciously. Moreover, we propose that algebraic rule
learning is possibly a cognitive process that combines both Type 1 and Type 2 processing.
Further exploration is required to establish the essence and neural basis of algebraic rule
learning.
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INTRODUCTION

Rules are everywhere: from mathematical operations to mathe-
matical logic; from classical mechanics, which is in line with
daily experience, to macroscopic relativity in astrophysics, to
quantum mechanics in the microscopic world; from chemical
reactions to metabolism; from the law of “survival of the fit-
test” in the evolution of species, to the law of “use and waste”
in the development of individuals; from the question “Is it not
a pleasure to learn and to review or practice from time to time
what has been learned?” to Ebbinghaus’ law of forgetting, and
from the nature of productivity and production relations to the
development process of society.

Rules govern human behavior and enable a person to
describe the intrinsic state of a relationship. Rule learning is the
ability to identify patterns or extract laws from perceptual input
and generalize them to new elements that share no surface fea-
tures, leading to problem-solving (Bulf et al., 2015; Rabagliati
et al., 2019). In the process of rule learning, humans can gradu-
ally acquire knowledge about a variety of topics, and adapt to
and predict changes in the world by applying rules that corre-
spond to similar stimuli, rather than simply remembering the
probability of simple inputs. This ability to learn and extract
rules plays a crucial role in the development of individuals and is
a central issue in developmental research (Johnson et al., 2009).

Abstract rule learning of algebraic patterns is a typical task
in recent research on rule learning. Dehaene et al. (2015) out-
lined five types of rule learning in terms of abstraction levels to
represent sequence knowledge, namely, transitions and timing,
chunking, ordinal knowledge, algebraic patterns, and nested
tree structures. Algebraic rule learning, which is located at the
fourth level of abstraction, represents regularity among stimu-
lus sequences in terms of abstract patterns. For example, to-to-
bu, which has the same first two syllables and a different third
syllable, can be represented by the AAB pattern, where A and
B are variables that can represent any single syllable, similar to
how x is any positive integer in the equation y = x + 2
(Marcus et al., 1999).

Marcus et al. (1999) first demonstrated that infants can
learn language based on abstract rules using the habituation-
dishabituation procedure (or familiarity-preference paradigm):
In the habituation phase, 7-month-old infants learn sylla-
ble sequences that conform to a specific grammatical struc-
ture, such as ga-ti-ti, which conforms to ABB rules; in the
dishabituation phase, infants can distinguish whether new
sequences share identical rules to those in the habituation
stage, showing a novelty preference (i.e., a longer attention
span is noted for new rules than for old ones). For instance,
ABB structures share the same rules, but different materials
(e.g., ga-ti-ti, wo-fe-fe) differ from ABA structures, which
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have different rules and different materials (e.g., wo-
fe-wo).

The algebraic pattern is sensitive to structure, so an AAB
structure with different materials can be used to test the learn-
ing of rules rather than the learning of specific materials
(Berent et al., 2020; Marcus et al., 1999). Studies on algebraic
rule learning were not limited to infants’ learning of language
but extended to other species and nonverbal materials, such as
human faces, geometric figures, and social information, orga-
nized by algebraic patterns, such as face A – face B – face B,
shape A – shape A – shape B, or gesture A – gesture
B – gesture A (Bulf et al., 2015; Ferguson & Lew-
Williams, 2016; Johnson et al., 2009). Thus, based on its
operability as well as the breadth of the field, algebraic rule
learning is often used to explore the rule-learning abilities of
animals or human infants.

To further discuss the nature of rule learning, this paper
analyzed algebraic rule learning based on dual-process theory
(Kahneman, 2011; Sloman, 1996; Evans, 2010). Dual-
process theory proposes two types of processes: Type 1 pro-
cessing, which is common to humans and animals, is fast,
domain-specific, implicit, and an unconscious mechanism
that requires no cognitive resources; and Type 2 processing,
which is unique to humans, is slow, domain-general, explicit,
and a conscious mechanism that requires rational thought
based on rules or logic. Evans (2003, 2008, 2011) catego-
rized two processes by four aspects: (1) Individual differences:
Type 1 processing is independent of general intelligence and
working memory, while Type 2 processing is related to gen-
eral intelligence and working memory capacity. (2) Functional
properties: Type 1 processing is associative, context-related,
domain-specific, and pragmatic; Type 2 processing is rule-
and abstraction-based, domain-general, and logical. (3) Evolu-
tion: Type 1 processing has features such as nonverbal,
modular cognition common to humans and animals; Type
2 processing has features such as being uniquely human,
being language-related, and requiring fluid intelligence.
(4) Consciousness: Type 1 processing is characterized as a
mechanism that is unconscious, implicit, fast, and so forth;
Type 2 processing is characterized as a mechanism that is
conscious, explicit, slow, and so forth.

Recent studies have not yet explored the cognitive mech-
anism of algebraic rule learning from a dual-process perspec-
tive, but the relevant ideas have been noted. Based on
dual-process theory, we sorted out and analyzed the learning
abilities of humans and animals in an algebraic rule-learning
task to provide new directions for subsequent research on the
nature of rule learning. The following summarizes four
aspects of topical issues discussed in algebraic rule-learning
studies: whether algebraic rule learning is simply Type 1 pro-
cessing, whether it is domain general or domain specific,
whether it is a human-specific or human–animal shared abil-
ity, and whether it is a conscious mechanism or not. All the
evidence closely follows these four different aspects, allowing
the characterization of the two processes proposed by
Evans (2003, 2008, 2011); thus, we summarized these alge-
braic rule learning studies accordingly.

AN ANALYSIS OF ALGEBRAIC RULE
LEARNING BASED ON DUAL-PROCESS
THEORY

Analysis of whether algebraic rule learning is
simply Type 1 processing

1. Rule learning is essentially the detection of repetition pat-
terns: Gervain et al. (2008) argued that infants are born
with the ability to detect repetitive patterns rather than the
ability to learn rules by demonstrating that newborns can
detect ABB rules with adjacent repetitions but not ABA
rules without adjacent repetitions. Moreover, 7-month-old
infants have shown a tendency to prefer the ABB pattern
more than the AAB pattern (Gerken, 2006), and 8-month-
olds could distinguish patterns based on repetitions but not
the location of repetitions from a sequence of simple visual
figures, that is, visual sequences of ABB, AAB, and ABA
structures (Johnson et al., 2009). Furthermore, 11-month-
olds could distinguish the location of repetitions but are
insensitive to nonadjacent repetitions among multiple repe-
tition locations, including initial/middle/medial/final
repetitions (Johnson et al., 2009; Schonberg et al., 2018).
Notably, 14-month-olds are sensitive to edge repetitions
and still solve problems based on the repetition mechanism,
although they show the sequential position effect in late
infancy (Johnson et al., 2009). Adolescents with Autism
spectrum disorder (ASD) and normally developing
14–18-year-olds are capable of detecting ABB and ABA
structures based on adjacent repetitions and nonadjacent
repetitions (Bettoni et al., 2023). Adults have only shown
stable generalization of edge repetition (ABCDEFF) in con-
trast to internal repetition (ABCDDEF) sequences, suggest-
ing that rules are not extracted in a generic algebraic rule
pattern (Endress et al., 2005). Thus, rule learning may be
sensitive to repetitive patterns rather than algebraic rule pat-
terns, which are more flexible. However, chicks showed no
preference for repetitive patterns when comparing their
responses to AAB and ABA patterns, AAB and ABB pat-
terns, or AAB and BAA patterns (i.e., they do not differen-
tiate sequences by repetitive elements or symmetries,
although chicks possess an intact visual pathway that differs
from that in human infants). Hence, the proposal that alge-
braic rules are essentially repetition detection is doubtful
and requires more evidence (Santolin et al., 2016).

2. Rule learning versus statistical learning: Both humans and
nonhuman animals are sensitive to statistical patterns in
cross-species studies based on perceptual and cognitive
mechanisms, such as sequence learning and visual proces-
sing (Bulf et al., 2021; J. N. Chen et al., 2015; Santolin
et al., 2016; Santolin & Saffran, 2018; Teinonen
et al., 2009). Although some manifestations of rule learning
can be successfully captured in human language acquisition,
they can also be explained by statistical learning mecha-
nisms (Aslin & Newport, 2012; Christiansen et al., 1998;
Christiansen et al., 2000; Christiansen & Curtin, 1999;
Romberg & Saffran, 2010). Thus, the essence of rule
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learning is perhaps statistical learning rather than rule learn-
ing (Alhama & Zuidema, 2019; Santolin & Saffran, 2018;
Sirois et al., 2000). Budgerigars, for example, do not have
excellent sequential processing capabilities identical to those
of humans but primarily use the surface transition proper-
ties of sound (i.e., statistical learning) to differentiate rules
(Fishbein, 2022).

These two views aim to explain rule learning in terms of
repetition detection or statistical learning as Type 1 proces-
sing and deny the existence of rule learning as the basis of
Type 2 processing, which greatly conflicts with dual-process
theory.

Analysis of whether algebraic rule learning is
common to humans and animals

Animal behavioral studies of algebraic rule learning

Investigations of algebraic rule learning initially used syllabic
materials to support the idea that language is a human-unique
ability, which has been explored using nonhuman animals as
described below.

1. Bird studies: Newly hatched chicks (Gallus gallus) with full
behavioral and visual pathways at birth can recognize and
generalize AAB versus ABA or AAB versus BAA structures
(Deng & Rogers, 1998; Lorenz, 1937; Santolin et al., 2016);
zebra finches can discriminate song elements arranged in an
ABAB structure from an AABB structure (van Heijningen
et al., 2009); Bengalese finches can distinguish AAB struc-
tures from ABB structures in male and female calls (Seki
et al., 2013); jackdaws are able to acquire and recognize rules
in both ABAB and ABB structures (Reinert, 1965; Ten Cate
et al., 2016); and budgerigars, whose abilities even approach
those of human infants, can distinguish between ABA and
AAB structures (Chen et al., 2015; Spierings & Ten
Cate, 2016; van Heijningen et al., 2013).

2. Rodent studies: Light as well as pure tone sequences are
adjusted to form different rules; training reinforces one of
the rules, such as combining ABA structures with food and
the other two structures without food. The results show
that rats respond based on rule structure rather than physi-
cal stimulus, suggesting that rats have the ability to general-
ize rules (Murphy et al., 2008); furthermore, they are able
to distinguish well between acoustic differences (different
materials for the same rule) and rule structure differences
(different rules; Astikainen et al., 2014; Daniela &
Toro, 2013).

3. In studies of nonhuman primates, common marmosets
have a familiarity preference for learned pure tone ABA
structures and are distinguished from AB structures
(Reber et al., 2019); moreover, all rhesus monkeys
(Macaca mulatta), cotton top tamarins (Saguinus oedi-
pus), and chimpanzees can distinguish syllable sequences
of AAB structures from ABB structures (Hauser &

Glynn, 2009; Neiworth et al., 2017; Ravignani &
Sonnweber, 2017).

Neural mechanisms of algebraic rule learning in
animals

Electrophysiological evidence has shown that after learning a
standard sequence (e.g., AAB/ABB), anomalous sequences with
identical rules but different materials (e.g., AAB/ABB) elicited
early mismatch negativity (MMN), and anomalous sequences
with different rules (e.g., ABB/AAB) triggered late MMN in
rats, with two sets of results suggesting that rats can distinguish
between acoustic and rule structure differences (Astikainen
et al., 2014; Murphy et al., 2008).

Imaging studies on algebraic rule learning in primates have
found that the lateral prefrontal cortex and ventral intraparietal
sulcus are engaged in monkeys during this process
(Nieder, 2012). In macaques, responses to numbers in AAAB
and AAAA patterns activate the parietal lobe and anterior cin-
gulate gyrus, and responses to sound repetition patterns acti-
vate the basal ganglia, ventral inferior prefrontal, and temporal
lobes (Shima et al., 2007; Wang et al., 2015); for human
beings, algebraic rule learning activates the inferior frontal and
posterior superior temporal gyri (Wang et al., 2015). These
image results suggest that the prefrontal lobe is associated with
interpreting abstract algebraic patterns (Dehaene et al., 2015;
Shima et al., 2007; Wang et al., 2015).

Nonhuman animal studies are more likely to utilize nonver-
bal stimuli, such as tones, and the cognitive process underlying
rule learning for these species has been demonstrated as recog-
nizing rule patterns first and then transferring the rule patterns
to novel stimuli. The ability of both humans and nonhuman
animals to detect hidden rules in sounds and tone sequences
suggests that algebraic rule learning may be a relatively primitive,
human–animal shared ability in terms of dual-process theory.
However, in contrast to nonhuman primates, humans possess a
unique, high-speed ability to detect relational structures based
on chunking with limited practices, which has been found in
the nested tree structures of rule learning as the fifth level of
abstraction (Q. Jiang et al., 2016; X. Jiang et al., 2018; Wang
et al., 2015; Q. Zhang et al., 2020; H. Zhang et al., 2022).
Therefore, there may be a combination of human-specific and
human–animal shared abilities in algebraic rule learning.

Analysis of whether algebraic rule learning is
domain general or domain specific

Domain generality refers to the processes and abilities that span
different cognitive domains and typically includes cognitive
domains such as object recognition, memory, and attention
(Badre & D’Esposito, 2007; Kane et al., 2004; Kirkham
et al., 2002; Evans, 2003); in contrast, domain-specific abilities
are those that exist only in a single cognitive domain. For
example, statistical learning spans multiple domains, including
language, music, and visual stimuli, and is often considered a
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domain-general mechanism (Santolin & Saffran, 2018). It is
insufficient for language acquisition to entail statistical learning
mechanisms alone, and abstract rule learning mechanisms are
also needed (Marcus et al., 1999; Sun et al., 2012). As found
in studies with auditory and visual materials, rule learning is
often considered a cross-channel, domain-general mechanism
modulated by the familiarity and categorizability of the stimuli
(Bulf et al., 2015; Saffran et al., 2007).

Domain-general processing: Evidence from infants

1. Language domain: Syllable sequences are used as mate-
rials to formulate algebraic structures. Seven- to
14-month-old infants can obtain rules from ABB to
ABA syllable sequences (Gerken, 2006; Kov�acs &
Endress, 2014; Marcus et al., 1999), and even 1–6-day-old
infants can distinguish ABB, ABA, and ABC structures
and accurately distinguish AAB and ABC structures from
ABB structures (de la Cruz-Pavía & Gervain, 2023;
Gervain et al., 2008; Gervain et al., 2012), demonstrating
that infants can extract rules from familiar phonological
sequences and generalize them to new phonological
sequences. Similarly, adults can recognize patterns as alge-
braic rules from ABB, ABA, and AAB syllable sequences
(Christiansen et al., 2000; Gow et al., 2023; Monte-
Ordoño & Toro, 2019; Seki et al., 2013; Sun
et al., 2012).

2. Nonverbal auditory domain: When tones, chords and ani-
mal sounds are used as algebraic structure materials,
4-month-old infants can learn AAB and ABA rules
(Dawson & Gerken, 2009). However, 7.5-month-old
infants are able to learn only when syllables are accompa-
nied by sounds such as tones, instrument tones, animals,
and so forth, suggesting that language can facilitate rule
learning in infants (Marcus et al., 2007).

3. Nonverbal visual domain: The ability to learn rules is also
reflected in responses to visual materials of familiar and
everyday subjects with algebraic structures. Using pictures
of cats and dogs, human gestures, noncommunicative
dynamic human behaviors, neutral facial faces, positive and
negative facial faces, and positive and negative cartoon faces
as materials, infants have been proven to be able to apply
learned ABB, ABA, and AAB rules (Bettoni et al., 2023;
Bulf et al., 2015; Ferguson et al., 2018; Lu &
Mintz, 2021; Quadrelli et al., 2020; Rabagliati et al., 2012;
Saffran et al., 2007; Tsui et al., 2016). Similar results have
been found even with abstract geometries: 4-month-old
infants show a preference for new pairs and are able to dis-
tinguish between the same and different toys (i.e., AA and
AB structures; Tyrrell et al., 1991); moreover, 7-month-
olds can recognize symmetrical structures (ABA and
ABABA are symmetrical; AAB and ABAAB are asymmetri-
cal; de la Cruz-Pavía et al., 2022); infants at 8, 11, and
14 months of age are able to learn and generalize ABB,
ABA, and AAB structures (Johnson et al., 2009), although
8-month-old infants perform worse on unfamiliar, discrete

geometric sequences than on familiar ones (Kirkham
et al., 2002).

4. Co-presentation of verbal and nonverbal materials: the
interaction between two types of materials has been
observed for algebraic structures. In sequences combining
syllables with geometric figures, the more the two types of
materials differ, the easier it is for infants to learn rules
(Frank et al., 2009; Schonberg et al., 2018;
Thiessen, 2012; Tsui et al., 2016). Rule learning also shows
transference from the auditory to the visual domain (Bulf
et al., 2021) and matching auditory and visual rules
(Martin et al., 2022). Furthermore, audiovisual communi-
cative signals, such as a short conversation between two
females in which one actor speaks English and the other
responds with a dubbed tone, also promote rule learning
performance in infants (Ferguson & Lew-Williams, 2016).

Domain-specific processing: The role of social
information

As the basis for many abilities, rule learning is often considered
a domain-general mechanism, but not all studies support a
domain-general explanation. For example, chicks, as nonhu-
man neonates, at an advanced stage of development with a
mature visual pathway at birth, showed algebraic rule learning;
in contrast, human neonates are still able to complete algebraic
rule learning with an underdeveloped visual pathway at birth.
Thus, rule learning may be a domain-specific mechanism that
is innate and specialized in nature, as supported by the evi-
dence described below.

1. Inconsistent infant performance in the learning of nonver-
bal auditory sequences: Unlike 4-month-old infants who
can learn algebraic patterns of chords, infants �7 months
of age fail to learn not only from chords but also from non-
verbal auditory stimuli, such as tones, instrument timbres,
and animal sounds, whereas the company of verbal signals
facilitates algebraic rule learning (Dawson & Gerken, 2009;
Ferguson & Lew-Williams, 2016; Marcus et al., 2007).
Combining the aforementioned omnichannel and multi-
channel studies, the large variation in human rule learning
performance across domains may be caused by differences
in the richness of information provided by the stimuli; for
example, infants may be more sensitive to omnichannel
verbal auditory stimuli than multichannel stimuli combin-
ing geometric shape and phonological multimodal informa-
tion (Frank et al., 2009; Thiessen, 2012). Hence, these
data suggest that rule learning may be a language-specific
ability.

2. Rule learning with restricted prerequisites: Infants’ recogni-
tion of rule structures can be hindered by factors such as
the materials being inverted, neutral faces, upright negative
faces, angry faces, noncommunicative tones and syllable
sequences, cartoonish emotional faces and sound inconsis-
tencies, syllable sequences with controlled consonants, rule
structures with identical frequencies, and stimuli with
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different native-language backgrounds with phonological
novelty (Bulf et al., 2015; Daniela & Toro, 2013; Fergu-
son & Lew-Williams, 2016; Geambasu et al., 2022;
Monte-Ordoño & Toro, 2019; Quadrelli et al., 2020; Spit
et al., 2023; Tsui et al., 2016). Thus, infants’ performance
is related to whether the learning materials contain commu-
nicative information aspects. Rabagliati et al. (2019) argued
that infants can abstract and generalize rules only when the
stimuli are relevant to human experience and have survival
significance, and that infants can learn rules across
domains. Pertinently, infants have been observed to learn
rules more easily in audiovisual communicative contexts
and transfer tonal learning to syllables (Ferguson & Lew-
Williams, 2016; Quadrelli et al., 2020). However, infants
are still able to obtain rules during noncommunicative
human dynamic behaviors, as dynamic behaviors capture
their attention (Lu & Mintz, 2021). Similarly, the left-
to-right recognition orientation as a habitual way of viewing
objects also helps rule learning to occur by incorporating
aspects from numerical information to visual shape (Bulf
et al., 2022).

Social information that facilitates survival promotes alge-
braic rule learning. Thus, algebraic rule learning may be a pro-
gressively evolving, domain-specific processing mechanism
combined with a domain-rule learning mechanism, suggesting
that rule learning may entail both Type 1 and Type 2 processes.
It is necessary to identify factors that allow algebraic rule learn-
ing to occur successfully by replicating classical studies using
different materials in different language contexts (Geambasu
et al., 2022; Spit et al., 2023).

Analysis of whether algebraic rule learning is a
conscious process

If algebraic rule learning is essentially repetition detection
or statistical learning (i.e., if rules can be discovered by
Type 1 processing), then consistent algebraic rules can be
detected by an unconscious process. Although algebraic rule
learning studies have not yet focused on consciousness
engagement, the related rule oddball paradigm has explored
this issue: Comparing oddball stimuli with a low probability
to standard stimuli with a high probability, the event-
related potential (ERP) technique has been adopted to
detect the process involved in pattern changes between odd-
ball and standard stimuli (Monte-Ordoño & Toro, 2019;
Mueller et al., 2012). Sound sequences with rules, such as
oddball or standard stimuli, could be utilized to detect
underlying cognitive processes for rule learning.

In the auditory sequence oddball experiment, the standard
stimulus is a triad of consonant syllables in the form of AXB,
where A predicts B (such as le predicts bu, fi predicts to), the
oddball rule refers to the prediction disruption from A to B
(such as le predicts to, fi predicts bu), and the oddball pitch
describes pitch disruption in B (e.g., to is 227 Hz in the stan-
dard stimulus, and to is 305 Hz in the oddball stimulus). It

has been found that for 3-month-old infants, oddball rules
elicit MMN responses similar to oddball pitches, indicating
that infants could successfully extract nonadjacent dependent
rules in AXB sequences. In contrast, unlike infants’ passive
listening stimuli, adults explicitly discriminate rules or pitch
consistency, in which oddball rules elicit anterior N2 and P3
components. These results indicated that infants process rules
more automatically than adults, whereas rule learning is more
related to enhanced basic auditory discrimination for adults
(Mueller et al., 2012; Näätänen et al., 2007; Partanen
et al., 2013; Wacongne et al., 2012). The auditory sequence
oddball paradigm has also been applied in the study of Java
sparrows, using AAB sequences as the standard rules, AAB
sequences with different sounds, and ABB sequences as anoma-
lous sequences. A mismatch response (MMR) due to violation
of the AAB sequences is elicited by both AAB sequences with
different sounds and ABB sequences, reflecting the extraction
of information about the rules by the Java sparrow (Mori &
Okanoya, 2022).

The whole-local paradigm, as a variant of the oddball para-
digm, has also been utilized to explore consciousness recruit-
ment in rule learning. In a sound sequence consisting of five
sounds, AAAAA (or AAAAB) is the standard stimulus, and
AAAAB (or AAAAA) is the oddball stimulus. The local rule is
whether the fifth sound is the same as the first four sounds,
and the global rule involves high or low probabilities of
sequences. By manipulating local and global rules, it has been
observed that in noncommunicating patients with impaired
consciousness, local rules elicit MMN and the P3a component,
suggesting simply low levels of prediction error signals, while a
larger P3b amplitude is triggered by global rule violation than
global rule confirmation for healthy participants. The P3b
component was not detected in the patients due to a lack of
awareness of the violation of global rules. Thus, the neural
response, P3b, to global rule violation can be considered a
marker of consciousness in the auditory environment and is
associated with the whole activation of the prefrontal, tempo-
ral, parietal, occipital, and anterior cingulate cortex
(Bekinschtein et al., 2009; He et al., 2007; Kimura, 2012;
Liaukovich et al., 2022; Näätänen et al., 2007; Pazo-Alvarez
et al., 2003).

Thus, the process of rule learning requires detecting stimu-
lus changes at the perceptual level without conscious engage-
ment, that is, understanding the composition of stimulus
patterns; however, the detection of global rule changes requires
conscious involvement. Thus, algebraic rule learning is a com-
bination of both conscious and unconscious processes.

FUTURE WORK

We have described multi-domain rule learning in humans and
animals from the perspective of dual-process theory, revealing
that rule learning may be a combination of both Type 1 and
Type 2 processes. Thus, this hypothesis requires more evi-
dence. In addition, further studies may attempt to answer the
questions described below.
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An evolutionary perspective on rule-based
learning

Rule learning can be explained and understood from the
perspective of evolutionary psychology. Evolutionary pro-
cesses describe three major products: adaptors, byproducts
of adaptors, and random influences. Since rule learning is a
stable cross-species ability, the possibility of random influ-
ence is ruled out, and rule learning ability is more likely to
be an adaptor or a byproduct of an adaptor. An adaptor can
be defined as a hereditary, stably developed trait that has
developed through natural selection. Rule learning meets
the four criteria of an adaptor (Buss, 2015). (1) Effective-
ness: When individuals find patterns in the learning phase,
they can respond quickly to similar situations without
spending time identifying patterns the next time, thus solv-
ing problems efficiently. (2) Economy: Learning rules can
help to save cognitive resources so that problems can be
solved concisely. (3) Accuracy: All relevant features of the
current rule are incorporated into the learning process and
used to accurately identify similar things when individuals
are faced with a large amount of materials. (4) Reliability:
Normal individuals possess the mechanism to consistently
find a rule in new items consistently when they encounter
the situation again after discovering a hidden rule. Thus,
rule learning is more likely to be an innate and evolved
adaptor than a byproduct of an adaptor.

Rule learning and modularity

Fodor (1983) proposes that modular input systems are
domain-specific, innate, and obtained without experience,
such as language, sight, hearing, smell, and taste; and
experience-related but non-modular central systems are
non-domain-specific, involving functions such as thinking
and reasoning. If rule learning is indeed an evolved adaptor
as a cognitive module, one possibility is that rule learning
is performed as a single basic cognitive module that can be
invoked by all domains; another possibility is that rule
learning is a combination of multiple cognitive modules
that are put together into a modular system by experience
or practice. According to the dual-process theory, if rule
learning is domain specific for solving human adaptive
problems, this Type 1 processing can be accomplished only
by perception or individual experience. Recently, rule
learning has shown different characteristics for different
domains: rule learning exhibits an innate nature in
domains with survival implications, such as social and lan-
guage; rule learning requires cumulative relevant experi-
ence in domains unrelated to survival, such as geometry
and graphics. This domain difference may support the sec-
ond view that rule learning is a system of modules, some of
which are innately available and some of which require
experience or learning to acquire. The above analysis has
not yet been clearly evidenced and needs further
exploration.

Neural and developmental mechanisms of rule
learning

As an evolved adaptor, rule learning should have a specific neu-
ral basis. Rule learning may not be a byproduct of repetitive
pattern detection (Bouchon et al., 2015; de la Cruz-Pavía &
Gervain, 2021; Forg�acs et al., 2022; Wagner et al., 2011) but
more likely an innate cognitive mechanism whose neural basis
may be located in the prefrontal region (Gervain et al., 2008;
Gervain et al., 2012; Monte-Ordoño & Toro, 2017; Sun
et al., 2012). However, the prefrontal cortex may be responsi-
ble for generalizing rule patterns and may also be associated
with working memory or attention, the role of which requires
subsequent studies. In addition, neurocognitive techniques,
such as ERP, functional magnetic resonance imaging, and near
infrared spectroscopy (de la Cruz-Pavía & Gervain, 2023;
Gemignani et al., 2023), illustrate the correlation between cog-
nitive processes and brain activities. To explore the causal rela-
tionship between rule learning and neural responses,
techniques for temporary brain damage, such as transcranial
magnetic stimulation and transcranial direct current stimula-
tion, have yet to be used to explore the neural mechanisms of
rule learning in more depth.

Brain-imaging studies on algebraic rule learning have
shown increased attention to stimulus complexity with age
rather than the detection of simple repetitive patterns: Repeti-
tive structures, such as ABB or AAB, result in stronger activa-
tion in the left frontotemporal area than ABA and ABC for
newborns and 7-month-old infants, but 9-month-old infants
show a greater response to ABC (de la Cruz-Pavía &
Gervain, 2021; Forg�acs et al., 2022; Gervain et al., 2008;
Gervain et al., 2012; Wagner et al., 2011). Both adolescents
with ASD and normally developing 14–18-year-olds can learn
ABB and ABA patterns, which are moderated by social infor-
mation and complexity. Even adolescents with ASD rely on
working memory more than their neurotypical peers to recog-
nize and generalize complex rules (Bettoni et al., 2023). In
contrast to infant performance, adolescents and adults respond
to ABA structures more strongly than ABB structures
(Bouchon et al., 2015; Sun et al., 2012). The comparison
between infants and adults may have indicated that rule learn-
ing in humans is a Type 1 processing early in development and
shifts to a combination of Type 1 processing and Type 2 pro-
cessing as individuals mature. Another possibility is that
humans are born with a complex rule-learning system with
both Type 1 processing and Type 2 processing, but only Type
1 processing is activated during infancy as consciousness is not
yet developed. Therefore, subsequent studies should provide
evidence for the developmental mechanism of rule learning.

Dual processes of rule learning and
neurosymbolic artificial intelligence

Dual-process theory has inspired a new neurosymbolic artificial
intelligence (AI) paradigm that aims to develop AI systems
integrating both processes in order to combine the strengths of
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neural networks and symbolic systems (Sun, 1994). The com-
bination of Type 1 and Type 2 processing in neurosymbolic
AI can enable important application-level functions, such as
explainability, interpretability, safety, and trust in AI. From the
perspective of rule learning, explicit rules extracted from neural
networks’ implicit knowledge (d’Avila Garcez et al., 2001)
enable the transition from Type 1 processing to Type 2 proces-
sing. However, classical rule learning relies on limited labeled
data. Neurosymbolic methods acquire rules at scale by leverag-
ing neural networks’ ability to capture statistical patterns from
large unlabeled data sets (Ellis et al., 2020). A remaining chal-
lenge is to effectively ground soft rules from neural nets into
symbolic expressions (Valiant, 2000). Recent advances have
shown promise in integrating the two processes, such as incor-
porating structured knowledge into end-to-end learning (Mao
et al., 2019), distilling symbolic knowledge from language
models (Yu et al., 2021), adding logical constraints into model
training (Selsam et al., 2017), connecting AI planning and nat-
ural language processing (Y. Chen et al., 2021), and combining
language models with knowledge graphs (Sheth et al., 2023).

SUMMARY AND CONCLUSION

As reviewed above, we have analyzed algebraic rule learning
from the dual-process perspective: (1) Whether it involves sim-
ple Type 1 processing: Algebraic rule learning involves detect-
ing repetitive patterns or statistical regularities as Type
1 processing and extracting abstract rules that generalize across
domains as Type 2 processing. (2) Its functional properties are
domain-general or domain-specific: The algebraic rule-learning
process, originally thought to be specific to the linguistic
domain, has been found in non-linguistic domains, across
visual and auditory modalities, and even in the social domain.
However, it also exhibits domain specificity modulated by
stimulus familiarity and social significance. (3) Whether it is
shared by humans and animals or specific to humans: Both
humans and animals can recognize algebraic rule patterns, sug-
gesting a primitive shared ability. (4) Whether it is a conscious
process: The unconscious detection of perceptual regularity
changes in rule learning requires no explicit awareness of rules,
which elicits mismatch negativity; global rule extraction
requires conscious processing, which triggers P3b. Addition-
ally, from an evolutionary perspective, algebraic rule learning is
more likely an evolved adapter as a modular system, whose
neural basis is potentially located in the prefrontal region.

In conclusion, algebraic rule learning could be a cognitive
system comprised of both Type 1 processing and Type 2 pro-
cessing. Further studies on phylogeny development, individual
development, and neurosymbolic AI would help reveal the
essence of algebraic rule learning.
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