
OR I G I N A L A R T I C L E

Neural basis underlying the association between thought control
ability and happiness: The moderating role of the amygdala

Min Li1,2 | Yuchi Yan1,2 | Hui Jia1,2 | Yixin Gao1,2 | Jiang Qiu1,2 |

Wenjing Yang1,2

1Key Laboratory of Cognition and Personality
(SWU), Ministry of Education, Chongqing, China
2Faculty of Psychology, Southwest University
(SWU), Chongqing, China

Correspondence
Wenjing Yang and Jiang Qiu, Faculty of
Psychology, Southwest University, No. 2 TianSheng
Road, Beibei District, Chongqing 400715, China.
Email: yangwenjing@swu.edu.cn and qiuj318@swu.
edu.cn

Funding information
the 13th Five-years plan of national sciences of
education sciences, Young Teachers Research
Program of the Ministry of Education, Grant/Award
Number: EBA200393

Abstract
Thought control ability (TCA) plays an important role in individuals’ health and happi-
ness. Previous studies demonstrated that TCA was closely conceptually associated with
happiness. However, empirical research supporting this relationship was limited. In addi-
tion, the neural basis underlying TCA and how this neural basis influences the relation-
ship between TCA and happiness remain unexplored. In the present study, the voxel-
based morphometry (VBM) method was adopted to investigate the neuroanatomical basis
of TCA in 314 healthy subjects. The behavioral results revealed a significant positive asso-
ciation between TCA and happiness. On the neural level, there was a significant negative
correlation between TCA and the gray matter density (GMD) of the bilateral amygdala.
Split-half validation analysis revealed similar results, further confirming the stability of the
VBM analysis findings. Furthermore, gray matter covariance network and graph theoreti-
cal analyses showed positive association between TCA and both the node degree and node
strength of the amygdala. Moderation analysis revealed that the GMD of the amygdala
moderated the relationship between TCA and happiness. Specifically, the positive associa-
tion between TCA and self-perceived happiness was stronger in subjects with a lower
GMD of the amygdala. The present study indicated the neural basis underlying the asso-
ciation between TCA and happiness and offered a method of improving individual well-
being.
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INTRODUCTION

People often have negative thoughts in daily life. These
thoughts may be due to past memories (e.g., car accidents) or
worries about future events (e.g., failure on the next exam).
Previous studies have found that these intrusive negative
thoughts affect people’s cognitive function (Brewin &
Smart, 2005; Pacheco et al., 2020) and emotion regulation
ability (Zich et al., 2020) and further affect people’s mental
health (Arn�aez et al., 2021; Brewin et al., 2010; Visser, 2020).
Therefore, it is important for people to keep those negative
and unwanted thoughts out of their minds, which refers to
thought control ability (TCA). TCA is a reliable index of the
ability to control or suppress intrusive and unwanted thoughts
(Luciano et al., 2005; Williams et al., 2010). A number of
studies have found that TCA is negatively associated with the
symptoms of post-traumatic stress disorder (PTSD),

depression, and anxiety as well as symptoms of other psycho-
logical disorders (Catarino et al., 2015; Feliu-Soler et al., 2019;
Peterson et al., 2009). In general, previous studies have
explored the relationship between TCA and negative emotions
or mental disorders (Feliu-Soler et al., 2019; Gootjes &
Rassin, 2014). However, few studies have investigated the asso-
ciation between TCA and positive emotions (Massar
et al., 2020) or happiness.

Happiness has been defined as the sum of a person’s recent
levels of positive affect, high life satisfaction, and infrequent
negative affect (Diener et al., 1999). Numerous studies have
found that individuals with higher levels of self-perceived hap-
piness are usually physically healthier, have longer lives and
have more achievements in life (Diener & Seligman, 2002;
Lyubomirsky et al., 2005; Steptoe et al., 2005). Therefore, it is
crucial to identify factors that may increase happiness (Yang
et al., 2021). Some researchers believe that intentional control
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of memory could be considered an adaptive emotional regula-
tion strategy (Engen & Anderson, 2018), facilitating the
retrieval of positive experiences and inducting the forgetting of
other negative experiences, which can maintain individual sub-
ject well-being (Nørby, 2018). Moreover, taking into account
emotions are an important part of happiness (Afzal
et al., 2014; Humphrey et al., 2021); negative emotions are
partly caused by retrieved negative memories or intrusive
thoughts (Holland & Kensinger, 2010; Selby et al., 2008).
Therefore, it is reasonable to infer that TCA may affect indi-
vidual happiness. In addition, considering the negative rela-
tionship between TCA and mental illness (Feliu-Soler
et al., 2019), it can be speculated that TCA may play an
important role in improving happiness. However, no empirical
studies have explored whether TCA is positively related to hap-
piness or the neurobiological mechanism underlying this possi-
ble association.

In addition, not all individuals with high TCA will have
a high level of happiness; it is essential to examine which fac-
tors moderate the association between TCA and happiness.
Some studies have focused on the role of psychological and
biological factors, including age, internal personality traits,
inhibitory control ability, and emotional type of memory or
thought (Anderson, 2005; Beadel et al., 2013; Depue
et al., 2006; Erskine, 2004; Erskine et al., 2007). Among
these factors, brain structure emerges as a crucial variable that
significantly influences multiple behavioral relationships and
can act as a moderator, regulating the strength of these rela-
tionships (Mander et al., 2017; Overfeld et al., 2020). Accu-
mulating evidence from task-based functional magnetic
resonance imaging (MRI) studies demonstrated that the
amygdala played an important role in the representation and
retrieval inhibition of emotional memory (Anderson
et al., 2016; Daselaar et al., 2008; Engen & Anderson, 2018;
Murty et al., 2011; Smith et al., 2006). Some studies have
found that suppressing the retrieval of aversive images
reduced amygdala activity (Depue et al., 2007; Depue
et al., 2010). Critically, suppressing intrusions could also
reduce emotional responses to suppressed images, and these
dual effects on memory and emotion resulted from a com-
mon mechanism in the right prefrontal cortex that downre-
gulated the hippocampus and amygdala in parallel
(Gagnepain et al., 2017). Although functional MRI studies
have advanced the understanding of the role of the amygdala
in memory suppression, brain structure is the basis of brain
function (Hermundstad et al., 2013), and no studies have
explored the structural mechanism underlying TCA. This
study firstly aimed to employ voxel-based morphometry
(VBM) to explore the relationship between individual differ-
ences in TCA and the gray matter density (GMD) in the
amygdala. VBM uses the voxel as the basic unit of analysis
and compares each voxel of the human brain to identify
structural differences that could partially account for individ-
ual differences in neural variability across cognitive func-
tions, personality traits, and behaviors (Ashburner &
Friston, 2000; Serra-Blasco et al., 2021; Uono et al., 2017).

In contrast to functional connectivity and activation analyses,
VBM is able to detect subtle structural changes in the human
brain (Mechelli et al., 2005).

Moreover, the brain structural covariance network (SCN)
presents an additional valuable approach to investigate the
structural mechanisms, capturing correlated variations in
the morphology of distinct brain regions within individuals
(Griffiths et al., 2016; Seidlitz et al., 2018; Wannan
et al., 2019). Compared with mere VBM analysis, SCN analy-
sis provides a more comprehensive understanding of the brain’s
structural connectivity and functional relationships between
regions (Chen et al., 2014; Coppen et al., 2016; Fermin
et al., 2023). Previous studies have extensively investigated var-
ious morphological features, such as regional gray matter vol-
ume and density (de Schipper et al., 2017; Faridi et al., 2022;
Soriano-Mas et al., 2013), cortical thickness (Kim
et al., 2020), cortical surface area (Yun et al., 2020), and other
related structural characteristics. Graph theoretical network
analysis provides a valuable method for quantifying the organi-
zation of brain connectivity, representing the brain as graphs
composed of nodes (representing regions or voxels) and edges
(representing structural or functional connectivity among the
nodes). Nodes exhibiting high structural degree and strength
indicate regions of the brain that are highly interconnected and
possess the capacity to engage in numerous functional interac-
tions (Sporns, 2011). Alterations in gray matter SCN have
been associated with individual sex and age (DuPre &
Spreng, 2017; Montembeault et al., 2012; Shi et al., 2023),
mental diseases (Coppen et al., 2016; Montembeault
et al., 2016), social factors (Blumen & Verghese, 2019), and
cognitive abilities (Ren et al., 2023; Shi et al., 2023; Simpson-
Kent et al., 2021). Building on VBM, this study also utilized
gray matter SCN to comprehensively explore the neural mech-
anisms of TCA from a network perspective.

More importantly, the GMD or gray matter volume of the
amygdala has been linked to individual differences in prefer-
ences for processing emotional information (Marchewka
et al., 2009; Ossewaarde et al., 2013; Richardson et al., 2004)
and emotional regulation (Peng et al., 2019; Song
et al., 2015). These factors may play a fundamental role in
shaping emotional responses to negative memories and
thoughts, potentially influencing the relationship between
TCA and happiness (Gutiérrez-Cobo et al., 2021; Ng, 2016).
On the one hand, it is essential to emphasize the role of the
amygdala in memory consolidation (Hermans et al., 2014; Liu
et al., 2016; McGaugh, 2018). When individuals encounter
similar negative thoughts or memories, their emotional
responses may diverge due to differences in their information
processing preferences (Hamann & Canli, 2004;
McGaugh, 2018). On the other hand, the amygdala plays a
significant role in emotional regulation (Andrewes &
Jenkins, 2019; Banks et al., 2007). Individuals with higher
emotional regulation capabilities are better equipped to manage
negative emotions stemming from negative thoughts, thereby
reducing the impact on their happiness (Ma et al., 2020;
Quoidbach et al., 2010; Quoidbach et al., 2015). Therefore, as
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a brain region associated with individual emotional informa-
tion processing and emotional regulation, the amygdala may
influence the positive effects of TCA on happiness. In other
words, it is reasonable to hypothesize that the amygdala may
moderate the relationship between TCA and happiness. Simi-
larly, recent research has indicated that the amygdala’s struc-
ture could moderate the association between negative
experiences and emotions, such as childhood adversity and
adult trait anger (d’Arbeloff et al., 2018), and early life stress
and later trait anxiety (Kim et al., 2019).

In this study, we first explore the relationship between
TCA and happiness. Previous studies have suggested that indi-
viduals with high levels of TCA are less vulnerable to psycho-
logical disorders (Catarino et al., 2015; Reynolds &
Wells, 1999). We thus predicted that TCA would be positively
correlated with happiness. Second, we tried to explore the cor-
relation between individual differences in TCA and the GMD
of the amygdala using the VBM analysis and SCN analysis.
Finally, moderation analysis was performed to examine
whether the GMD of the amygdala moderates the relationship
between TCA and happiness.

METHOD

Participants

A total of 314 healthy college students (234 females; mean
age = 19.41 ± 1.24 years) from Southwest University were
recruited for this study, all of whom were right-handed native
Chinese speakers without a history of neurological or psychiat-
ric disorders. All participants also completed the Beck Depres-
sion Inventory (BDI-II) and the Beck Anxiety Inventory
(BAI). The scores from BDI-II and BAI were employed as cov-
ariates to demonstrate the stability of our results. The experi-
mental process was approved by the Brain Imaging Center of
Southwest University. The study was reviewed for compliance
with the standards for the ethical treatment of human partici-
pants and approved by the Ethical Committee for Scientific
Research at Southwest University. All the participants provided
informed consent prior to the experiment.

Behavioral measures

Thought Control Ability Questionnaire

The Thought Control Ability Questionnaire (TCAQ; Luciano
et al., 2005) is a 25-item self-report inventory for assessing the
level of TCA (e.g., “I think I am a person who can control pos-
itive and negative emotions well”). This scale has a unidimen-
sional structure and is measured on a 5-point Likert scale
ranging from 1 (not at all) to 5 (totally suitable) with a total
score range from 25 to 100. The total score indicates an indi-
vidual’s ability to control unwanted thoughts, with higher
scores suggesting higher TCA. The TCAQ showed high inter-
nal consistency and good test–retest reliability (Feliu-Soler

et al., 2019; Luciano et al., 2005; Shi et al., 2021; Williams
et al., 2010). In the present study, Cronbach’s alpha for the
total TCAQ score was .81.

Oxford Happiness Questionnaire

The Oxford Happiness Questionnaire (OHQ; Hills &
Argyle, 2002) is a 29-item self-report inventory for assessing
the level of happiness (e.g., “I often experience joy and ela-
tion”). This scale has a unidimensional structure and items are
measured on a 6-point Likert scale ranging from 1 (strongly dis-
agree) to 6 (strongly agree), with a total score ranging from
29 to 174. The total score indicates an individual’s happiness
level, with higher scores suggesting greater happiness. Previous
research has demonstrated that this measure has good psycho-
metric properties (Hills & Argyle, 2002; Kashdan, 2004). In
the present study, Cronbach’s alpha for the total OHQ score
was .91.

MRI data acquisition and preprocessing

Image acquisition

The structural MRI data were scanned by a 3T Siemens-Trio
Erlangen scanner (Siemens Medical Solutions) with a
12-channel head coil at the Brain Imaging Center of Southwest
University. A magnetization-prepared rapid gradient echo
(MPRAGE) sequence was used to collect each participant’s
high-resolution 3D T1-weighted anatomical images with the
following parameters: 176 sagittal slices; repetition time =
1900 ms; echo time = 2.52 ms; inversion time = 900 ms;
flip angle = 90�; resolution matrix = 256 � 256; voxel size =
1 � 1 � 1 mm3; and slice thickness = 1.0 mm.

Preprocessing of structural data

The structural MRI data were processed using the SPM8 pro-
gram (Wellcome Department of Cognitive Neurology; www.
fil.ion.ucl.ac.uk/spm) implemented in MATLAB 7.8
(MathWorks Inc.). First, each MR image was displayed in
SPM8 to screen for artifacts and gross anatomical abnormali-
ties. To improve registration, the reorientation of the images
was manually set to the anterior commissure. Second, the
images were segmented into gray matter (GM), white matter
(WM), or other by using the new segmentation in SPM8.
Then, we performed Diffeomorphic Anatomical Registration
through Exponentiated Lie (DARTEL) algebra in SPM8 for
registration, normalization, and modulation of the data
(Ashburner, 2007). To ensure that regional differences in the
absolute amount of GM were conserved, the image intensity of
each voxel was modulated by the Jacobian determinants. Then,
the registered images were transformed to Montreal Neurologi-
cal Institute (MNI) space. Finally, the normalized modulated
images of GM and WM were smoothed with an 8-mm
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full-width at half-maximum Gaussian kernel to increase their
signal-to-noise ratio.

Statistical analysis

VBM analysis

Statistical analysis of the brain imaging data was performed
with SPM12. In the whole-brain analysis, multiple regression
analysis was used to explore the association between the GMD

and individual differences in TCA. In the multiple linear
regression analyses, the GMD of each voxel in the whole brain
was included as the dependent variable, and the TCAQ score
was included as the independent variable. To control for possi-
ble confounding variables, age, gender, and the global GMD
were entered as covariates in the regression model (Kulynych
et al., 1994; Peelle et al., 2012). To avoid edge effects around
the borders between GM and WM, an absolute threshold
masking of 0.2 was used; thus, voxels with GM values lower
than 0.2 were excluded from the analyses (Ridgway
et al., 2009; Wei et al., 2015).

Furthermore, small-volume correction (SVC) was per-
formed in the areas with a strong a priori hypothesis. The
regions of interest (ROIs) were chosen because previous struc-
tural and functional imaging studies revealed that the amygdala
might play an important role in thought control (Depue
et al., 2007; Depue et al., 2010; Gagnepain et al., 2017). The
Wake Forest University (WFU) Pick Atlas (Maldjian
et al., 2003) was used to define areas in the amygdala. Specific
ROIs were examined at a corrected threshold of p < .05 using
the familywise error (FWE) method for multiple comparisons.

Intra-individual gray matter SCN

In order to further complement the results of VBM, we
delved into the relationship between the GMD of the amyg-
dala and TCAQ from the perspective of structural networks.
We generated 116 cortical and subcortical ROIs from the
Automated Anatomical Labeling (AAL) 116 atlas. Subse-
quently, these AAL ROIs were resliced to the same dimen-
sion as the tissue segmented images obtained during the
VBM preprocessing step. These resliced ROIs were then

utilized to mask the individual modulated, normalized GM
images, and we extracted the average density within each
ROI using the REX toolbox.

GMD of all 116 anatomical regions for each individual
were z-score transformed using the mean and standard devia-
tion values calculated from all subjects within each ROI.
Finally, a measure of joint variation (which is not the same as
the classical statistical definition of covariance) between the
116 regions represented the edge-weights (distributed between
0 and 1) of the network and was calculated using the following
formula (Liu et al., 2021; Yun et al., 2020):

Graph theoretical analyses

For each of the individual SCNs, a series of graphs was con-
structed and analyzed over a range of connection densities from
0.1 to 0.5 with an interval of 0.1. For instance, when applying
a density threshold of K = 0.1, the edge weights in the net-
work were sorted into numerical order, and only the strongest
10% of edges were retained.

At each of these thresholds, we calculated the node degree
and node strength of bilateral amygdala. The node degree rep-
resents the number of connections that a node has with the rest
of the network (Romero-Garcia et al., 2018), while node
strength represents the sum of edge weights connecting a
node to other nodes within the network (Prasad et al., 2022).

Partial correlation analysis

Spearman partial correlation analysis was performed to examine
the correlation between TCAQ scores and network measures,
including the node degree and node strength of bilateral amyg-
dala at different threshold levels, corrected for age, sex, and
global GMD.

Moderation analysis

A moderator variable is a variable that may influence the direc-
tion and/or strength of the relationship between an indepen-
dent variable and a dependent variable (Baron &
Kenny, 1986). Moderation studies can address “when” or
“whom” questions regarding variation in the strength of the
relationship between X and Y. To study whether the

The gray matter covariance between the ith for i¼ 1�116ð Þ and jth for j¼ 1�116ð ÞROI in the sth for s¼ 1�314ð Þ participant½ �
¼ 1=exp z transformed value of ith ROI in sth participantð Þ½f � z transformed value of jth ROI in sth participantð Þ�2g:
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relationship between TCA and happiness was affected by the
GMD of the bilateral amygdala, we performed a moderation
analysis (Holmbeck, 2002) using the Johnson–Neyman
method via the Process procedure in SPSS 22.0 (Hayes, 2017).
These methods have been successfully employed in previous
studies (Kaller et al., 2012; Maier et al., 2020; Simon
et al., 2020; Wei et al., 2015; Yao et al., 2018). In this moder-
ation analysis, age, gender, and global GMD were included as
covariates. To generate 95% confidence interval (CI), 5000
bootstrapped samples were drawn. Simple slope analysis was
used to determine the associations between TCA and happi-
ness at low (mean � 1 SD) and high (mean + 1 SD) levels of
the GMD of the amygdala.

RESULTS

Behavioral results

To mitigate potential bias arising from shared method variance,
the questionnaires with good reliability and validity were used
as the measuring instruments. During the testing process, spe-
cial attention was given to maintaining result confidentiality,
and we used the reverse scoring method for specific question-
naire items.

To examine the presence of common method biases, the
Harman’s Single Factor Test was performed in SPSS 22.0
(Harman, 1976; Podsakoff et al., 2003; Tehseen
et al., 2017). The Harman’s Single Factor Test is performed
through an exploratory factor analysis, where the researchers
usually examine whether the first extracted factor accounts
for more than 40 percent of the total variance (Aguirre-
Urreta & Hu, 2019; Elahi et al., 2020; Fuller et al., 2016).
The results of the exploratory factor analysis indicated that
the number of factors without rotation exceeded 1, and the
variance explained by the first principal component was
23.648%, which fell below the threshold of 40%. Overall, it
can be inferred that the measurement did not exhibit signifi-
cant common method bias.

Table 1 provides the descriptive statistics of all subjects’
demographic and behavioral measurements. The Pearson cor-
relation analysis including age and gender as covariates revealed
that participants’ level of happiness was positively correlated
with their TCA (r310 = 0.506, p < .001). Participants who had
a stronger ability to control their unwanted thoughts reported
higher happiness levels.

VBM results

The TCAQ scores were negatively correlated with the GMD
in two clusters that mainly included areas in the bilateral amyg-
dala (left: cluster size = 87 voxel, t = 3.93, p(corr) < .05; right:
cluster size = 22 voxel, t = 3.58, p(corr) < .05; Figures 1 and 2
and Table 2). Age, gender, and global GMD were included as
covariates in all analyses. To provide a more comprehensive
understanding of the neural mechanisms underlying TCA, the

results of whole-brain analyses were also reported (Table S1).
TCAQ scores were positively correlated with GMD predomi-
nantly involving fusiform, precuneus, parahippocampal gyrus,
medial frontal gyrus, and thalamus, and were negatively corre-
lated with GMD in several brain areas, including temporal
gyrus, amygdala, anterior cingulate, postcentral gyrus, insula
and middle occipital gyrus at an uncorrected threshold
(p < .001) with 20 extend threshold.

Additionally, we conducted a cross-validation of the VBM
results using two subsets: the training samples and the test sam-
ples, each consisting of 157 participants with balanced gender
and age distributions. Similar VBM analyses were conducted
on the training samples; we consistently observed a stable nega-
tive correlation between the GMD of the amygdala and TCAQ
scores in all 10 iterations of the analysis; and ROIs where
GMD significantly correlated with TCAQ scores in the train-
ing samples were used as masks to extract GMD in the test
samples. Partial correlation analyses showed a stable negative
correlation between the GMD of amygdala and TCAQ scores
in the training samples controlling for gender, age, and global
GMD across 10 iterations. In the test samples, the correlation
consistently showed a negative relationship with occasional sig-
nificant results. For more detailed information, please refer to
the supplementary material (Results of cross-validate analyses,
Figure S1).

T A B L E 1 Demographic and psychometric measurements (N = 314)

Item M SD Minimum Maximum

Age 19.41 1.24 17 25

TCAQ 77.43 12.13 46 116

OHQ 116.57 15.66 67 160

Abbreviations: OHQ, Oxford Happiness Questionnaire; TCAQ, Thought Control
Ability Questionnaire.

F I GUR E 1 Region of interest voxel-based morphometry analysis of gray
matter density (GMD) in the bilateral amygdala. Red-yellow shows voxels
demonstrating significant association between GMD and reduced Thought
Control Ability Questionnaire (TCAQ) scores after controlling for age, gender,
and global GMD. The background image is the MNI152 standard space T1
template. The number in the color bar represents the T value.
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Relationship between TCAQ scores and network
measures

Among the various network density levels of K = 0.1–0.5
(with density interval of 0.1), partial correlation analysis
showed the best results with a density threshold of K = 0.3.
Specifically, TCAQ scores displayed a significant positive cor-
relation with both the node degree and node strength of the
left amygdala. Additionally, there was a marginal significance
observed in the correlation between TCAQ scores and both
the node degree and node strength of the right amygdala
(Table 3). These findings were mainly consistent when consid-
ering different values of K, as reported in the supplementary
material (Results of TCAQ scores and network measures,
Figure S2).

Moderation analysis

As mentioned above, this study observed a significant positive
correlation between TCA and the levels of happiness. Further-
more, the GMD of the bilateral amygdala was negatively asso-
ciated with the TCA. Next, we analyzed whether individual
differences in the GMD of the amygdala moderated the rela-
tionship between TCA and happiness. The results showed that
the GMD of the amygdala (bilateral) moderated the relation-
ship between TCA and happiness. There was a significant
interaction between TCAQ scores and the GMD of the bilat-
eral amygdala, following the mean-centering of both TCAQ
scores and the GMD (Table 4; for the left amygdala:
ΔR2 = .295, β = �12.474, t = �2.748, p = .006; for the
right amygdala: ΔR2 = .302, β = �20.202, t = �3.174,
p < .001). The positive relationship between TCAQ scores and
OHQ scores was significantly stronger in participants with a
lower GMD of the bilateral amygdala than in participants with
a higher GMD (Figure 3).

Supplementary analyses

Previous studies have shown that individual levels of anxiety
and depression are closely related to TCA and happiness

F I GUR E 2 Regional gray matter density (GMD) was negatively correlated with Thought Control Ability Questionnaire (TCAQ) scores. Scatter plot of the
correlation between TCAQ scores and the GMD of the (A) left and (B) right amygdala after regressing out age, gender, and global GMD. Both dimensions were
Fisher Z-transformed for analysis and display. In the scatter plot, the red shaded areas represent 95% CIs.

T A B L E 2 Regional gray matter density showed significant correlations with reduced TCAQ scores.

Region

Peak MNI coordinate

Peak T-values Cluster size (voxel)x y z

Amygdala (L) �23 �5 �21 3.93 87

Amygdala (R) 21 �3 �24 3.58 22

Note: Results are p(FWE) < .05, corrected for multiple comparisons at a cluster level with small-volume correction, with an underlying voxel level of p < .001, uncorrected.
Abbreviations: L, left; R, right; TCAQ, Thought Control Ability Questionnaire.

T A B L E 3 The correlation between TCAQ scores and the node degree
and node strength of the bilateral amygdala (K = 0.3)

ROIs Node degree Node strength

Amygdala (L) 0.195 (p < .001) 0.185 (p < .010)

Amygdala (R) 0.109 (p = .054) 0.111 (p = .051)

Abbreviations: L, left; R, right; ROIs, regions of interest; TCAQ, Thought Control
Ability Questionnaire.
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(Feliu-Soler et al., 2019; Wasil et al., 2021). In order to
exclude the influence of confounding variables, the supplemen-
tary analysis also controlled the individual’s anxiety
(as measured by BAI) and depression (as measured by BDI-II).
Both behavioral and neural results remained largely unchanged
when anxiety and depression were controlled. TCA was still
significantly associated with happiness (r = 0.409, p < .001)
and the GMD in bilateral amygdala (the left amygdala:
r = �0.196, p = .001; the right amygdala: r = �0.186,
p = .001). More importantly, the moderating effect of the
GMD of the bilateral amygdala was still significant for
the association between TCA and happiness (for the left amyg-
dala: ΔR2 = .349, β = �13.867, t = �3.148, p < .001; for
the right amygdala: ΔR2 = .351, β = �19.864,
t = �3.224, p < .001).

DISCUSSION

The present research explored the neurobehavioral relationship
between the levels of happiness and the ability to control
unwanted thoughts. As predicted, the results confirmed that
TCA was positively associated with levels of self-perceived hap-
piness. Moreover, TCA was negatively associated with the
GMD of the bilateral amygdala, which was affirmed by spilt-
half validation. Furthermore, gray matter covariance network
and graph theoretical analyses revealed a positive link between
TCA and the amygdala’s node degree and node strength. More
importantly, the GMD of the bilateral amygdala moderated
the relationship between TCA and happiness. Specifically,
higher happiness levels were associated with higher TCA in
individuals with a lower GMD of the bilateral amygdala.

T A B L E 4 Results of the moderated regression analysis to predict happiness.

Variable β SE t R 2

Left amygdala .295***

Gender 3.748 1.753 2.138*

Age 0.799 0.619 1.291

Global GMD 0.001 0.001 0.321

TCA 0.663 0.065 10.273***

Left amygdala 95.937 68.366 1.403

TCA � Left amygdala �12.474 4.539 �2.748**

Right amygdala .302***

Gender 3.184 1.769 1.800

Age 0.728 0.616 1.182

Global GMD 0.001 0.001 0.110

TCA 0.667 0.064 10.411***

Right amygdala 170.987 103.873 1.646

TCA � Right amygdala �20.202 6.365 �3.174***

Note: The independent variable is the Oxford Happiness Questionnaire score.
Abbreviations: GMD, gray matter density; TCA, thought control ability.
*p < .05; **p < .01; ***p < .001.

F I GUR E 3 The gray matter density (GMD) of the (A) left and (B) right amygdala moderated the relationship between thought control ability (TCA;
Thought Control Ability Questionnaire [TCAQ] scores) and happiness (Oxford Happiness Questionnaire scores). Simple slopes are plotted at low (mean � 1 SD)
and high (mean + 1 SD) GMD of the left and right amygdala.
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In other words, the influence of TCA on happiness was signifi-
cantly stronger in participants with a lower GMD of the bilat-
eral amygdala.

The behavioral results showed that happiness was positively
associated with TCA. First, TCA helps individuals alleviate
negative emotions, thereby increasing happiness. Previous stud-
ies have found that individuals with higher TCA reported
fewer intrusions of negative memories (Küpper et al., 2014;
Streb et al., 2016) and had less severe symptoms of depression
after experiencing negative life events (Lu et al., 2021). Fur-
thermore, previous studies have also found that sustained
attention to or “rumination” about negative experiences con-
tributes to present unhappiness (Nolen-Hoeksema, 1991),
depression (mainly characterized by rumination of the past),
and anxiety (mainly characterized by worry about the future;
Roley et al., 2015; Snyder & Hankin, 2016). Moreover, lower
levels of subjective well-being were accompanied by higher
rumination (Elliott & Coker, 2008; Weber &
Hagmayer, 2018). In contrast to rumination, when unpleasant
thoughts arise, people can actively and deliberately exclude
them from awareness (Anderson & Green, 2001; Anderson &
Hanslmayr, 2014). The selective suppression of negative
thoughts and memories could further reduce psychological
conflict (Hu et al., 2015), contribute to efficient cognition
(Anderson & Hulbert, 2021; Fawcett & Hulbert, 2020), and
preserve mental health (Costanzi et al., 2021; Gagnepain
et al., 2017; Hu et al., 2017). Second, TCA was also associated
with positive emotions and contributed to emotion regulation
(Engen & Anderson, 2018; Gagnepain et al., 2017), mainte-
nance of focus and cognitive flexibility during tasks (Fawcett &
Hulbert, 2020; Van Vugt et al., 2018), maintenance of posi-
tive self-perception (Elliott et al., 2021) and self-image
(Fawcett & Hulbert, 2020), strengthening of beliefs and atti-
tudes (Waldum & Sahakyan, 2012), and improvement of resil-
ience (Shi et al., 2021). These factors help generate more
positive emotions, which are essential parts of happiness (Cohn
et al., 2009). Third, in addition to positive and negative emo-
tions, life satisfaction was also strongly correlated with happi-
ness (Bieda et al., 2019; Selim, 2008). Recent studies have
found that TCA has a positive relationship with life satisfaction
(Williams et al., 2021) and momentary affect (Massar
et al., 2020). Finally, Nørby (2018) suggested that selective
forgetting may help maintain well-being. The present study
experimentally determined a positive correlation between TCA
and happiness.

The current study uncovered a negative correlation
between variations in the GMD of the amygdala and individ-
ual differences in TCA. From the standpoint of cognitive con-
trol and memory suppression, individuals with higher TCA
demonstrate superior capabilities in suppressing negative
thoughts (Feliu-Soler et al., 2019; Luciano et al., 2005). Utiliz-
ing with the Think/No-Think (TNT) task (Anderson &
Green, 2001), many functional MRI studies have indicated
that suppressing unpleasant reminders or images leads to a
reduction in amygdala activation (Depue et al., 2007; Depue
et al., 2010; Gagnepain et al., 2017). The repeated activation
of a brain region leads to an increase in the GM of that region

(Draganski et al., 2004; Granert et al., 2011; Ilg et al., 2008),
whereas inhibition leads to a decrease in the GM of that region
(Depue & Banich, 2012; Takeuchi et al., 2012). It is reason-
able to hypothesize that inhibiting the retrieval of negative
thoughts, facilitated by higher TCA, may be associated with
reduced amygdala activation and a decrease in the GMD of the
amygdala. Moreover, a decrease in GMD of the amygdala has
been reported following mindfulness training (Hölzel
et al., 2010), which is also a beneficial strategy for coping with
intrusive thoughts (Emerson et al., 2018; Shipherd &
Fordiani, 2015) and improving inhibitory control (L�opez-
Navarro et al., 2020; Pozuelos et al., 2019). Future longitudi-
nal research is necessary to investigate the causal impact of
thought control training on changes in brain structure.

Moreover, the findings of brain SCN and graph theoretical
analyses consistently showed a positive correlation between
TCAQ scores and both the node degree and node strength of
the amygdala. It was consistent with previous research indicat-
ing the amygdala’s role in emotional processing, memory con-
trol, and affective responses (Cotton et al., 2020; Harnett
et al., 2022; Roos et al., 2017). Previous studies have reported
reduced measures of centrality, segregation, and integration in
nodes within the left amygdala in patients with major depres-
sive disorder compared to healthy individuals (Zhang
et al., 2022). In addition, lower amygdala degree centrality has
been observed in the offspring of mothers with higher stress
during pregnancy (Mareckova et al., 2022). The finding sug-
gested that individuals with higher TCA have stronger struc-
tural similarities between the amygdala and other brain
regions, suggesting a potential enhanced ability to process
unwanted thoughts and memories. Overall, it further con-
firmed the important role of the amygdala in the ability of
thought control.

The current findings also indicated that the positive rela-
tionship between TCA and happiness was moderated by the
GMD of the bilateral amygdala. Emotion regulation theory
underscores the amygdala’s role in emotion processing
(Hrybouski et al., 2016; Sergerie et al., 2008; Šimi�c
et al., 2021) and emotion regulation (Berkman &
Lieberman, 2009; Eden et al., 2015). A recent functional
MRI-based neurofeedback study revealed a negative correlation
between changes in TCA and practice-related alterations in the
functional connectivity of the prefrontal cortex and amygdala
during emotional regulation (Zich et al., 2020). This finding
aligns with the present research, suggesting that the amygdala
is involved in individual emotional information processing and
emotional regulation and interacts with TCA to affect
happiness.

More precisely, individuals with lower GMD of the amyg-
dala may be more likely to experience an improvement in hap-
piness through increased TCA. Enlargement of the bilateral
amygdala is identified as a risk factor for mental health and
happiness. Increased GM volumes of the amygdala have been
reported in many affective disorders (Kovacevic et al., 2021;
Qin et al., 2014; Vassilopoulou et al., 2013). Greater GMD of
the amygdala was also observed in trauma-exposed survivors
who underwent more stressful events (Li et al., 2017).
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Importantly, some studies have demonstrated a reduction in
perceived stress due to mindfulness training, correlating posi-
tively with a decrease in the GMD of the right basolateral
amygdala (Hölzel et al., 2010) and reduction in amygdala vol-
ume (Kral et al., 2022; Savic, 2015). Therefore, it is conceiv-
able that a lower GMD of the amygdala may assist individuals
in more effectively regulating their emotions, alleviating the
impact of stress events through thought control training, and
subsequently enhancing their happiness.

Numerous studies have consistently shown a link between
TCA deficiency and various psychological disorders and clini-
cal symptoms, including anxiety, depression, PTSD, and
obsessive–compulsive symptoms (Catarino et al., 2015; Feliu-
Soler et al., 2019; Morillo et al., 2007; Moulding &
Kyrios, 2006). Similarly, larger GM density or volume of the
amygdala has been found in individuals with depression and
anxiety (Machado-de-Sousa et al., 2014; Vassilopoulou
et al., 2013). Hence, it is reasonable to speculate that a close
association between the amygdala and TCA may also be
observed in clinical samples. In addition, task-based research
has demonstrated that compared to controls, individuals with
major depressive disorder exhibited distinct patterns of activity
in the amygdala and hippocampus during memory suppression
involving negative valence stimuli (Sacchet et al., 2017).
Future studies could further explore the neural mechanisms of
TCA in clinical samples, shedding more light on its implica-
tions for psychological disorders and their treatment.

There are several limitations to the present study. First, the
present findings are limited to the instrument used to assess
TCA. Specifically, we used a self-report questionnaire to mea-
sure TCA. Self-report data reflect a range of cognitive biases,
such as overestimation (the Kruger–Dunning effect; Kanai &
Rees, 2011). Future studies should use laboratory procedures,
similar to the directed forgetting paradigm and TNT task, to
explore the relationship between TCA and happiness. Second,
the sample size in this study was relatively small and consisted
of highly educated, healthy, and young adults. Therefore, the
observed associations should be evaluated in future studies with
larger and more diverse samples. Third, the study utilized a
cross-sectional design and employed correlational analyses, lim-
iting the ability to establish causal relationships and control for
potential confounding variables. Future researchers can con-
duct experimental or longitudinal studies to explore the influ-
ence of TCA and its neural mechanisms on happiness.

CONCLUSION

The present study used VBM to explore the neurobehavioral
relationship between TCA and happiness. This study demon-
strated that TCA was positively associated with happiness,
which explains why people who find it easier to let go of nega-
tive thoughts can achieve greater happiness. VBM analysis
revealed the structural basis of TCA. Specifically, TCA was
negatively associated with the GMD of the bilateral amygdala,
and the split-half validation analysis showed consistent results,
further confirming the stability of the VBM analysis findings.

Furthermore, TCA was also positively related to both node
degree and node strength of the amygdala in the gray matter
covariance network. Notably, the GMD of the amygdala
played an important role in improving the relationship
between TCA and happiness. In general, this research found
that the ability to control negative thoughts is important for
happiness and mental health and indicated a way to improve
individual happiness.
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