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Abstract

Pulse wave velocity (PWV) has been established as a promising biomarker in cardiovascular diagnostics, providing deep insights into
vascular health and cardiovascular risk. Defined as the velocity at which the mechanical wave propagates along the arterial wall, PWV
represents a useful surrogate marker for arterial vessel stiffness. PWV has garnered clinical attention, particularly in monitoring patients
suffering from vascular diseases such as hypertension and diabetes mellitus. Its utility extends to preventive cardiology, aiding in iden-
tifying and stratifying cardiovascular risk. Despite the development of various measurement techniques, direct or indirect tonometry,
Doppler ultrasound, oscillometric analysis, and magnetic resonance imaging (MRI), methodological variability and lack of standardiza-
tion lead to inconsistencies in PWV assessment. In addition, PWV can be estimated through surrogate parameters, such as pulse arrival
or pulse transit times, although this heterogeneity limits standardization and, therefore, its clinical use. Furthermore, confounding factors,
such as variations in sympathetic tone, strongly influence PWV readings, thereby necessitating careful control during assessments. The
bidirectional relationship between heart rate variability (HRV) and PWV underscores the interplay between cardiac autonomic function
and vascular health, suggesting that alterations in one could directly influence the other. Future research should prioritize the standard-
ization and increase comparability of PWV measurement techniques and explore the complex physiological variables influencing PWV.
Integrating multiple physiological parameters such as PWV and HRV into algorithms based on artificial intelligence holds immense
promise for advancing personalized vascular health assessments and cardiovascular care.
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1. Introduction
Recently, the use of pulse wave velocity (PWV) has

transitioned from a predominantly research-focused tool to
a marker of clinical importance [1,2]. PWV has emerged
as a key biomarker in cardiovascular diagnostics, offering
critical insights into vascular health status [3]. Alterations
in PWV indicate changes in arterial function, serving as a
window into the cardiovascular system’s condition [3–8].

PWV is the velocity at which the mechanical wave,
generated by blood ejection from the heart, propagates
along the arterial wall [9]. Additionally, PWV is intrin-
sically linked to the elasticity of the arterial vessels [10–
12], whereby higher elasticity in younger, healthier vessels
causes the pulse wave to travel more slowly. In compari-
son, increased arterial stiffness leads to faster pulse wave
propagation, resulting in a higher PWV [13,14]. Since the
composition of arterial vessels is a crucial marker of car-
diovascular health, PWV is an effective tool for evaluating
cardiovascular risk and monitoring the progression of vas-
cular diseases [2,15,16].

This review aims to highlight the importance of PWV
as a cardiovascular marker, exploring its measurement tech-
niques and current applications. Additionally, we will ex-
plore the interplay between heart rate variability (HRV) and
PWV and its clinical importance. This review aims to pro-
vide a comprehensive overview that synthesizes existing
knowledge while identifying goals for future research.

2. Approaches to Measuring Pulse Wave
Velocity

Different measurement techniques have been devel-
oped to determine the PWV, which can be measured along
various paths within the human body. The carotid–femoral
PWV ismeasured between the carotid artery in the neck and
the femoral artery in the groin. This path reflects the arte-
rial stiffness of the central arteries, specifically the aorta,
which is a key indicator of cardiovascular risk [17,18]. In
the brachial–ankle PWV measurement, the velocity is as-
sessed between the brachial artery in the arm and the ankle
arteries, thereby encompassing both the central and periph-
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Table 1. Overview of different approaches to measure pulse wave velocity focusing on their principles, advantages, and possible
disadvantages.

Approach Principle Advantage Disadvantages Reference
Tonometry (direct) Time-delay between two pressure

sensors placed on the skin along an
arterial vessel

Accurate and direct detection of
PWV

Prone to artifacts; sensors must be
placed correctly; affected by any
movements

[22–27]

Tonometry (indirect) Time-delay between two light-
sensors (photoplethysmography)
on the skin along an arterial vessel

Accurate and indirect detection
of PWV; less prone to artifacts

Indirect measurement of volume
changes; sensors must be placed
correctly; affected by stray light

[28–30]

Doppler ultrasound Doppler effect Real-time observation; depic-
tion of specific arterial segment

Highly dependent on observer’s
skills, transducer placement, and
angle of wave entrance

[31–36]

Oscillometer analysis Fluctuations in pressure in the cuff
during blood pressuremeasurement

Easy to perform; quick mea-
surement

Potentially inaccurate, prone to
movement artifacts

[37–41]

MRI High-resolution images of the arte-
rial walls

Observer independent; high re-
producibility

Low accessibility; high costs [42–49]

PAT/PTT PWV estimation using surrogate
parameters

Easy to detect; possible use in
wearable devices for long-term
studies

Need for transfer functions, in-
direct and potentially inaccurate
PWV measurements

[50–53]

PWV, pulse wave velocity; MRI, magnetic resonance imaging; PAT, pulse arrival time; PTT, pulse transit time.

eral arterial paths [19]. Additionally, the cardio–ankle vas-
cular index presents a unique approach by adjusting PWV
for blood pressure variations, yielding a measure that re-
flects arterial stiffness from the heart to the ankle, indepen-
dent of momentary blood pressure changes [20,21].

The following section will explore these methods,
their principles, advantages, and limitations (Table 1, Ref.
[22–53]).

2.1 Tonometry (Direct)
This approach is recognized as the most accurate

method for determining PWV. This technique measures the
time required for the pulse wave to traverse from one arte-
rial site to another. Pressure sensors placed directly on the
skin above two arteries detect volume changes on the vessel
propagated through the tissue. The time delay between the
two sensors directly represents the PWV [22,27,54]. Com-
monly, the time difference between the carotid and femoral
arteries is observed [23].

The technique requires a high level of observer skill
and experience to be performed correctly. The accuracy of
tonometry is highly dependent on the proper placement of
the sensor and the quality of the arterial signal obtained.
Factors such as patient movement and external pressure on
the artery strongly affect the measurement [25,26]. Despite
these challenges, direct tonometry remains the gold stan-
dard in PWV measurement [24,27].

2.2 Tonometry (Indirect)
Indirect tonometry is a derivative measurement of

direct tonometry. Instead of pressure sensors placed on
the skin, indirect tonometry utilizes pulse-plethysmography
(light) sensors to detect volume changes along an artery.

This is performed assuming that any change in intra-arterial
pressure coincides with a simultaneous shift in arterial
cross-section and, therefore, its reflectance. These sensors
can be placed on any artery reachable by visual light, such
as the carotid or radial artery in the index finger [28,29].

The approach requires less skill from the observer but
relies on the correct and consistent placement of the sen-
sors. However, stray light and darker skin can impede mea-
surement quality or even prohibit measurement, limiting the
approach. Still, technical solutions can be found to allow
light-based PWVdetection in people of all skin shades [30].

2.3 Doppler Ultrasound
This technique leverages the Doppler effect, which

refers to the change in wavelength for moving wave sources
(e.g., pulse wave) relative to the observer [32]. This physi-
cal effect can be leveraged to detect flow changes within the
vessel in the ultrasound, indicating the arrival of the pulse
wave. Therefore, it is possible to detect the PWV between
two arterial points found in the ultrasound. One of the pri-
mary advantages of Doppler ultrasound is its capacity to de-
liver real-time, detailed insights into blood flow dynamics,
including flow velocity and turbulence. It also enables the
assessment of PWV across specific arterial segments, aid-
ing in the accurate localization of vascular disease and fa-
cilitating the development of personalized therapeutic plans
[31,33,34,36,55].

However, the accuracy of Doppler ultrasound mea-
surements can be affected by various factors, such as the
angle at which the ultrasound wave enters the body, the
operator’s expertise, and the patient’s body composition
[32,35,56,57].
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Fig. 1. PWV surrogate parameters. The left panel (a) shows the schematic set-up of a pulse arrival time measurement device. An
electrocardiogram (ECG) is placed on the patient’s thorax. A photoplethysmography (PPG) sensor is placed at the peripheral side (e.g.,
at the finger). Both devices are interconnected with a data recorder. The right panel (b) shows the relationship between the pre-ejection
period, pulse transit time, and pulse arrival time. The pulse arrival time is typically detected between the Q- or R-wave in an ECG and
the onset of the pulse wave at the peripheral site captured, e.g., using a photoplethysmography sensor. The pulse transit time is measured
between the sites (heart and finger) in the arterial system. The pre-ejection period is the delay between the Q- or R-wave and the start of
blood ejection into the aorta. Modified from Pilz et al., 2022 [50]. PEP, pre-ejection period; PTT, pulse transit time; PAT, pulse arrival
time; PWV, pulse wave velocity.

2.4 Oscillometric Method

This technique employs cuffs, similar to those used in
blood pressure measurements, which are placed around the
patient’s arms and/or legs [24,37–40]. These cuffs detect
small fluctuations in the cuff pressure caused by the blood’s
pulse waves when inflated to sub-diastolic pressures [41,
58]. Subsequently, PWV is calculated by analyzing the time
delay between these fluctuations at various positions.

A key aspect of the oscillometric method is its sim-
plicity and speed, making it ideal for clinical office exam-
inations. This expediency is of particular value in high-
throughput clinical environments where swift screening can
facilitate early detection of cardiovascular risks in a pre-
ventative setting. Furthermore, this method uses auto-
mated devices, which reduces operator-dependent variabil-
ity [37,39,40].

Despite its utility and patient-friendly nature, the os-
cillometric method is viewed as less accurate than more so-
phisticated techniques [24,59]. Factors including artifacts
from the measurement process, the patient’s body position,

and the correct sizing and placement of the cuff can all af-
fect the precision of the oscillometry-derived PWV read-
ings [24,59,60].

2.5 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) measures PWV
and detailed anatomical and functional data, allowing for a
comprehensive assessment of vascular health. MRI deter-
mines the PWV by capturing high-resolution images of the
arterial walls and blood flow [42,43].

The technique involves using phase-contrast MRI,
which visualizes and quantifies the blood flow speed
through the arteries. This enables the PWV to be calcu-
lated from the time shift between different waveforms over
a specific segment of the arterial system [42]. Thus, as-
sessing PWV directly within central vessels represents an
advantage over other methods [44–46]. Further, MRI can
provide accurate and reproducible measurements of arterial
distension and blood flow without the influence of external
factors such as operator skill or sensor placement [47–49].
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MRI systems are constrained by their high costs and
the need for specialized infrastructure and trained staff, lim-
iting their availability to well-equipped clinical centers and
research institutions. Additionally, MRI examinations are
more time-consuming than other PWV measurement tech-
niques [61–63].

2.6 Estimating Pulse Wave Velocity Using Surrogate
Parameters

In addition to direct measurement techniques, PWV
can be estimated using surrogate parameters such as pulse
arrival and transit times. These indirect approaches have
gained popularity due to their simplicity and the minimal
equipment required. Estimating the PWV provides an in-
ferred measure of arterial health, offering an alternative
when a direct PWVmeasurement is unavailable [50,51,64].

Pulse arrival time refers to the time it takes for the
pulse wave to travel from the heart to a peripheral site. Typ-
ically, it is detected between the Q- or R-wave in an elec-
trocardiogram (ECG) and the onset of the pulse wave cap-
tured at a peripheral site (e.g., finger) using a photoplethys-
mography sensor. This measurement reflects the combined
effects of cardiac ejection and arterial stiffness, making it
a useful proxy for vascular property changes, particularly
in longitudinal studies with established individual baselines
[50,52,53,65].

On the other hand, pulse transit time describes the time
it takes for the pulse wave to travel between two sites in the
arterial system. The pulse transit time excludes the intracar-
dial component, which is part of the pulse arrival time. Typ-
ically, it is calculated as the interval between blood ejection
from the heart and the arrival of the pulse wave at a distal
site [64,66].

The interval between the Q- or R-wave and blood ejec-
tion from the heart differentiates pulse arrival time from
pulse transit time and is known as the pre-ejection period
[67] (Fig. 1, Ref. [50]).

Both pulse arrival time and pulse transit time offer a
noninvasive estimation of PWV, with the pulse transit time
being more closely related to the true PWV, although it is
methodologically more difficult to obtain [67]. Pulse ar-
rival and transit times use transfer functions to estimate
the distance between the heart and the peripheral sensor
[52,53]. These approaches are particularly advantageous
for large-scale epidemiological studies and for use in wear-
able technology, where ease of use and patient comfort are
essential [50,65,68].

3. Clinical Applications of Pulse Wave
Velocity

PWVhas emerged as a valuable clinical medicine tool,
particularly in cardiovascular health. Its primary applica-
tion lies in its ability to provide a noninvasive assessment
of vessel status as it reflects arterial stiffness [3,11,14,69–
71].

Artery stiffening is a marker of vascular aging and
an independent predictor of cardiovascular events and all-
cause mortality. Thus, by quantifying arterial stiffness,
PWV provides clinicians with actionable data that can con-
tribute to the decision-making process regarding initiating
or intensifying treatment regimens, particularly in manag-
ing hypertension and other cardiovascular risk factors [71–
75].

Moreover, longitudinal studies have demonstrated that
changes in PWV over time can indicate the progression or
regression of hypertensive vascular disease, underscoring
its potential in patient follow-up and disease management
[76–80].

Further, PWV assessments might capture the early
vascular changes that precede atrial fibrillation, thus allow-
ing the early diagnosis of potential at-risk patients through
multiple measurements. However, further research is re-
quired to observe the relationship between arterial stiffness
and atrial fibrillation [72].

Additionally, PWV measurement is instrumental in
managing patients with diabetes mellitus, where acceler-
ated arterial stiffening is a common complication, aiding in
the early detection and treatment of cardiovascular issues
[81–86].

In patients with chronic kidney or end-stage renal dis-
ease, PWV assessment helps evaluate the increased cardio-
vascular risk associated with these conditions, guiding the
management and therapeutic approach [75,87]. The ability
of PWV to respond to therapeutic interventions also offers
a quantifiable endpoint in clinical trials assessing the effi-
cacy of novel cardiovascular drugs or interventions [6,10].
However, no large-scale, controlled intervention study has
yet shown the efficacy of PWV as a primary treatment tar-
get for cardiovascular risk reduction.

The application of PWV extends to cuff-less contin-
uous blood pressure monitoring, which serves as a surro-
gate parameter for arterial blood pressure. This innovative
approach leverages the correlation between arterial stiff-
ness and blood pressure levels. Hence, continuously mea-
suring PWV makes it possible to estimate blood pressure
changes noninvasively, cuff-less, and constantly (beat-to-
beat) [50,65,88,89]. However, it is important to note that
the European Society of Hypertension does not currently
recommend clinical decision-making solely based on blood
pressure values obtained from cuff-less blood pressuremea-
surements [90,91].

4. Challenges and Limitations of Pulse Wave
Velocity

A major challenge in measuring PWV is the method-
ological variability across different techniques, which can
produce disparaging results. This variability introduces po-
tential inconsistencies in data capture and interpretation,
complicating the comparison of PWV values between stud-
ies and clinical practice. The wide range of measurement
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approaches and procedures highlights the complexity of
achieving consistent and comparable PWVassessments. To
address this challenge, it is crucial to clearly report the mea-
surement method used in both scientific publications and
clinical report letters; develop conversion tables to facil-
itate value comparison across different measurement ap-
proaches; pursue consensus on standardizing approaches
while acknowledging that each method has its own set of
advantages and disadvantages [27,92–94]. While an ideal
method may not exist due to constraints such as cost and
reliability, adopting a flexible approach that tailors the use
of different techniques to specific needs—ranging from
screening large patient populations to addressing particular
questions in a smaller subset of patients and differentiating
between routine clinical care and research—may be more
practical.

Another limitation in PWV assessment arises from
the influence of various factors on its readings. Variables,
including current blood pressure, heart rate, and vascular
tone, can strongly affect PWV. Acute fluctuations in blood
pressure can cause immediate, although reversible, changes
in arterial stiffness, highlighting the need for meticulous
consideration of these factors during the assessment and in-
terpretation of PWV data [53,95–99]. Establishing consis-
tent measurement conditions may offer a viable approach
to mitigate the effects of these variables on PWV measure-
ments.

Variability in PWV measurements can also stem from
anatomical differences in arterial pathways and the method-
ologies used for distance calculations [100,101]. The
carotid–femoral segment, commonly assessed for PWV,
might not accurately represent the stiffness of peripheral ar-
teries, which holds clinical importance for specific groups
such as individuals with diabetic microangiopathy or pe-
ripheral arterial occlusive disease [101–103]. Moreover,
discrepancies in distance measurements between pulse
recording sites can introduce errors in PWV calculations,
thereby affecting their clinical applicability [27,104]. Ad-
vances in imaging technology and the standardized use of
body surface landmarks could enable more precise localiza-
tion and evaluation of arterial segments, potentially mini-
mizing variability due to anatomical differences [102,104–
106].

Patient-related factors, such as obesity, also pose chal-
lenges [107,108]. These conditions may impede accurate
sensor placement or signal acquisition, particularly inmeth-
ods such as tonometry, thereby affecting the reliability of
PWV measurements [27,109].

In summary, its measurement has various sources of
PWV variability and methodological complications. Be-
yond that, only very few devices are properly validated ac-
cording to the latest guidelines [110]. These reasons lead to
a limited reproducibility of PWV measurements and might
confound individual risk signals within the noise of uncon-
trolled variability [111]. This could be why no randomized,

large-scale intervention study, primarily aiming at the PWV
as a treatment target, has yet to show a reduction in cardio-
vascular risk or improved overall mortality.

5. Combination of Heart Rate Variability
and Pulse Wave Velocity

As both are vital cardiovascular health and autonomic
function indicators, the combination of HRV and PWV has
garnered interest in cardiovascular research [96,112,113].

HRV, which measures the variability in heartbeat in-
tervals, reflects the autonomic nervous system’s control
over cardiac rhythm [114–116]. It plays a central role in the
modulation and alteration of cardiac deformation and con-
tractility, as evidenced by echocardiographic techniques.
Furthermore, HRV is instrumental at the adaptive cardiac
chamber activation level in response to autonomic tone dys-
function and might even anticipate pro-arrhythmic atrial ef-
fects and a higher incidence of syncope recurrence in the
overall population, particularly in diabetic patients [117–
119]. These findings underscore the importance of HRV
in reflecting autonomic nervous control and its predictive
value regarding cardiac events and dysfunction in adults.

Research suggests that there might be a complex and
bidirectional interplay between HRV and PWV. Increased
arterial stiffness, as indicated by higher PWV, can lead
to changes in blood pressure dynamics. Subsequently, it
may influence cardiac autonomic control, thereby affect-
ing HRV. Lower HRV, indicative of an altered autonomic
function caused by conditions such as atherosclerosis in the
aorta, has been associated with higher PWV in various pop-
ulation studies [120–122].

The autonomic nervous system is central in regulat-
ing vascular tone and heart rate. As reflected by changes
in HRV, alterations in autonomic balance influence arte-
rial stiffness, either through direct effects on the vascular
smooth muscle cells or indirectly via heart rate and blood
pressure changes [113,123].

The relationship between HRV and PWV extends
beyond their roles as health markers, shedding light on
the interconnectedness of cardiac and vascular functions
and their collective representation of overall cardiovascu-
lar risk. However, it is important to acknowledge that the
HRV–PWV relationship might be influenced by numer-
ous confounders, including age, diabetes mellitus, blood
pressure, physical fitness, existing pathologies, and natu-
ral interpersonal variation [96,112,113,124]. Studies sug-
gest that the autonomic nervous system does influence
pressure-independent aortic stiffness in young, healthy sub-
jects [124]. Therefore, while the HRV–PWV association
offers valuable insights, its interpretation must be contex-
tualized within the unique health profiles and risk factors
of individual patients, which emphasizes the need for fur-
ther research into this relationship to offer a nuanced under-
standing of its clinical assessment [120,125,126].
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6. Future Directions in Pulse Wave Velocity
Research

A primary area of focus should be standardization and
increased comparability between different assessments of
PWVmeasurement techniques. Given the various methods
currently used, establishing uniform protocols and guide-
lines and using validated devices is critical for enhancing
the comparability of PWV data across diverse studies and
clinical scenarios [27,92,93,110].

Moreover, there is a pressing need for further research
to illuminate the physiological factors that influence PWV.
This encompasses examining the effects of demographic,
genetic, and lifestyle variables [97]. Conducting longitudi-
nal studies that track PWV changes over time, and their cor-
relation with cardiovascular events and outcomes in varied
populations will shed light on the predictive value of PWV
[127].

Clinical trials are also essential to assess the effective-
ness of interventions designed to mitigate arterial stiffness,
as quantified by PWV. These interventions might range
from pharmacological treatments and lifestyle alterations
to innovative therapeutic strategies. Thus, understanding
how these interventions impact PWV could facilitate the
creation of personalized treatment plans and enhance the
management of patients at increased cardiovascular risk.

However, integrating PWV assessment into routine
clinical practice warrants additional exploration. This in-
cludes identifying the most efficacious, user-friendly, and
pragmatically feasible methods for incorporating PWV
measurements into prevailing cardiovascular risk models
and clinical procedures, thereby maximizing the utility of
PWV in patient care.

Furthermore, technological advancements and ma-
chine learning hold promise for developing advanced tools
for PWV measurement and analysis. These innovations
could enable more precise, noninvasive, and user-friendly
methods for evaluating arterial stiffness, both in clinical
environments and at home. Integrating diverse parame-
ters such as HRV into sophisticated models powered by
artificial intelligence may offer deeper insights into car-
diovascular health and individual risk profiles, paving the
way for more nuanced and effective patient care strategies
[128,129].

7. Summary and Conclusions
PWV represents an important biomarker for arterial

stiffness, potentially enhancing cardiovascular diagnostics
and providing further insights into vascular health. De-
spite the availability of various measurement techniques,
the field faces challenges due to the need for more stan-
dardization and comparability, validation of devices, and
the inherent limitations of each method. This results in a
large variability and poor reproducibility of PWV assess-
ments. The emergence of new technologies and the appli-
cation of artificial intelligence are poised to create innova-

tive tools that utilize comprehensive parameters, including
HRV and PWV, for a holistic assessment of cardiovascu-
lar health. Specifically, pinpointing PWV in distinct arte-
rial segments could be particularly beneficial for individu-
als with conditions such as diabetes-induced vessel disease,
offering tailored diagnostic insights.

Acknowledging the predictive value of PWV in pre-
dicting cardiovascular events and mortality, this review em-
phasizes PWV’s marked potential for modern cardiovascu-
lar risk stratification and management. Leveraging PWV
could refine cardiovascular prevention and treatment strate-
gies, improving patient outcomes through targeted and so-
phisticated approaches. Further integration of reliable and
precise PWV determination in everyday clinical practice
holds promise for advancing the management of cardiovas-
cular diseases and enhancing patient care.
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