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Abstract

Background: Heart failure with preserved ejection fraction (HFpEF) is a multifactorial condition with a variety of pathophysiological
causes and morphological manifestations. The inclusion criteria and patient classification have become overly simplistic due to the
customary differentiation regarding the ejection fraction (EF) cutoff. EF is considered a measure of systolic function; nevertheless, it
only represents a portion of the true contractile state and has been shown to have certain limits due to methodological and hemodynamic
irregularities. Methods: As a result, broader randomized clinical trials have yet to incorporate the most recent criteria for HFpEF
diagnosis, leading to a lack of data consistency and confusion in interpreting the results. The primary variations between the bigger
clinical trials published in this context concerning patient selection and echocardiographic characteristics were analyzed. For all these
reasons, we aim to clarify the main features and clinical impact of HFpEF in a study combining imaging, bio-humoral analysis, and
clinical history to identify the specific subgroups that respond better to tailored treatment. Results: Disparate clinical characteristics
and a lack of uniform diagnostic standards may cause suboptimal therapeutic feedback. To optimize treatment, we suggest shifting
the paradigm from the straightforward EF measurement to a more comprehensive model that considers additional information, such as
structural traits, related disorders, and biological and environmental data. Therefore, by evaluating certain echocardiographic and clinical
factors, a stepwise diagnostic procedure may be useful in identifying patients at high risk, subjects with early HFpEF, and those with
evident HFpEF. Conclusions: The present assessment underscores the significance of the precision medicine approach in guaranteeing
optimal patient outcomes by providing the best care according to each distinct profile.
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1. Introduction

Heart failure with preserved ejection fraction (HF-
pEF) affects around half of all heart failure (HF) cases, and
throughout the past 20 years, this percentage has been rising
[1,2]. HFpEF prevalence in the adult population is around
1–3%, although it is increasing in the general global popu-
lation [3]. Additionally, the 1-year mortality is about 6.3%,
reaching 75.7% at 5 years, which is comparable to heart fail-
ure with reduced ejection fraction (HFrEF). While cardio-
vascular death remains the primary outcome for HF, non-
cardiovascular causes are increasingly significant in HFpEF
[4–6].

Compared to HF with impaired systolic function, HF-
pEF is regarded as a distinct entity with specific molecular
vascular myocardial cell adaptations and a detailed patho-
physiological profile (HFrEF) [7]. This evaluation is based
on certain presumptions regarding the anatomy of the left

ventricle (LV), the composition and structure of the heart,
the geometry of the intrinsic fiber myocytes, the thickness
of the vessels, and the effects of therapy [8]. Consequently,
it is a diverse syndrome with a high comorbidity burden
characterized by several related diseases and different clin-
ical phenotypes. The considerable variety of enrollment cri-
teria in the larger multicenter trials showed a lack of diag-
nostic consistency, and criteria uniformity is required for
both the time course evaluation and the adopted treatment
[9]. Understanding the underlying pathophysiological pro-
cesses that generate hemodynamic changes and cardiovas-
cular dysfunctions is crucial for addressing the optimized
therapy according to different phenotypes. For example,
patients with HFpEF and a prevalent coronary microvas-
cular impairment as the main pathophysiological mecha-
nism may benefit more from drugs acting on microcircu-
lation that reduce coronary resistance, improving coronary
blood flow. Alternatively, patients with HFpEF and preva-
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lent extracellular fibrosis may benefit more from drugs with
anti-fibrotic properties, which reduce collagen extracellular
storage. Patients with early supraventricular tachyarrhyth-
mias (SVTs) may benefit from early ablation procedures
because recurrent supraventricular tachyarrhythmia (SVT)
may trigger electrical disorder persistence and HFpEF pro-
gression. In conclusion, the emerging role of genetics and
epigenetics may open new perspectives in HFpEF classifi-
cation and treatment. The contrasting results of novel and
conventional treatments emphasize the need to search for
a more suitable mechanistic strategy based on more cus-
tomized therapy that incorporates data on lifestyle, genetic,
biochemical, environmental, and cardiovascular (CV) risk
factors [10]. This review aims to revise the knowledge con-
cerning this complex syndrome, particularly regarding the
different phenotypes and the current and potential therapeu-
tic targets in HFpEF.

2. Evolution of Classification and Diagnostic
Innovations in HFpEF
2.1 Rising Awareness and Understanding of HFpEF

The understanding of HFpEF has transformed from
a relatively overlooked condition to one now receiving
growing recognition. HFpEF is a clinical syndrome dis-
tinguished by the manifestation of HF signs and symptoms
due to augmented LV filling pressure, even in the presence
of a normal or near-normal (≥50%) LV ejection fraction
(LVEF) [11]. It is also characterized by a marked increase
in natriuretic peptides (NPs), the presence of left ventricu-
lar hypertrophy (LVH), and/or left atrial (LA) enlargement,
along with some level of diastolic dysfunction. For this rea-
son, it was frequently considered a diagnosis of exclusion.
However, the absence of well-defined criteria posed diffi-
culties in both research and clinical contexts; thus, it be-
came evident that the syndrome is heterogeneous, involv-
ing various comorbidities and contributing factors [12]. As
a clinical syndrome, the delineation of HFpEF is complex,
mainly due to the considerable variability in the clinical
manifestations of patients along several dimensions: mul-
tiple comorbidities can alter clinical symptoms and signs;
it also involves various organ systems, encompassing both
cardiac and non-cardiac expressions [13,14].

The increasing knowledge about HFpEF syndrome
and the complexity of this condition are responsible for the
evolutive classification of the HFpEF concept over the pre-
vious decade [15]. Until recently, HFpEF was a diagno-
sis of exclusion, while the term HFpEF implies a definition
based solely on LVEF values, which is a rough and sim-
plistic parameter not always associated with the pathophys-
iological background [16,17]. However, over the recent
years, novel modalities of classification have been intro-
duced, which involve several aspects of the disease, includ-
ing clinical, imaging, laboratory, metabolomic, and epige-
netic parameters. To unravel this complex syndrome, it

is necessary to increase the complexity of the classifica-
tion to distinguish the diagnostic and therapeutic pathways
[11,15,16].

In this regard, Fayol et al. [18] emphasized the role
of etiology in HFpEF, demonstrating its usefulness in deci-
phering HFpEF heterogeneity better. They stratified 2180
patients with HFpEF according to etiology, identifying
three main phylogroups. In particular, the best prognosis
was observed in patients with idiopathic HFpEF, a group
characterized by a high rate of non-cardiac comorbidities,
compared to patients with secondary HFpEF due to my-
ocardial hemodynamic loading abnormalities. On the other
hand, Shah et al. [19] stratified patients according to prog-
nosis to identify useful predictors. Patients with the best
prognosis were relatively young, with mild diastolic dys-
function and low natriuretic peptide (NP) levels. Patients
with “metabolic HF” were obese with LA dilatation, LVH,
and diastolic dysfunction. This group was found to have a
risk of death four times higher than the first. The third group
included patients with a higher incidence of atrial fibrilla-
tion (AF), the highest NP levels, and the most severe dias-
tolic dysfunction, and they were at the highest risk of death.

A different approach was used by Cohen et al. [20],
who performed a secondary analysis on the Treatment of
Preserved Cardiac Function Heart Failure with an Aldos-
terone Antagonist (TOPCAT) trial, dividing patients ac-
cording to vascular and cardiac remodeling. The first sub-
group included patients with mild LVH and chronic pul-
monary hypertension with normal vascular stiffness and a
rise in the expression of metalloproteinase; the second sub-
group was characterized by older patients with multiple
comorbidities, reduced vascular compliance, parietal hy-
pertrophy, and tissue calcification; the third subgroup in-
cluded obese patients with several metabolic alterations,
an increase in renin-angiotensin-aldosterone system medi-
ators levels, and an alteration in lipidic profile and tissue
inflammation. The latter group showed a better response to
the mineralocorticoid receptor antagonists, demonstrating
that the response to therapy in the broad spectrum of HF-
pEF varies according to the subgroup considered. More-
over, Kyodo et al. [21] found that male patients older
than 70 years with atherosclerotic vascular disease kid-
ney and heart organ damage had a worse prognosis com-
pared to other HFpEF patients. Beyond the clinical, eti-
ological, and imaging parameters, a new idea of HFpEF
classification has integrated several circulating biomarkers,
markers of metabolic dysfunction, and microRNAs, which
may be useful for diagnosis, prognosis, and cutting-edge
personalized therapy [22]. The main circulating biomark-
ers identified have been related to myocardial injury (i.e.,
NPs, cardiac troponins), extracellular fibrosis (i.e., ST2,
galectin-3, metalloproteinases), inflammationmarkers (i.e.,
interleukin-6 (IL-6), pentraxin, tumor necrosis factor-alfa
(TNF-alfa)), and markers of endothelial dysfunction (i.e.,
endothelin-1, vascular cell adhesion molecule (VCAM)).
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Table 1. Summary evolution of the diagnostic framework of HFpEF.
HFpEF diagnosis Evolution summary Reference

Biomarkers integration The integration of circulating biomarkers, markers of metabolic dysfunction, and mi-
croRNAs has been incorporated into HFpEF classification. Identified biomarkers in-
clude those related to myocardial injury, extracellular fibrosis, inflammation, and en-
dothelial dysfunction, providing valuable information for diagnosis, prognosis, and per-
sonalized therapy.

[16]

Advancements in imaging
techniques

Echocardiography assesses diastolic function, while CMR-derived indices, including
GLS and ECV, discriminate between different HFpEF phenotypes. LGE on CMR aids
in risk stratification.

[17,26–29]

Scoring systems and chal-
lenges

H2FPEF score complements traditional diagnostic tools. Future research should focus
on prospective validation and integrating these scores into routine clinical practice.

[30–32]

Diagnostic algorithm devel-
opment

Development of stepwise diagnostic algorithms such as HFA-PEFF, incorporating
pre-assessment, echocardiography, functional testing, and final etiology phases. The
H2FPEF score provides a practical tool for initial risk stratification.

[30–32]

HFpEF, heart failure with preserved ejection fraction; CMR, cardiovascular magnetic resonance; LGE, late gadolinium enhancement;
GLS, global longitudinal strain; ECV, extracellular volume; H2FPEF, heart 2 preserved ejection fraction; HFA-PEFF, Heart Failure
Association-preserved ejection fraction.

From a metabolomic point of view, impairment of several
pathways was identified. In particular, the role of lipids, en-
ergy, inflammation, endothelial impairment, and increased
collagen synthesis has been shown [22].

2.2 Innovations in HFpEF Diagnosis and Classification

Diagnosing HFpEF is based on integrating clinical,
imaging, and laboratory parameters [11]. Echocardiogra-
phy is key in assessing HFpEF beyond estimating the LV
diameters, volumes, and LVEF. Echocardiography allows
the comprehensive evaluation of left ventricular diastolic
function, a hallmark feature of HFpEF. Parameters such as
early diastolic mitral inflow velocity (E), late diastolic mi-
tral inflow velocity (A), and the E/A ratio provide informa-
tion about the diastolic filling pattern. In addition, tissue
Doppler imaging enables the assessment of myocardial ve-
locities during diastole, offering insights into LV relaxation
[23]. The spironolactone improved diastolic function (E/e’)
ratio, which relates mitral inflow velocity to early diastolic
tissue velocity, is a valuable parameter indicating elevated
left ventricular filling pressures when the ratio exceeds 14.
As the diastolic dysfunction progresses, there is a decrease
in LV compliance during the atrial contraction phase, which
is associated with impaired LV relaxation [24]. Moreover,
it has been shown that reduced LV compliance is one of the
strongest predictors of less favorable outcomes [25]. The
diminished LV compliance leads to an increase in mean
LA pressure and dimensions. Echocardiography is the gold
standard in the evaluation of the LA volume, and it ought to
be assessed after the systolic phase of the LV. Commonly,
maximal LA volume is used with high prognostic power
[24]; however, minimal LA volume has emerged as a vi-
able alternative in identifying patients who are more at risk
of CV events [26,27]. Beyond the traditional evaluation
of the LA volume, the resting LA strain has earned grow-

ing importance in the diastolic and HFpEF analysis [28].
Biomarkers have gained prominence in HFpEF diagnosis.
NPs are cardiac hormones with cardioprotective properties,
secreted by cardiomyocytes in response to pressure or vol-
ume overload and neuroendocrine–immune system stimu-
lation. They have been extensively studied as diagnostic
and prognostic factors for the disease, and the thresholds
have been defined by the last European Society of Cardiol-
ogy (ESC) guidelines to exclude those unlike HF [11,29].
Integrating N-terminal pro-B-type natriuretic peptide (NT-
proBNP) into the diagnostic algorithm, along with clinical
evaluation and imaging studies, holds promise for improv-
ing the precision of HFpEF diagnoses and patient care op-
timization. A recent meta-analysis of 51 studies revealed
that NPs demonstrate reliable diagnostic accuracy for iden-
tifying HFpEF in non-acute scenarios [30]. However, it is
essential to underline different situations that interfere with
NP levels, notably with NT-proBNP: age, gender, weight,
genetic polymorphisms, renal insufficiency, and arrhyth-
mia (AF in particular) [31].

The underlying myocardial changes in HFpEF still
need to be defined. Myocardial histopathological fea-
tures have been characterized by invasive methods such
as endomyocardial biopsy, but cardiac magnetic resonance
(CMR) or other imaging techniques can identify themmore
easily and non-invasively [32]. Over the years, several
studies have investigated CMR-derived diastolic functional
indices, including transmitral and pulmonary venous ve-
locities, LV and LA strain using myocardial tagging, and,
more recently, feature tracking [33]. Additionally, CMR
provides early markers for detecting myocardial disease us-
ing tissue characterization imaging, which may improve
the diagnosis and treatment. Myocardial fibrosis, hypertro-
phy of cardiomyocytes, coronary microvascular dysfunc-
tion (CMD), and inflammation have been recognized as key
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pathological processes impacting the myocardium in HF-
pEF [32]. Among CMR parameters, various studies have
shown that global longitudinal strain (GLS) and extracel-
lular volume (ECV) can completely discriminate the dif-
ferent phenotypes of HFpEF, with ECV appearing to be
the strongest imaging marker that can distinguish hyperten-
sion from HFpEF independently [34]. The importance of
CMR in HFpEF also lies in its ability to predict patients’
prognosis and outcome. Quantification of myocardial fo-
cal fibrosis by late gadolinium enhancement (LGE) may be
useful for risk stratification in HFpEF patients, as a larger
LGE was significantly associated with a high rate of fu-
ture CV death and hospitalization for HF [35] (Table 1, Ref.
[16,17,26–32]).

Thus, the diagnostic approach can be complex, re-
quiring a global assessment beyond the single echocardio-
graphic and serum parameters. A stepwise algorithm is
recommended for the diagnosis of HFpEF and its severity.
Several scores have been developed, incorporating com-
mon parameters in this pathology [36]. The consensus rec-
ommendation of the Heart Failure Association (HFA) of the
ESC has developed theHeart Failure Association-preserved
ejection fraction (HFA-PEFF) diagnostic algorithm, which
consists of four different phases: Pre-assessment (P),
echocardiography (E), functional testing (F1), and final eti-
ology (F2). Pre-assessment is typically performed in the
ambulatory setting and includes the clinical evaluation of
HF symptoms and signs, typical clinical morbidities, and
diagnostic laboratory tests aiming to identify the risk of
HFpEF (low, intermediate, or high) based on the patient’s
risk factors. Echocardiography, as mentioned, provides
strong evidence of diastolic dysfunction and high LV fill-
ing pressure, which the NT-proBNP measurement must ac-
company. When ambiguous results are reached in the first
steps, an additional stress test or an invasive hemodynamic
study is needed to unmask the most challenging presenta-
tions [37]. Furthermore, the heart 2 preserved ejection frac-
tion (H2FPEF) score represents a clinical tool that incorpo-
rates five easily assessable parameters: Hypertension, AF,
age ≥60 years, obesity, and E/e’ ratio >9. The simplic-
ity of this score makes it practical for initial risk stratifi-
cation in patients suspected of HFpEF, enabling clinicians
to identify individuals who may benefit from further di-
agnostic evaluation [38]. These scores complement tradi-
tional diagnostic tools, offering an additional layer of as-
sessment that is particularly valuable in cases with unclear
clinical displays. While scoring systems provide valuable
contributions, challenges include potential variations in pa-
tient populations and the need for continuous refinement.
Future research should focus on prospective validation of
these scores and their integration into routine clinical prac-
tice. Additionally, ongoing efforts to identify and incor-
porate novel biomarkers and advanced imaging modalities
may further enhance the accuracy of diagnostic scoring sys-
tems.

The field of HFpEF classification and diagnosis con-
tinues to evolve, with ongoing research exploring genetic
and molecular factors and the potential role of artificial in-
telligence in refining diagnostic accuracy [21]. Multimodal
approaches integrating clinical, imaging, and biomarker
data hold promise for a comprehensive understanding of
HFpEF, paving the way for personalized and targeted ther-
apeutic strategies.

3. Different HFpEF Phenotypes
Many questions are currently being raised regarding

the influence of common cardiovascular risk factors in the
general population that can induce HFpEF, the role that co-
morbidities play in the development of this syndrome, and
the precise correlation between this syndrome and under-
lying cardiac dysfunction. These questions result from the
inconsistent findings of clinical trials and the generation of
different hypotheses. More recently, some epidemiologi-
cal studies have proposed that HFpEF represents a termi-
nal phase of various diseases with diverse clinical courses,
outcomes, and phenotypes. Distinct patterns and HFpEF
subtypes have been revealed by certain cluster analyses of
big randomized clinical trials (RCTs). For example, in the
TOPCAT trial, latent class analysis identified three primary
categories based on left ventricular geometry, clinical pro-
file, risk factor burden, and vascular characteristics [20].
The authors identified three main phenogroups: Group 1
with low NP levels, normal LV geometry, low arterial stiff-
ness, and cardiac events; Group 2was characterized by high
NP levels, increased vascular stiffness associated with LV
concentric hypertrophy, LA dilatation and an elevated in-
cidence of cardiovascular events; Group 3 is the typical
metabolic pattern with an elevated level of rennin, an ab-
normal glycemic and lipid profile, an increased inflamma-
tory pattern and a better response to spironolactone treat-
ment [20,21].

Five distinct groups were chosen by another analy-
sis based on shared laboratory characteristics: Age, gen-
der, and related disorders, which came from the SwedHF
registry. Similarly to the previous analysis, Cluster 1 in-
cluded younger patients with low comorbidities andNP val-
ues. Cluster 2 encompasses patients with a high prevalence
of AF and diabetes associated with impaired renal func-
tion; Cluster 3 demonstrated a higher incidence of AF, older
age, the prevalence of females, and those associated with a
high NP level; Cluster 4 could be identified by the elevated
prevalence of hypertension and diabetes with high body
mass index (BMI); Cluster 5 identified older patients with
cardio–renal disorders and more advanced New York Heart
Association (NYHA) classes. The current classifications
show a poorer outcome among groups with cardio–renal
and hypertension–diabetic patterns [39]. Similarly, an anal-
ysis of the Alberta cohort recognized four phenotypes rang-
ing from healthy subjects at risk of HFpEF without signs of
HF up to congested, older patients with elevated comorbid-
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Fig. 1. Different HFpEF phenotypes and clinical scenarios may respond differently to treatment. HFpEF, heart failure with pre-
served ejection fraction.

ity burdens [40]. The more recent Prospective Comparison
of angiotensin receptor–neprilysin inhibitor (ARNI) with
angiotensin receptor blocker (ARB) Global Outcomes in
HFpEF (PARAGON-HF) included older individuals with
a mean age of 72 years, a mean EF of 57%, a signifi-
cant prevalence of diabetes (43%), and chronic kidney dis-
ease (47%), reflecting the real HFpEF patients [41]. Look-
ing at more detailed morphological investigations, these
patients had similar LA sizes but lower evidence of in-
creased LV mass values and tricuspid regurgitation veloc-
ity compared to previous trials. Conversely, the E/e’ ratio
in the PARAGON trial was more noticeable, emphasizing
the variability in the cardiac phenotype associated with this
disease [42]. The comparison of this research highlights
the differences in patient characteristics, especially the ob-
servation that only half of the people enrolled in the most
well-known trials met the HFpEF diagnostic criteria. Inter-
estingly, 50% of patients exhibited increased LV mass, yet
while advanced diastolic dysfunction was common, treat-
ment with sacubitril/valsartan was the most beneficial for
those with an EF below normal [43] (Fig. 1).

Current discrepancies demonstrated that different
mechanisms may primarily be responsible for disease on-
set and progression depending on different baseline con-
ditions, burden of risk factors, and cardiovascular adapta-
tion to the underlying triggers [44]. A certain amount of
overlap and negligence between phenomapping analyses
may reflect different HFpEF phases and selection criteria.

Comprehensive morphological analysis, combined with en-
vironmental lifestyle and CV risk factors, may result in a
more homogeneous classification and improved risk strati-
fication of HFpEF [45,46].

Screening and treating underlying causes and comor-
bidities, both cardiovascular and non-cardiovascular, are
advised for HFpEF patients.

When AF causes HF, the clinical course tends to be
more favorable compared to other causes of HF (known as
tachycardiomyopathy) [47]. Nevertheless, the presence of
AF may attenuate the prognostic benefits associated with
beta-blockers and impede the efficacy of ivabradine [48].
Certain HF treatments, such as angiotensin-converting en-
zyme inhibitors (ACE-I), may reduce the risk of developing
AF.

To manage HFpEF, beta-blockers, long-acting ni-
trates, calcium channel blockers (CCBs), ivabradine, ra-
nolazine, trimetazidine, nicorandil, and their associations
should be contemplated for angina relief, notwithstanding
the absence of demonstrable benefits on HF progression or
coronary endpoints [49–53].

Hypertension has emerged as a key driver of HFpEF,
posing a significant treatment challenge with uncertain op-
timal approaches.

ARBs, ACE-I, and CCBs cause more effective LVH
regression than beta-blockers or diuretics. However, cau-
tion is warranted to prevent hypotension in HFpEF patients
with LVH and limited preload reserves.
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Further, obesity strongly correlates with HFpEF, re-
vealing distinct pathophysiological pathways in obese pa-
tients [8]. Weight reduction and increased physical activity
may enhance symptom management and exercise capacity,
especially in suitable candidates [54].

Chronic kidney disease (CKD) and declining renal
function are more prevalent in HFpEF patients compared to
heart failure with mildly reduced ejection fraction (HFm-
rEF) and HFrEF; however, their impact on outcomes ap-
pears less severe in HFpEF relative to the other classifica-
tions [55].

Management of HF in chronic obstructive pulmonary
disease (COPD) patients generally proceeds without major
concerns. While beta-blockers may exacerbate pulmonary
function in select cases, they are not contraindicated in
COPD or asthma [56,57].

4. ACE-I, ARBs, Beta-Blockers and Diuretics
in HFpEF

Before the EMPagliflozin outcomE tRial in patients
with chrOnic heaRt failure (EMPEROR-Preserved) and
Dapagliflozin Evaluation to Improve the LIVEs of Patients
with Preserved Ejection Fraction Heart Failure (DELIVER)
studies, American and European guidelines lacked recom-
mendations for the use of disease-modifying HFrEF thera-
pies as clinical trials with ACE-I, ARB, mineralocorticoid
receptor antagonists (MRA), while ARNIs failed to achieve
their primary endpoints in HFpEF patients.

Notable trials include PEP-CHF (perindopril) [58],
CHARM-Preserved (candesartan) [59], I-PRESERVE
(irbesartan) [60], TOPCAT (spironolactone) [61], DIG-
Preserved (digoxin) [62], and PARAGON-HF (sacu-
bitril/valsartan) [63]. Candesartan and spironolactone
showed reductions in hospitalizations for heart failure,
with a trend toward reductions observed while using sacu-
bitril/valsartan. However, since these trials were neutral
for their primary endpoints, these findings are considered
hypothesis-generating only.

In the SENIORS trial, although nebivolol significantly
decreased the combined primary endpoints of all-cause
mortality and CV hospital admission, it only included 15%
of participants with an LVEF greater than 50% [64].

Despite no treatment showing conclusive evidence
of reducing mortality and morbidity in HFpEF patients,
most of them have underlying hypertension and/or coronary
artery disease (CAD), and many have already been treated
with ACE-I/ARB, beta-blockers, or MRAs.

In congested patients with HFpEF, diuretics are rec-
ommended to mitigate symptomatic distress and clinical
manifestations. Loop diuretics are preferred, while thiazide
diuretics may also prove efficacious in managing hyperten-
sion.

5. ARNIs Action Mechanisms in HFpEF
The action mechanisms of ARNIs in HFpEF involve

a multifaceted approach targeting various pathological pro-
cesses, including neurohormonal activation, inflammation,
and fibrosis. ARNIs represent a relatively novel class of
drugs that combine the actions of ARBs and neprilysin
inhibitors. The primary components of ARNIs are sacu-
bitril and valsartan, combined in a unique crystalline salt
complex with high stability and good pharmacodynamics.
Sacubitril inhibits neprilysin, an enzyme responsible for de-
grading NPs, which has beneficial effects on blood pres-
sure regulation and sodium balance. Conversely, valsartan
is an ARB that blocks the effects of angiotensin II, a vaso-
constrictor and pro-fibrotic peptide. Their combination is
crucial because increasing the concentration of circulating
neprilysin and sacubitril causes a reflex renin-angiotensin-
aldosterone (RAAS) activation that limits its benefit, while
valsartan inhibits this reflex [65].

The potential beneficial mechanisms of ARNIs in HF-
pEF are multifaceted:

• NP enhancement: By inhibiting neprilysin, ARNIs
increase the levels of NPs, such as atrial natriuretic peptide
(ANP) and B-type natriuretic peptide (BNP). These pep-
tides promote vasodilation, natriuresis, and diuresis, which
help reduce fluid overload and improve renal function.

• Angiotensin II blockade: Valsartan blocks the effects
of angiotensin II, contributing to vasoconstriction, sodium
retention, and myocardial remodeling.

• Improvement in cardiac remodeling: In HF, car-
diac remodeling is often caused by microvascular inflam-
mation and is often mediated by a reduction of intracel-
lular cyclic guanosine monophosphate (cGMP). Increasing
cGMP neprilysin counteracts this action, reducing left ven-
tricular remodeling, myocardial hypertrophy, and fibrosis,
thus reducing cardiomyocyte stiffness and ultimately im-
proving cardiac function and structure.

• Beneficial metabolic effects: ARNIs act in both lipid
and carbohydrate metabolism, increasing lipolysis and lipid
oxidation, insulin secretion, and insulin sensitivity through
many pathways. This is crucial because metabolic dysreg-
ulation is an important risk factor for HFpEF, especially af-
fecting cardiac diastolic function [66] (Fig. 2).

6. Clinical Trials on ARNIs in HFpEF
HFpEF management is still a topic of debate because

of the lack of specific therapies, even if many drugs de-
signed for HFrEF have also been investigated for HFpEF.
According to both the 2021 ESC guidelines and the 2022
American College of Cardiology (ACC)/American Heart
Association (AHA) guidelines on HF, ARNIs may be con-
sidered in HFpEF (Class IIB) [11,67]. Unfortunately, the
class of recommendation is still low because, to date, clin-
ical trials have failed to show the benefit of these drugs in
hard endpoints such as cardiovascular deaths or hospitaliza-
tions.
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Fig. 2. ARNIs have potential beneficial molecular effects in HFpEF acting through different molecular mechanisms. ARNI,
angiotensin receptor–neprilysin inhibitor; HFpEF, heart failure with preserved ejection fraction.

In 2012, the Prospective Comparison of ARNI with
ARB on the Management of Heart Failure with Preserved
Ejection Fraction (PARAMOUNT) was the first trial that
clearly demonstrated the potential role of ARNIs in HFpEF.
PARAMOUNT is a phase 2 randomized double-blind trial
comparing sacubitril/valsartan to valsartan alone in 301 pa-
tients with HFpEF (EF ≥45%) for a 36-week follow-up. It
demonstrated a reduction in NT-proBNP levels in the sacu-
bitril/valsartan group after 12 weeks, with an improvement
in NYHA class and a reverse LA remodeling at 36 weeks
[68]. Despite these results, subsequent trials have been con-
troversial. In 2019, three important trials were published:
the PARAGON-HF, the Comparison of Sacubitril/Valsartan
Versus Enalapril on Effect on NT-proBNP in Patients Stabi-
lized from anAcute Heart Failure Episode (PIONEER-HF),
and the Prospective Comparison of ARNI vs. Comorbidity-
Associated Conventional Therapy on Quality of Life and
Exercise Capacity (PARALLAX) trials [63,69,70].

Using the same study groups as the PARAMOUNT
trial but with 4822 patients, who were observed for a me-
dian follow-up of 35 months, the PARAGON-HF trial did
not show a benefit in deaths or hospitalizations among
sacubitril/valsartan patients, despite an improvement in the
NYHA class and the quality of life, measured using the
Kansas City CardiomyopathyQuestionnaire (KCCQ). Nev-
ertheless, a subgroup analysis suggested potential ARNI
survival benefits in women and patients with lower EF (45–
57%). Furthermore, the benefit of ARNIs was larger in pa-
tients recently hospitalized for HF [63].

The PARALLAX trial with 2572 patients, EF >40%,
and a median follow-up of 24 weeks showed a reduction
in NT-proBNP in patients treated with sacubitril/valsartan
compared to patients treated with an ACE-I or ARB. How-
ever, there was no significant improvement in the NYHA
class, KCCQ, or the 6-minute walk distance [69]. Com-
pared to the PARAMOUNT trial, these findings suggest

that NT-proBNP reduction is probably an early effect of
ARNI treatment, while other benefits are shown later. Fur-
thermore, the ARNI effects on NT-proBNP are not limited
to a chronic setting but are also important in acute HF,
as shown by the PIONEER-HF trial in HFrEF [70] and
by the Prospective comparison of ARNI with ARB Given
following the stabiLization In DEcompensated HFpEF
(PARAGLIDE) trial. However, also in the PARAGLIDE
trial, sacubitril/valsartan did not reduce mortality, even if
the hierarchical outcome showed a positive but not signifi-
cant trend (unmatched win ratio: 1.19; 95% CI: 0.93–1.52;
p = 0.16) [71] (Table 2, Ref. [63,68,69,71]).

In conclusion, the role of ARNIs in HFpEF is still de-
bated; however, it seems to lower HF hospitalizations in
HFpEF patients [72]. Furthermore, a recent pooled anal-
ysis of the PARAGON and PARAGLIDE trials showed a
significant reduction in deaths or hospitalizations in pa-
tients treated with sacubitril/valsartan compared to valsar-
tan alone, with a larger benefit in patients with LVEF≤60%
[73].

Fig. 3. MRA potential beneficial mechanisms in HFpEF.
MRA, mineralocorticoid antagonists; HFpEF, heart failure with
preserved ejection fraction.
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Table 2. Main randomized clinical trials on ARNIs in patients with HFpEF with improved soft endpoints but no clear effect on CV deaths.
Study Year Drugs Patients EF Primary endpoint p-value Follow-up

PARAMOUNT 2012 Sacubitril/valsartan vs. valsartan 149 ≥45% Change from baseline in NT-proBNP level at week 12 [68] p = 0.01 36 weeks
PARAGON-HF 2019 Sacubitril/valsartan vs. valsartan 4822 ≥45% Composite of total hospitalizations for HF and death from CV causes [63] p = 0.06 35 months

PARALLAX 2021 Sacubitril/valsartan vs. enalapril, valsartan, or placebo 4632 >40%
Change from baseline in plasma NT-proBNP level at week 12. p < 0.001

24 weeks
Change from baseline in the 6-minute walk distance at week 24 [69] p = 0.42

PARAGLIDE 2023 Sacubitril/valsartan vs. valsartan 466 >40% Time averaged reduction in NT-proBNP after an acute HF episode [71] p = 0049 8 weeks
ARNI, angiotensin receptor–neprilysin inhibitor; CV, cardiovascular; EF, ejection fraction; HF, heart failure; PARAMOUNT, Prospective Comparison of ARNI with ARB onManagement of Heart Failure
with Preserved Ejection Fraction; PARAGON-HF, Prospective Comparison of ARNI with ARB Global Outcomes in HFpEF; PARALLAX, Prospective Comparison of ARNI vs. Comorbidity-Associated
Conventional Therapy on Quality of Life and Exercise Capacity; PARAGLIDE, prospective comparison of ARNI with ARB Given following stabiLization In DEcompensated HFpEF; HFpEF, heart
failure with preserved ejection fraction; NT-proBNP, N-terminal pro-B-type natriuretic peptide; ARB, angiotensin receptor blocker.

Table 3. Main randomized clinical trials on MRAs in patients with HFpEF with improved secondary endpoints but no clear effect on CV deaths.
Study Year Drugs Patients EF Primary endpoint p-value Follow-up

ALDO-HF 2013 Spironolactone vs. placebo 422 ≥50%
Change in diastolic function (E/e’). p < 0.001

12 months
Change in peak oxygen uptake on cardiopulmonary exercise testing [77] p = 0.81

TOPCAT 2014 Spironolactone vs. placebo 3445 ≥45% Composite of death from CV causes, aborted cardiac arrest, or hospitalization for HF [79] p = 0.014 3.3 years

STRUCTURE 2016 Spironolactone vs. placebo 150 >50%
Improvement in peak oxygen uptake. p <0.001

6 months
Improvement exertional E/e’ ratio [80] p <0.001

SPIRRIT-HF On going Spironolactone vs. no spironolactone 2000 ≥40% Incidence rate for total HF hospitalizations or CV death [82] 5 years
SPIRIT-HF On going Spironolactone vs. placebo 1300 ≥40% Cumulative number of primary composite events of CV death and total HF hospitalizations [83] 48 months
FINEARTS-HF On going Fineronone vs. placebo 6016 ≥40% Number of CV deaths and HF events [87] 42 months
CV, cardiovascular; EF, ejection fraction; HF, heart failure; MRAs, mineralocorticoids antagonists; HFpEF, heart failure with preserved ejection fraction; ALDO-HF, Aldosterone Receptor Blockade in
Diastolic Heart Failure; TOPCAT, Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist; STRUCTURE, Spironolactone in Myocardial Dysfunction with Reduced Exercise
Capacity; SPIRRIT-HF, Spironolactone Initiation Registry Randomized Interventional Trial in Heart Failure with Preserved Ejection Fraction; SPIRIT-HF, Spironolactone In The Treatment of Heart Failure;
FINEARTS-HF, Finerenone in Heart Failure Patients; E/e’, spironolactone improved diastolic function.
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7. MRAs Action Mechanisms in HFpEF
MRAs, such as spironolactone and eplerenone, antag-

onize mineralocorticoid receptors, reducing aldosterone ef-
fects that can harm HFpEF, promoting sodium and water
retention, and exacerbating cardiac fibrosis and inflamma-
tion. The role of MRAs in HFpEF should probably be dis-
cussed alongside HF pathophysiology. Indeed, MRAs are
probably more effective in patients with hypertension as an
etiology of HF [74]. Their potential beneficial mechanisms
in HFpEF include:

• Sodium and water balance: MRAs counteract
sodium and water retention caused by aldosterone, reduc-
ing edema and congestion.

• Reduction in myocardial fibrosis: Aldosterone is im-
plicated in cardiac fibrosis; thus, MRAs may have a role in
reducing myocardial remodeling.

• Anti-inflammatory effects: MRAs may have anti-
inflammatory properties, which could help ameliorate the
systemic inflammation often seen in HFpEF patients [75,
76] (Fig. 3).

8. Clinical Trials on MRAs in HFpEF
As for ARNIs, MRAs could also be used in HFpEF ac-

cording to the latest ESC guidelines and ACC/AHA guide-
lines on HF (Class IIB) [11,67]. However, their effects on
CV deaths and hospitalizations remain uncertain and under
investigation.

In 2013, the Aldosterone Receptor Blockade in Dias-
tolic Heart Failure (ALDO-HF) trial showed that E/e’ and
reduced left ventricular mass in the treatment group (n =
213) compared to the placebo (n = 209), even if it did not
benefit the maximal exercise capacity or the patient’s symp-
toms and quality of life [77]. In 2014, the Treatment of
Preserved Cardiac Function Heart Failure with an Aldos-
terone Antagonist trial showed a decrease in hospitaliza-
tions but not in mortality in patients with HFpEF [61,78],
even though a subsequent sub-analysis seems to illustrate
a survival benefit in the American cohort of the trial com-
pared to the Russian cohort; differences in drug compliance
have been hypothesized to clarify these results [79]. Fur-
thermore, in 2016, the Spironolactone in Myocardial Dys-
function with Reduced Exercise Capacity (STRUCTURE)
trial showed an improvement in exercise capacity using the
cardiopulmonary test in patients with HFpEF and exertional
dyspnea [80].

Currently, the only large study on MRAs with posi-
tive results on the survival rate is the Canrenone Effects
on Cardiovascular Mortality in Patients with Congestive
Heart Failure (COFFEE-IT) trial, a retrospective study that
showed the survival benefit of canrenone on older people
(68–83 years old) after 10 years of treatment [81]. Despite
this, canrenone remains poorly used among MRAs.

Results from two large trials investigating the im-
pact of spironolactone on cardiovascular deaths and hos-
pitalizations should be published in the near future from

the Spironolactone Initiation Registry Randomized In-
terventional Trial in Heart Failure with Preserved Ejec-
tion Fraction (SPIRRIT-HF) [82] and the Spironolactone
In The Treatment of Heart Failure (SPIRIT-HF) trials
[83]. Furthermore, compared to traditional MRAs, non-
steroidal MRAs are emerging as drugs with higher se-
lectivity for mineralocorticoid receptors and without sex–
steroid-related side effects [84]. Among them, finerenone
is the most investigated drug, and subgroup analyses of the
FIDELIO-DKD [85] and FIGARO-DKD on patients with
HF (symptomatic HFrEF was an exclusion criterion in both
trials) suggest a potential role of this drug in HFpEF [86].
Indeed, a reduction in the composite outcome of cardiovas-
cular death, non-fatal myocardial infarction, stroke, or hos-
pitalization for heart failure was observed in a mean follow-
up of 2.6 years. As a result, the Finerenone in Heart Fail-
ure Patients (FINEARTS-HF) trial is currently ongoing, in-
vestigating finerenone effects on morbidity in more than
6000 patients with HF and EF ≥40% [87] (Table 3, Ref.
[77,79,80,82,83,87]).

9. Sodium–Glucose Cotransporter-2
Inhibitor (SGLT2i) in HFpEF: Potential
Mechanism of Action and Results from Trials

Recently, the ESC guidelines recommended SGLT2i
therapy for treating HFpEF [11], despite the exact mech-
anisms yet being fully understood. However, several po-
tential mechanisms of action have been proposed based on
clinical and pre-clinical evidence [85]. SGLT2i plays the
potential role of anti-HFpEF through the direct or indirect
synergy of multiple targets and pathways [88].

SGLT2i inhibits the absorption of sodium and glucose
in the proximal renal tubule, leading to natriuresis, gluco-
suria, and elevated urine output. Thus, it has been associ-
ated with a reduction in blood pressure. Lowering blood
pressure can alleviate cardiac workload and improve over-
all cardiovascular function.

The vascular and metabolic effects of SGLT2i have
always been held responsible for cardiovascular benefits
[89]. In HFpEF studies, researchers propose potent reno-
protective effects of SGLT2i, with their impact on in-
traglomerular pressure prevailing over other mechanisms.
SGLT2i, by restoring afferent arteriole tone, synergizes
with renin-angiotensin system inhibitors, reducing intra-
glomerular pressure and preventing renal complications.
Notably, despite a decline in the estimated glomerular fil-
tration rate (eGFR), SGLT2 inhibition influences primary
endpoints [90].

In a post-hoc analysis of the EMPEROR-Preserved
Trial, empagliflozin was linked to a slight increase in the
risk of volume depletion for patients concurrently using di-
uretics [91]. However, it was also associated with a de-
creased probability of initiating or escalating diuretic doses
and an increased likelihood of reducing or permanently dis-
continuing diuretics [91]. Natriuresis derived from em-
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pagliflozin is not associatedwith neurohormonal activation,
potassium loss, or impaired renal function (favorable di-
uretic profile) [92].

SGLT2i provides metabolic advantages, promotes
weight loss, and enhances insulin sensitivity for improved
cardiovascular health. It also exhibits intriguing effects,
which include inducing a transcriptional paradigm, nutri-
ent deprivation, hypoxia, increasing ketosis, erythropoietin,
and autophagic flux [93]. Consequently, inflammasome ac-
tivation is reduced, mitigating cardiomyocyte dysfunction
and coronary microvascular injury. Moreover, alterations
in iron homeostasis contribute to enhanced cardiac energet-
ics and function. Additionally, SGLT2i reduces epicardial
adipose tissue andmodifies adipokine signaling, potentially
contributing to the observed reductions in inflammation and
oxidative stress associated with their use [93].

Dapagliflozin has a significant impact on energy
metabolism related to fatty acid intake and mitochondrial
dysfunction in HFpEF; it is achieved by elevating β-
hydroxybutyric acid (β-OHB) levels, activating citrate syn-
thase, reducing acetyl coenzymeA (acetyl-CoA) pools, reg-
ulating adenosine 5’-triphosphate production, and enhanc-
ing the expression of mitochondrial oxidative phosphory-
lation system complexes I–V. SGLT2i is beneficial in pre-
venting and treating cardiac remodeling and dysfunction in
HFpEF models by mitigating cardiometabolic dysregula-
tion [94].

Endothelial dysfunction is a pivotal mechanism in
HFpEF, diabetes mellitus (DM), and frailty. Treatment
with the SGLT2i empagliflozin altered certain microRNAs,
counteracting the changes observed in HFpEF patients.
This suggests a potential restoration of endothelial function
through empagliflozin treatment [95].

Chronic activation of the SGLT2i pathway may con-
tribute to maladaptive cardiac remodeling. Inhibiting
SGLT2 receptors could potentially mitigate adverse remod-
eling processes, improving cardiac structure and function
[96].

SGLT2i can affect the extracellular matrix, contribut-
ing to collagen turnover and mitigating fibrosis—a sig-
nificant feature in HFpEF. Notably, these inhibitors have
demonstrated a capacity to reduce myofilament stiffness
and remodel the extracellular matrix in the heart. This ac-
tion improves diastolic function, offering potential benefits
in the context of HFpEF [93].

Canagliflozin (CANA) treatment reduces myocardial
hypertrophy and fibrosis and improves left ventricular di-
astolic function and remodeling. These positive effects
are attributed to CANA’s ability to upregulate apelin, ac-
tivate angiotensin-converting enzyme 2 (ACE2), and in-
crease ACE2/Ang (1–7)/mast cell receptor (MASR) axis
levels [97]. Canagliflozin treatment was found to coun-
teract ferroptosis, a recently identified mechanism of iron-
dependent non-apoptotic cell death in HF. In a rat model
of HF induced by a high-salt diet, the study observed iron

overloading and lipid peroxidation, both of which had been
alleviated by administering canagliflozin [98]. SGLT2i
mitigates the risk of hospitalization for HF in individuals
with HFpEF. However, the specific hemodynamic mecha-
nisms responsible for these benefits are poorly understood.
In the CAMEO-DAPA trial, dapagliflozin treatment in HF-
pEF patients was associated with reduced resting and exer-
cise pulmonary capillary wedge pressure (PCWP) and pos-
itive effects on plasma volume and body weight [99].

Emerging evidence also indicates that these drugs
impact cardiomyocyte ionic homeostasis. Empagliflozin
was observed to diminish the activity of the cardiac
Na+/H+ exchanger, potentially enhancing cardiac func-
tion. Subsequently, it was discovered that dapagliflozin
and canagliflozin also inhibited Na+/H+ exchanger activ-
ity, leading to a decrease in cytosolic Na+. Moreover,
empagliflozin reduced the activity of Ca2+/calmodulin-
dependent kinase II (CaMKII) and CaMKII-dependent sar-
coplasmic reticulum Ca2+ leakage [100].

The effects of empagliflozin on HFpEF are primarily
mediated by inhibiting Na+/H+ exchanger 1 (NHE1), in-
fluencing cardiomyocyte oxidative stress modulation, car-
diomyocyte stiffness, myocardial extracellular matrix re-
modeling, heart concentric hypertrophy, and systemic in-
flammation [101]. Empagliflozin enhances the nitric ox-
ide (NO)—soluble guanylate cyclase (sGC)—cGMP cas-
cade and protein kinases GIα (PKGIα) activity by reduc-
ing PKGIα oxidation in HFpEF [102]. Additionally, da-
pagliflozin inhibits the inflammatory response and activates
the NO–cGMP–protein Kinases G (PKG) pathway in ani-
mal models [103].

Prior evidence showed that metabolites produced by
gut microbiota play a crucial role in heart failure devel-
opment. SGLT2i have been discovered to impact the gut
microbiota in rodent studies. The EMPAGUM trial seeks
to validate these human changes and explores the role of
gut microbiota and their metabolites in the HFpEF process
[104]. It is important to note that ongoing research further
elucidates the mechanisms of SGLT2i in HFpEF, and the
field continues to evolve (Fig. 4).

The EMPEROR-Preserved study study was carried
out on 5988 patients (median age: 72, 45% women, me-
dian LVEF: 54%); half of the patients had diabetes, and half
had an eGFR below 60 mL/min/1.73 m2. The primary end-
point (cardiovascular events and HF hospitalization) was
met (hazard ratio (HR) 0.73; 95% confidence interval (CI),
0.6–0.88; p <0.001), marking the first instance where drug
therapy achieved this goal in an HFpEF study.

The trial validated a 21% risk reduction in cardiovas-
cular death or HF hospitalization from using empagliflozin
on HF patients with an LVEF >40% [105]. Subgroup
analysis has shown the highest benefit in LVEF <50%
(HR 0.71; 95% CI, 0.57–0.88), a lower benefit in LVEF
50 to <60% (HR 0.80; 95% CI, 0.64–0.99), and no ap-
parent benefit in LVEF ≥60% (HR 0.87; 95% CI, 0.69–

10

https://www.imrpress.com


Fig. 4. Potential SGLT2i effects beyond the cardiovascular system on renal, liver, and intestinal districts. SGLT2i, sodium–glucose
cotransporter-2 inhibitors; HFpEF, heart failure with preserved ejection fraction; ACE2, angiotensin-converting enzyme 2; NO, nitric
oxide; cGMP, cyclic guanosine monophosphate; MASR, mast cell receptor; PKG, protein Kinases G.

1.10). Pooled analysis across EMPEROR-Reduced and
EMPEROR-Preserved trials have indicated consistent HF
outcomes with empagliflozin in patients with LVEF <25%
to <65%, with diminished effects in those with LVEF
≥65% [106]. A potential drawback in the EMPEROR-
Preserved trial was raised from the under-representation of
females and a predominantly low NYHA class within the
studied population. Additionally, there was no observed
benefit of empagliflozin on overall mortality, as indicated
by a hazard ratio of 1 (95% CI, 0.87–1.15).

In the Dapagliflozin Evaluation to Improve the LIVEs
of Patients with Preserved Ejection Fraction Heart Failure
trial of 6263 heart failure patients (mean age: 71, 44% fe-
male, mean LVEF: 54%), dapagliflozin led to an 18% risk
reduction in the primary combined endpoint (HR 0.82; 95%
CI, 0.73–0.92) and a non-significant 12% reduction in car-
diovascular mortality (HR 0.88; 95% CI, 0.74–1.05) [107]
over 2.3 years. Dapagliflozin lowered the risk of HF wors-
ening or cardiovascular death by 18%, regardless of LVEF.
Unlike prior trials, DELIVER included all LVEF ranges,
but it is unclear if the benefit in patients with LVEF >60%
specifically relates to a reduction in total CV events, HF
events, or both.

DELIVER permitted randomization during or soon af-
ter hospitalization for HF in clinically stable patients with-
out intravenous HF therapies. Starting dapagliflozin dur-
ing, or soon after, HF hospitalization in patients with mildly

reduced or preserved LVEF has appeared safe and effective;
moreover, dapagliflozin has reduced the risk of worsening
HF or cardiovascular death similarly in patients with and
without a history of recent HF hospitalization [108]. In pa-
tients recently hospitalized with HF, initiating dapagliflozin
has had trivial effects on blood pressure and has not wors-
ened renal status [109].

In a meta-analysis [110] performed to investigate
SGLT2i effects on HFpEF or HFmrEF, by pooling data
from all clinical RCTs available and thus increasing power
to testify, the authors have demonstrated that in patients
with LVEF >40%, SGLT2i significantly reduces the com-
posite risk of cardiovascular death and hospitalization for
heart failure, although the risk of cardiovascular death and
all-cause death did not reduce.

10. Rationale for the Use of Glucagon-Like
Peptide 1 Receptor Agonists

Type 2 diabetes mellitus (T2DM) and obesity could be
considered metabolic disorders characterized by high CV
risk [111].

Recently, a multinational, cross-sectional study of car-
diovascular disease prevalence and etiology in adults with
T2DM across 13 countries (CAPTURE study) showed that,
among 9823 T2DM patients, one-third have a CV disease
[112]. Moreover, the overall mean BMI was 29.0 kg/m2,
highlighting a pathophysiological link between T2DM and
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obesity [112]. Importantly, according to U.S. National
Health Interview Survey data, overall mortality in T2DM
patients has reduced from 11.3% during 1988–1994 to 5.9%
during 2010–2015. However, despite a paradigm shift in
T2DM treatment beyond the hypoglycemic effect, the over-
all prevalence of CV complication is 32.2%, consisting
mainly of CAD [113–115].

Obesity and T2DM are very common comorbidities in
HFpEF patients and are closely involved in their pathophys-
iology and prognosis [116,117]. T2DM-related metabolic
derangements such as hyperglycemia, lipotoxicity, and
hyperinsulinemia, associated with coronary microvascular
rarefaction and advanced glycation end-products deposi-
tion, favor the development of DM-related cardiomyopathy
(DMC)with HFpEF phenotype and concentric LV remodel-
ing with diastolic LV dysfunction. Importantly, this pheno-
type is more prevalent in obese patients with T2DM [118].
Recently, a new paradigm of HFpEF syndrome has been de-
veloped: Particularly, HFpEF comorbidities are believed to
induce a chronic systemic inflammatory state. In obese sub-
jects, macrophages infiltrate adipose tissue, releasing proin-
flammatory cytokines. This condition promotes coronary
microvascular endothelial inflammation, leading to a reduc-
tion in NO bioavailability. Reductions in both cGMP and
protein kinase G activity increase wall tension, myocardial
stiffness, and interstitial fibrosis [119]. These pathophys-
iological aspects suggest why innovative drugs targeting
endothelial dysfunction are crucial in treating T2DM and
obese patients and could be useful in diabetic and obese HF-
pEF phenotypes.

11. Mechanisms of Action of Glucagon-Like
Peptide 1 Receptor Agonists and Their
Potential Role in HFpEF

Incretin hormones—glucose-dependent in-
sulinotropic polypeptide (GIP) and glucagon-like peptide 1
(GLP1)—are released from gut endocrine cells and poten-
tiate meal-stimulated insulin secretion [120]. Biologically
active GLP1 refers to both GLP1 (7–36) amide and GLP1
(7–37), which act on a single identified GLP1 receptor
(GLP1R) on pancreatic islet β-cells, δ-cells, and α-cells,
respectively, to increase insulin and somatostatin secretion
and decrease glucagon secretion.

Synthetic GLP1R agonists (GLP1RAs) mediate the
same biological effects of endogenous GLP1, binding to the
GLP1R and stimulating glucose-dependent insulin release
from the pancreatic islets.

A single, canonical GLP1R, expressed at low levels
in the human atria and ventricles (including in cardiomy-
ocytes) and in blood vessels, mediates the major CV ac-
tions of GLP1RAs, reducing blood pressure and improving
microvascular and coronary flow, counteracting atheroscle-
rosis, and promoting plaque stability [121]. Specifically,
GLP1RAs might reduce myocardial apoptosis and inflam-
mation in the heart, inducing glucose metabolism [120].

In addition, GLP1 and GLP1RAs have multiple extra-
pancreatic effects that might indirectly reduce CV mor-
bidity, inducing weight loss and acting on postprandial
lipemia and inflammation [122]. Enterocytes and hepato-
cytes do not express GLP1R, although studies on mouse
liver showed that a subset of GLP1R+ endothelial and in-
trahepatic γδ T cells mediates a component of the anti-
inflammatory effect of GLP1RAs [123]. As proof of this,
patients with either T2DM, obesity, or non-alcoholic steato-
hepatitis (NASH) treated with semaglutide had shown a de-
crease in circulating triacylglycerol, low density lipopro-
tein cholesterol (LDLc), and non-high density lipoprotein
(HDL) cholesterol [124]. Similarly, several GLP1RAs
were shown to reduce postprandial plasma levels of tria-
cylglycerol with little effect on fasting plasma LDLc, even
in patients treated with statins [125]. The effect of a reduc-
tion in the fasting plasma levels of cholesterol and triacyl-
glycerol could indirectly reflect the extent of weight loss
achieved in these patients [119]. Weight loss is determined
by reducing hunger by stimulating theGLP1Rs expressed in
the central nervous system and slowing down gastric emp-
tying [120].

The activity of GLP-1 and GIP is limited by the dipep-
tidyl peptidase-4 (DPP-4) enzyme, which rapidly inacti-
vates incretin hormones. This provides the rationale for
developing DPP4 inhibitors, which limit the breakdown of
endogenous GLP-1 by the DPP-4 enzyme. Concentrations
of the active intact GLP-1 and GIP are therefore increased,
leading to an increased and prolonged action of these hor-
mones. The biological effects of GLP1RAs are summarized
in Fig. 5.

GLP1RAs and DPP4 inhibitors were developed for
T2DM treatment based on this evidence. However, these
effects may be particularly relevant in the context of
metabolic alterations and inflammation of HFpEF syn-
drome. As proof, GLP1RAs were shown to have protec-
tive effects in experimental HF models in several species,
including mice, rats, pigs, and dogs, further suggesting a
role in specific HFpEF phenotypes [119,126]. The same
molecule used in experimental animal models of T2DM
cardiomyopathy improved diastolic dysfunction, as re-
flected by a decreased E/e’ ratio [127].

Recently, a meta-analysis of eight RCTs about CV
events, mortality, and kidney outcomes with GLP1RAs
in 60,080 T2DM patients showed a significant reduc-
tion (–14%) in major cardiovascular events (MACEs),
all-cause mortality (–12%), and composite kidney out-
come (–21%) with no increase in the risk of severe hypo-
glycemia, retinopathy, or pancreatic adverse events. More-
over, GLP1RAs significantly reduced hospitalizations for
HF by 11% [128]. Effects on HF-related events were differ-
ent depending on the patients treated. For example, a post-
hoc analysis from Harmony Outcomes aiming to explore
the effects of the GLP1RA albiglutide on HF outcomes in
T2DM patients and cardiovascular disease, with and with-
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Fig. 5. Metabolic vascular and systemic effects of GLP1RAs potentially reduce the burden of cardiovascular risk and HFpEF
deterioration. GLP1RAs act directly on pancreatic beta and alpha cells, the gastrointestinal tract, and the central nervous system to
improve glucometabolic homeostasis and indirectly improve circulating lipid profiles by reducing hepatic steatosis. GLP1RAs, synthetic
glucagon-like peptide receptor agonists; HFpEF, heart failure with preserved ejection fraction; eGFR, estimated glomerular filtration
rate; GI, gastrointestinal.

out HF history, showed that albiglutide had no effect in re-
ducing HF-related events among those with a history of HF
[129]. Similarly, in a post-hoc analysis from the REWIND
trial, which included >5.4 years of follow-up, dulaglutide
was not associated with a reduction in HF events in patients
with T2DM regardless of baseline HF status [130].

Since the effects of GLP1RAs are mainly related to
anti-inflammatory and lipolytic effects, their administration
is associated with weight loss regardless of diabetic status
[131]. Obesity and, more specifically, increased epicar-
dial fat in HFpEF are associated with more symptoms and
worse prognoses [132–134]. This has led to weight loss as
a specific target for HFpEF treatment and the realted role
of GLP1RAs in this context. However, the effect of weight
loss in HF patients is still partially unsettled. Weight loss is
a poor prognostic factor in patients with HFrEF [135,136].
Conversely, evidence suggested that weight loss has bene-
ficial effects in obese patients with HFpEF: Kitzman et al.
[137] showed that among clinically stable obese older HF-
pEF patients, aerobic exercise training or caloric restriction
increased peak oxygen consumption, and drug effects were
additive [138]. Bariatric surgerywas also shown to improve
symptoms, as well as reduce HF rehospitalizations and re-
verse left ventricular remodeling in obese HFpEF patients
[137,139].

However, the same beneficial effects of weight loss
have not been replicated in non-obese patients with HF-

pEF: the FLAGSHIP cohort study aimed to examine the
association between weight loss and HFpEF prognosis in
573 hospitalized obese and non-obese patients [140]. In
particular, in non-obese patients, weight loss was associ-
ated with higher all-cause mortality and rehospitalization
rates than ones without weight loss. Moreover, 6 months
after hospital discharge, a high proportion of non-obese pa-
tients with weight loss showed functional limitations and
anorexia, suggesting an impairment of their physical func-
tion and poor nutritional status. Conversely, weight loss
was not associated with adverse events in obese patients
with HFpEF [141].

Based on these results, much evidence suggests that
GLP1RAs, promoting weight loss by reducing the gener-
ation of reactive oxygen species and systemic inflamma-
tion, may be highly effective in the obese phenotype of
HFpEF. Among GLP1RAs, semaglutide was shown to be
more effective in weight loss compared with other agents:
In the SUSTAIN trials, a slightly greater weight loss was
observed with subcutaneous once-weekly semaglutide ad-
ministration, compared with exenatide, dulaglutide, or li-
raglutide [142]. Similarly, a secondary analysis of PIO-
NEER 4 showed a greater weight loss with once-daily oral
semaglutide administration than with subcutaneous liraglu-
tide [142–145].
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Table 4. Characteristics of most recent clinical trials on semaglutide.
Trial name, Author, Year PIONEER 6, Husain et al. [149], 2019 STEP-HFpEF, Kosiborod et al. [146–148], 2023 SELECT, Lincoff et al. [150], 2023

Trial design Event-driven, randomized, double-blind, placebo-
controlled trial

Multinational (96 centers among 13 countries), double-
blind, randomized, placebo-controlled clinical trial

Randomized, international multicenter, double-blind,
placebo-controlled clinical trial

Study population Patients with T2DM and: Symptomatic patients with HFpEF (EF ≥45%), obesity
(BMI ≥30 kg/m2) and without T2DM

Patients with overweight or obesity (BMI ≥ 27 kg/m2),
established CVD (previous MI or stroke, or PAD) and
without T2DM

• ≥50 years old and CV disease or CKD, or
•≥60 years old and CV risk factors only

Intervention and control Oral semaglutide (target dose, 14mg) or placebo once-daily Subcutaneous semaglutide (2.4 mg) or placebo once
weekly

Subcutaneous semaglutide (2.4 mg) or placebo once
weekly

Primary endpoint • Time to the first occurrence of a MACE, a composite of
death from CV causes, nonfatal myocardial infarction, or
nonfatal stroke

• Change in KCCQ -CSS from baseline (week 0) to end of
treatment (week 52)

• Composite of death from cardiovascular causes, nonfa-
tal myocardial infarction, or nonfatal stroke, assessed in
a time-to-first-event analysis•Change in body weight (%) from baseline (week 0) to end

of treatment (week 52)

Main secondary endpoints Time to the first occurrence of the following:
• an expanded composite outcome consisting of the pri-
mary outcome plus unstable angina resulting in hospital-
ization or HF resulting in hospitalization
• a composite of death from any cause, nonfatal myocard-
ial infarction, or nonfatal stroke
• the individual components of these composite outcomes

• Change in 6-MWD (meters) from baseline (week 0) to
end of treatment (week 52)
• Hierarchical composite of time to all-cause death from
baseline (week 0) to end of study (week 57)
• Hierarchical composite of number of HF events requiring
hospitalization or urgent HF visit from baseline (week 0) to
end of study (week 57)
• Hierarchical composite of time to first HF event requiring
hospitalization or urgent HF visit from baseline (week 0) to
end of study (week 57)
• Change in CRP (%) from baseline (week -2) to end of
treatment (week 52)

Time-to-first-event analyses and tested in hierarchical
order:
• Death from cardiovascular causes;
• A composite HF end point (death from cardiovascular
causes or hospitalization or an urgent medical visit for
HF);
• Death from any cause.
Additional endpoints:
• Change in systolic blood pressure
• Change in body weight

Number of patients enrolled 3183; semaglutide (n = 1591) or placebo (n = 1592) 529; semaglutide (n = 263) or placebo (n = 266) 17,604; semaglutide (n = 8803) or placebo (n = 8801)

Median duration of follow up 64 weeks 52 weeks 160 weeks
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Table 4. Continued.
Trial name, Author, Year PIONEER 6, Husain et al. [149], 2019 STEP-HFpEF, Kosiborod et al. [146–148], 2023 SELECT, Lincoff et al. [150], 2023

Main results Primary endpoint (semaglutide vs. placebo):
•MACEs: 3.8% vs. 4.8% (HR, 0.79; 95% CI, 0.57 to 1.11
p < 0.001 for noninferiority)
Secondary endpoints (semaglutide vs. placebo):
• Death from CV causes: 0.9% vs. 1.9% (HR, 0.49; 95%
CI, 0.27 to 0.92)
• Nonfatal myocardial infarction: 2.3% vs. 1.9% (HR,
1.18; 95% CI, 0.73 to 1.90)
• Nonfatal stroke: 0.8% vs. 1.0% (HR, 0.74; 95% CI, 0.35
to 1.57)
• First events of HF resulting in hospitalization: 1.3% vs.
1.5% (HR, 0.86; 95% CI, 0.48 to 1.55)
• Death from any cause: 1.4% vs. 2.8% (HR, 0.51; 95%
CI, 0.31 to 0.84)

Co-primary endpoint (semaglutide vs. placebo):
• Change in KCCQ-CSS: 16.6 vs. 8.7 (p < 0.001)
• Percentage change in body weight: –13.3 vs. –2.6 (p <

0.001)
Secondary endpoints (semaglutide vs. placebo):
• Change in 6-MWD from baseline to week 52: 21.5 vs.
1.2 m (p < 0.001)
• Percentage reduction from baseline to week 52 in NT-
proBNP: –20.9 vs. –5.3 (p < 0.05)
• Hospitalization or urgent visit for HF: 1 vs. 12 events (p
< 0.05)
• Reduction in CRP levels at week 52: 43.5 vs. 7.3 (p <

0.001)
• Percentage reduction in NT-proBNP level at week 52:
–20.9 vs. –5.3
• Adverse events were similar

Primary endpoint (semaglutide vs. placebo):
• Composite of CV death, nonfatal MI, and nonfatal
stroke, for semaglutide vs. placebo: 6.5% vs. 8.0% (HR
0.80, 95% CI 0.72–0.90, p < 0.001)
Secondary endpoints (semaglutide vs. placebo):
• CV death: 2.5% vs. 3.0% (HR 0.85, 95% CI 0.71–1.01,
p = 0.07)
•HF composite end point: 3.4% vs. 4.1% (HR 0.82, 95%
CI 0.71–0.96)
• All-cause death: 4.3% vs. 5.2% (HR 0.81, 95% CI
0.71–0.93)
• Nonfatal MI: 2.7% vs. 3.7% (HR 0.72, 95% CI 0.61–
0.85)
• Hospitalization or urgent medical visit for HF: 1.1% vs.
1.4% (HR 0.79, 95% CI 0.60–1.03)
Additional endpoints:
• Change in systolic blood pressure: –3.8 vs. –0.5 mm
Hg
• Mean change in body weight at 104 weeks: –9.4% vs.
–0.9%

BMI, bodymass index; CI, confidence interval; CRP, C-reactive protein; CVD, cardiovascular disease; CKD, chronic kidney disease; HR, hazard ratio; KCCQ-CSS, Kansas City Cardiomyopathy Questionnaire-
Clinical Summary Score; MACE, major cardiovascular event; MI, myocardial; HFpEF, heart failure with preserved ejection fraction; T2DM, type 2 diabetes mellitus; CV, cardiovascular; HF, heart failure;
NT-proBNP, N-terminal pro-B-type natriuretic peptide; PAD, peripheral artery disease; EF, ejection fraction; 6-MWD, six minute walking test.
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The STEP HFpEF trial has recently shown a signifi-
cant improvement in symptoms, quality of life, and exercise
tolerance, assessed by the 6-minute walking test (6MWT),
along with weight loss, in 529 non-diabetic obese patients
with HFpEF randomized to subcutaneous semaglutide (2.4
mg weekly) or placebo [140]. This trial also showed a
significant reduction in C-reactive protein (CRP) in the
semaglutide arm compared with the placebo. Importantly, a
prespecified trial sub-analysis showed that semaglutide im-
proved symptoms, physical limitations, and exercise func-
tion and reduced inflammation and body weight across obe-
sity categories. Furthermore, the magnitude of benefit was
directly related to the extent of weight loss (adjusting for
age, sex, body weight at baseline, and other confounding
variables) [146]. Semaglutide also greatly improved HF-
related symptoms, physical limitations, exercise function,
and NT-proBNP regardless of baseline health status [147].
In the STEP-HFpEF, semaglutide was also shown to reduce
NPs. This evidence suggests a direct hemodynamic mech-
anism for semaglutide, regardless of caloric and metabolic
improvement [148].

The STEP HFpEF DM trial (NCT04916470), which
recently completed enrolment, will test the safety and ben-
efit of semaglutide in obesity-related HFpEF patients with
T2DM and explore the interaction with SGLT2i, as their
use was rare in STEP-HFpEF but not in STEP HFpEF DM
(32%) [140] (Table 4, Ref. [146–150]).

Given the results derived from RCTs, international
scientific societies currently recommend using GLP1RAs
as part of a comprehensive strategy to reduce the risk of
CV events in patients with T2DM [21], although they have
yet to be recommended to prevent HF [151,152].

More recently, results of a SELECT study demon-
strated the superiority of semaglutide when added to a typi-
cal standard of care, compared with placebo, in overweight
or obese patients without T2DM, in reducing the incidence
of death from cardiovascular causes, nonfatal myocardial
infarction, or nonfatal stroke at a mean follow-up of 39.8
months [153]. Semaglutide also showed a non-significant
reduction in the heart failure composite endpoint (HR 0.82
[0.71–0.96]).

New molecules are currently being developed and
tested. For example, tirzepatide is a dual agonist of
glucose-dependent insulinotropic polypeptide and GLP1R,
thereby constituting a novel treatment option for T2DM.
This agent exerts additional effects in addition to improve-
ment in glycemic control, which can benefit individuals
with T2DM, especially those at risk for or with established
CV disease or HF. However, current evidence is limited,
although it is suggestive of the cardiovascular safety of
tirzepatide [150]. SUMMIT is an ongoing RCT that will
assess the efficacy and safety of tirzepatide (LY3298176),
compared with the placebo, in participants with the obesity
phenotype of HFpEF [154–162].

12. Potential Effects of Vericiguat in HFpEF
Vericiguat is a drug that stimulates the cGMP pathway

through direct and indirect stimulation of soluble guanylate
cyclase. The current mechanism increases nitric oxide syn-
thase (eNOS) at the endothelial level, directly affecting car-
diac workload by reducing systemic resistance and improv-
ing vascular compliance [156,157]. The NO availability
enhancement leads to smooth muscle cell relaxation and re-
duces hypertrophy, inflammation, and fibrosis [158]. Two
recent trials demonstrated a potential drug effect in HFpEF:
The SOCRATES-PRESERVED study showed no signifi-
cant effect on mortality and hospitalization in patients with
worsening heart failure. However, using vericiguat was as-
sociated with better tolerance and quality of life after a 3-
month follow-up period [159]. More recently, the VITAL-
ITY study did not confirm preliminary findings, showing
no differences in quality of life and 6-minute walking dis-
tance score [160]. These contrasting data could depend on
the high frailty burden of enrolled patients and the short ob-
servational period [161].

13. Future Perspectives
Even though recent post-hoc analyses revealed that

all drugs endorsed for patients with reduced ejection frac-
tion have positive effects in subjects with HFpEF up to the
cutoff <60%, there are still doubts regarding the effective
benefits of all agents [162]. Presently, only SGLT2i have
demonstrated a comparable effect in HFrEF and HFpEF,
but the remaining data are based on putative analyses, sur-
rogate endpoints, and retrospective data. Since HFpEF en-
compasses several subtypes with different risk profiles, pa-
tients’ frailty, pathophysiological mechanisms, and hemo-
dynamic cardiovascular disorders, a tailored management
algorithm needs to be precise according to these features.
In particular, there are two settings in which therapeutic
advances demonstrated significant improvement: inflam-
matory and metabolic pathways can be regulated by treat-
ment, resulting in improved functional status, reduced HF
hospitalization, and lower CV mortality.

14. Conclusions
In the last 5 years, additional putative analyses and

post-hoc investigations in certain HFpEF phenotypes have
indicated that traditional treatment used for HFrEF can be
extended to individuals affected by HFpEF. The efficacy
of various treatments helped to understand the pathophysi-
ological mechanisms behind the development and mainte-
nance of the HFpEF condition, resulting in the identifica-
tion of new therapeutic targets. However, more research is
needed to understand how these agents influence the natu-
ral history of specific HFpEF phenotypes. This is extremely
important given the high frequency and poor prognosis of
patients with HFpEF.
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