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Abstract

Cardiovascular disease (CVD), a leading cause of death and disability worldwide, and is associated with a wide range of risk factors, and
genetically associated conditions. While many CVDs are preventable and early detection alongside treatment can significantly mitigate
complication risks, current prediction models for CVDs need enhancements for better accuracy. Mendelian randomization (MR) offers
a novel approach for estimating the causal relationship between exposure and outcome by using genetic variation in quasi-experimental
data. This method minimizes the impact of confounding variables by leveraging the random allocation of genes during gamete formation,
thereby facilitating the integration of new predictors into risk prediction models to refine the accuracy of prediction. In this review, we
delve into the theory behind MR, as well as the strengths, applications, and limitations behind this emerging technology. A particular
focus will be placed on MR application to CVD, and integration into CVD prediction frameworks. We conclude by discussing the
inclusion of various populations and by offering insights into potential areas for future research and refinement.
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1. Introduction

Cardiovascular diseases (CVDs) are diseases involv-
ing the heart or blood vessels, including coronary heart dis-
ease, cerebrovascular disease, peripheral arterial disease,
congenital heart disease, and aortic disease. As a non-
communicable disease (NCD), CVD has been the leading
cause of death and disability globally since the late 20th
century [1], with a 2021 WHO report indicating they were
responsible for 32% of all global deaths in 2019 [2]. The
risk factors for CVD are diverse, ranging from lifestyle
choices (including high-salt and high-fat diets, physical in-
activity, smoking, and alcohol abuse) to medical conditions
like hypertension, diabetes, dyslipidemia, and advancing
age [3]. However, most CVDs can be prevented through a
healthy lifestyle, while the early detection and treatment can
significantly reduce the risk of severe outcomes [3]. With
a global rise in the elderly population, there is an urgent
need for comprehensive public health strategies and CVD-
specific interventions tomitigate their worldwide health im-
pact.

Mendelian randomization (MR) leverages genetic
variations to estimate causal relationships between expo-
sure and outcome with in quasi-experimental data, span-
ning observational studies such as cross-sectional, cohort,
and case-control studies [4]. This approach identifies ge-
netic variants, typically single nucleotide polymorphisms
(SNPs), associated with an exposure but not with other risk

factors or the outcome itself [5]. This isolates the rela-
tionship between the variant and the exposure, simplify-
ing the process of inferring causality while minimizing con-
founding biases and reverse causality issues [6]. In recent
years, MR has been widely used following genome-wide
association studies (GWAS) and categorized into single-
sample MR and two-sample MR depending on the number
of datasets utilized. For two–sample MR, the instrumental
variables (IV) exposure is estimated in the first dataset with
outcome being estimated in the second dataset, whereas
single-sample MR evaluates both relationships in a single
dataset [7,8]. Additionally, MR can be categorized as cis-
MR, targeting variants from a single gene region biolog-
ically linked to the exposure, or polygenic MR which use
genetic variants from multiple gene regions [8]. The choice
between cis-MR and polygenic MR depends on the nature
of the exposures [9]. Most often cis-MR is used when spe-
cific biomarkers including mRNA and proteins have been
identified, whereas polygenicMR is appliedwhen the expo-
sure consists of complex multifactorial traits such as blood
pressure and body mass index (BMI) [9]. In the last decade,
MR has evolved into a valuable and provenmethod to eluci-
date the causal relationship between biomarkers and various
diseases with CVD, while also identifying novel therapeu-
tic targets [10–12].

Efforts to prevent CVD require early identification of
individuals at higher risk, facilitating targeted interventions
spanning diet, lifestyle, and pharmacotherapy. Over the
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past decades, numerous prediction models have been devel-
oped to gauge CVD risk by integrating multiple risk factors
including the Framingham [13], SCORE, SCORE2 [13,14],
and QRISK [15] models. Key predictors in these models
often include factors such as smoking, age, and sex [16].
Despite the surge in predictive models for CVD risk in re-
cent years, challenges persist, including the lack of system-
atic descriptions of predicted outcomes, the integration of
novel predictors, suboptimal predictive accuracy, and the
need for external validation. In summary, MR plays a crit-
ical role in identifying novel metrics suitable for predictive
modeling, while the development of comprehensive and ef-
fective CVD prediction models depends on incorporating
these new metrics.

2. Mendelian Randomization: Principles and
Methods

Epidemiology research on the link between exposure
and disease has many limitations, as observational studies
typically reveal associations rather than causality and are
hindered by confounding variables, reverse causality, se-
lection bias and many other factors. MR utilizes the link
between genetic variation and exposure as an IV, facilitat-
ing the establishment of causal inferences. This is achieved
by implementing randomization schemes within observa-
tional studies. MR uses exposure-related genetic variants
as IV to make causal inferences by introducing randomiza-
tion schemes into observational studies. As a result, MR
is becoming increasingly popular for inferring risk factors
for diseases, identifying biologic drug targets, and causal
effects of genes on phenotypes [17,18]. Therefore, careful
selection of appropriate genetic variants is the most crucial
aspect of MR research. Genetic variants that fulfill the fol-
lowing conditions are referred to as IVs [19]: (1) the genetic
variant is associated with the exposure; (2) the genetic vari-
ant is not associated with any confounders of the exposure-
outcome association; and (3) the genetic variant does not
affect the outcome, except through association with the ex-
posure. Only the first condition can be measured directly,
while the other two can only be assessed through sensitivity
analysis [20].

The use of IVs in MR enables the identification of
associations between exposure and outcome that are free
from confounding variables. This process mirrors the ran-
domization process found in randomized controlled trials
(RCTs), the gold standard for establishing causality. In
MR, genetic variants create subgroups within the popula-
tion, where exposure factors vary but are not randomly as-
signed. However, across a broad population, confounders
including social and environmental factors are assumed to
distribute randomly among these genetic variants, akin to
the random assignment in RCTs [18]. This resemblance has
led to MR being likened to “natural randomized trials” due
to the equitable distribution of most genetic variants across
populations [21].

Despite their similarities, MR and RCT possess dis-
tinct conceptual differences. (1) Purpose: MR is aims to
determine if there is a causal relationship between the ef-
fect of an exposure and an outcome, while RCTs evaluate
the clinical significance of the causal effect [4]. (2) Na-
ture of the intervention: IVs in MR typically exert smaller,
lifelong effects on exposures compared to RCT interven-
tions [21]. Interventions in RCTs typically exert a greater
quantitative impact on intermediate biomarkers influencing
outcomes [21]. These interventions are characterized by
shorter durations and are specifically designed for clinical
diseases, pharmacologic interventions, and the prevention
of relapse events [22]. RCT, on the other hand, requires
prospective cohort studies with new interventions, which
cost more money, labor, and time to complete while in-
creasing precision [22].

In MR, monotonicity and homogeneity are key as-
sumptions. Monotonicity ensures that the genetic variants
used as IVs yield exposure effects that are consistent among
the study subjects, supporting a uniform influence of ex-
posure on outcomes [23]. These rules out possibility of
IVs having divergent effects on the exposure, thereby sim-
plifying the causal inference [23]. However, the presence
of pleiotropic effects, where genetic variants impact multi-
ple phenotypes, introduces complexity toMR analysis [24].
Homogeneity refers to the assumption that the effect of
the genetic variants on the outcome, mediated through the
exposure, is consistent across all individuals in the study.
Variability in this area could arise from interaction between
the genetic variants and other variables, such as age, sex, or
lifestyle factors, that also influence the outcome.

Understanding the relationship between genetic vari-
ants, exposures, and CVD requires acknowledging the po-
tential for non-linear dynamics. Traditional MR analyses
often assume linear relationships between exposures and
health outcomes. The introduction of non-linear analysis
may be necessary when the data fail to meet the underlying
statistical assumptions [25]. For example, the risk associ-
ated with blood pressure or lipid levels may not increase
uniformly across their entire range [26]. Identifying points
where risk increases or decreases more sharply can inform
targeted interventions and refine risk stratification models
[25]. Non-linear MR analysis has emerged as acritical tool
in these scenarios, allowing researchers to identify thresh-
olds or inflection points where the relationship between ex-
posure and risk change, enhancing the accuracy of risk pre-
diction models. This nuanced approach underscores the im-
portance of considering the full spectrum of possible rela-
tionships in genetic epidemiology research, particularly for
complex diseases like CVD.

The initial phase in MR involves identification of the
study population, which can either be a single, large co-
hort with measurable data on exposures, outcomes, and ge-
netic variant for each participant, or a comparative analy-
sis of aggregated data from a GWAS between independent
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populations [27,28]. The power of MR analyses increases
proportionally to sample size when using individual-level
data; when using pooled data, the precision of MR esti-
mates depends on the precision of the association between
genetic variants and outcomes [27,28]. To improve preci-
sion, we can use efficacy calculations to determine whether
sample sizes are adequate; simulation studies used to de-
termine efficacy are also applicable to data with partially
unique characteristics [27,28]. The following phase in-
volves the identification of IV, which can be either a sin-
gle genetic variant with a robust association to the target
exposure, or a composite genetic score comprising multi-
ple independently associated variants with weaker links to
the target exposure [29]. These genetic markers are typi-
cally SNPs derived from GWAS exploring the association
between the SNP and phenotype using whole genome se-
quencing data from large populations [30]. These individu-
als were then aligned by defining the allele associated with
the exposure level as the “exposure allele” for each individ-
ual in the variant [31]. Early MR used fewer genetic vari-
ants which were associated with risk factors, as IV to assess
causal effect between exposure and outcome [32]. How-
ever, the limited sample size and number of IVs, providing
insufficient statistical power, may have led to false-negative
results. This is addressed through the use of single- or two-
sample MR methods [19]. Single-sample MR requires a
sufficiently large data set to assess all three variables: ge-
netic variant genotype, exposure (risk factor), and outcome
(disease) and uses two-stage least-squares (2SLS) regres-
sion to evaluate the causality [33]. With the robustness
and increasing popularity of GWAS, two–sample MR has
gained widespread adoption, allowing researchers to obtain
genotype-exposure associations, and genotype-outcome as-
sociations across different samples, with the assumption of
uniformity between genetic associations and their paired
exposures between samples [34]. Ultimately, by measur-
ing the associations between genetic variants and the target
outcome, MR facilitates the conclusion that genetic vari-
ants associated with higher or lower levels of exposure are
causally linked to the target outcome. This methodological
advancement in MR, particularly with the introduction of
two-sample MR leveraging GWAS data, has significantly
enhanced the capacity to infer causal relationships in epi-
demiological research.

Importantly, while MR is rooted in causal inference,
its application extends beyond to inform predictive mod-
eling. The distinction between causal modeling, aimed
at understanding the influence of exposures on outcomes,
and predictive modeling, focused on forecasting outcomes
based on a set of variables, is fundamental [35]. Yet, MR of-
fers a unique bridge between these paradigms by providing
scientifically rigorous, causally informed predictors for risk
prediction models [36]. This approach not only enhances
the accuracy and clinical utility of such models but also
emphasizes the innovative role of MR in addressing con-

founding and reverse causation challenges in epidemiolog-
ical research [37,38]. Thus, our manuscript aims to eluci-
date the synergistic integration of MR-derived insights into
CVD risk prediction, marking a novel contribution to the
field.

3. Mendelian Randomization in CVD Risk
Prediction

As CVD remains a leading cause of global mortality,
development of more sophisticated risk prediction models
have become imperative. Traditional MR has been utilized
to assess causal inference, and has emerged as a powerful
resource in this context [4]. By leveraging genetic variants
as IVs, MR facilitates the identification of causal risk fac-
tors for CVD, thereby offering a robust foundation for en-
hancing predictive models [39]. This manuscript highlights
the practical integration of causal insights gleaned fromMR
into the development of more nuanced CVD risk prediction
models [40]. In accomplishing this, it bridges a critical gap
in current epidemiological research, integrating causal un-
derstanding with predictive accuracy [40,41]. There have
been many studies applying MR to the development and
improvement of CVD risk prediction models, covering a
wide range of diseases such as coronary heart disease, heart
failure (HF), and atrial fibrillation (AF) [39,42,43].

The utility of MR in constructing CVD risk predic-
tion models is contingent upon the ability to navigate con-
founding variables and adhere to several critical assump-
tions [34,44]. These assumptions are essential for ensur-
ing the interpretability and validity of MR derived esti-
mates, thereby enabling their effective incorporation into
risk prediction frameworks [34,44]. We delineate these as-
sumptions below and discuss their implications for the de-
velopment of accurate and applicable CVD risk prediction
models [34,44]. Relevance: the genetic variants employed
as IVs must have a strong association with the exposure
[34,44]. This condition is vital to ensure that IVs suffi-
ciently influence the exposure, allowing for a meaningful
analysis of its impact on the outcome [34,44]. Indepen-
dence: the IVs should not be associated with confounders in
the exposure-outcome link. Adherence to this assumption is
critical forMR’s resistance to confounding variables, ensur-
ing that the relationships observed are not biased by hidden
variables [34,44]. Exclusion restriction: the IVs must in-
fluence the outcome exclusively through the exposure with-
out any alternate routes [34,44]. Adhering to this assump-
tion guarantees that the estimated causal effect accurately
mirrors the true influence of the exposure on the outcome
[34,44]. Bymeticulously observing these assumptions, MR
can significantly enhance the development of CVD risk pre-
diction models, offering a pathway to better understand and
predict cardiovascular risk with greater accuracy and appli-
cability.
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3.1 Risk Factor Identification

The prevention of CVD hinges on the identification
and management of common risk factors including obesity,
hypertension, hyperglycemia, and hyperlipidemia, which
are metabolic aberrations [45–47]. Li et al. [45] focused on
basal metabolic rate (BMR) and its implications for CVD
utilizing univariate MR analysis using GWAS data. Their
findings revealed that genetically predicted higher BMR is
linked to an increased risk of atrial fibrillation and heart fail-
ure, yet conversely decreases the risk of myocardial infarc-
tion [45]. This underscores BMR’s nuanced role in differ-
ent CVD outcomes and highlights its importance in the con-
text of human aging and CVDs. Furthermore, a large-scale
GWAS identified 102 new loci associated with visceral adi-
pose tissue [46]. Utilizing MR analysis, this study demon-
strated that visceral fat acts as a causative risk factor for
hypertension, angina, type 2 diabetes, and hyperlipidemia
[46]. The development of gender-stratified nonlinear pre-
diction models based on these findings indicated a dispro-
portionately higher causative risk for hypertension and type
2 diabetes in females, which may be related to the higher
average mass of visceral fat in females [46]. In a prospec-
tive study of Chinese coronary artery disease (CAD) pa-
tients [47], MR analysis identified 11 genetically inferred
metabolic profiles that were associated with adverse car-
diovascular events and left ventricular remodeling. Impor-
tantly, a predictive model integrating four specific metabo-
lites was able to successfully identify patients at high risk of
death and major adverse cardiac events (MACE) in a mul-
ticenter validation cohort [47]. This achievement marks a
significant step forward in enhancing risk stratification for
CAD patients, suggesting that metabolic alterations seem to
contribute to MACE by promoting left ventricular dysfunc-
tion, supporting some of the potential therapeutic targets.

The significance of classical risk factors in the elderly
remains unclear. AnMR study [43] evaluated the causal re-
lationship between selected classical risk factors (sex, BMI,
blood pressure, low-density lipoprotein cholesterol (LDL-
C), triglycerides) and primary CAD in different age groups
in a European population to assess the predictive power
of genetic risk scores with age. The researchers observed
that with increasing age at diagnosis, genetically influenced
CVD risk factors progressively reduced the risk of pri-
mary CAD [43]. This relationship was more pronounced in
women aged over 60 [43]. These results suggested that the
age-based dynamics of CVD risk factors should be consid-
ered when evaluating the association between risk factors
and diseases by MR. Lipid-lowering recommendations for
the prevention of CAD rely heavily on the prediction of risk
over a 10–year period [48]. Pencina et al. [48] used both
RCT and MR predictive models to estimate the absolute
and relative effects of age and non-high-density lipoprotein
cholesterol (non-HDL-C) levels on the expected incidence
of CAD over the next 30 years in a relatively young patient
population (30–59 years). The results indicated that in the

middle-aged population, non-HDL-C≥50 mg/dL increases
the risk of CAD, while intensive lipid reduction at this point
significantly reduced the expected CAD risk over the next
30 years [48]. The prediction improved with both advanc-
ing age and elevated non-HDL-C levels [48].

The integration of DNA methylation (DNAm) pro-
files into CVD prediction models represents an innova-
tive and promising avenue of research. These studies
have linked DNAm’s with various CVD risk factors in-
cluding lipids, blood pressure, BMI, and postprandial lipids
[49,50]. Methylation-based risk scores (MRS) have already
demonstrated their capability to predict myocardial infarc-
tion events in the Framingham dataset, notably offering im-
proved predictions for individuals at lower risk, facilitating
the identification of individuals overlooked by other models
[51].

However, studies connecting DNA methylation and
CVD face challenges like reverse causality, making MR an
invaluable methodology for reinforcing the evidence base.
Huan et al. [52] analyzed 15,013 samples from 15 prospec-
tive cohort studies, applyingmulti-IVMR analyses on three
CpGs to explore their differential methylation’s causal rela-
tionship with CVD outcomes. Incorporating CpGs associ-
ated with CVD into a prediction model, alongside age, sex,
and twelve additional clinical risk factors improved CVD
mortality predictions by 2% [52]. This model showed su-
perior predictive performance across four different DNAm
age models.

3.2 Inflammation and CVD Risk

Furthermore, the role of inflammation in CVD pro-
gression cannot be overlooked. Aslibekyan et al. [53] ex-
amined 11,461 subjects with CAD, investigating associa-
tions between circulating levels of tumor necrosis factor α
(TNF-α) and whole-blood DNAmethylation. They discov-
ered a strong negative correlation at all four TNF-α–related
sites, with a 10% increase in methylation at these sites cor-
relating with a 9%–19% reduced risk of adverse coronary
events [53]. This finding solidifies the significance of TNF-
α methylation as a potent biomarker for assessing CVD
risk. Additionally, mitochondrial DNA (mtDNA) dysfunc-
tion during inflammation has been linked to CVD develop-
ment. Studies of MR have explored the causal relationship
between leukocyte mtDNA abundance and CAD and HF
[54]. It was discovered that reduced leukocyte mtDNAmay
be causally related to an elevated CAD risk, a connection
not observed with HF [54]. This body of work exemplifies
the evolving landscape of CVD risk prediction, highlighting
the critical role of genetic and epigenetic factors in advanc-
ing our understanding and management of cardiovascular
health.

3.3 Alcohol and CVD Risk

The relationship between alcohol consumption and
CVD remains a subject of debate, with studies indicat-
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ing both harmful effects from heavy drinking and protec-
tive benefits from light to moderate consumption. This
inconsistency is particularly pronounced across specific
populations, complicated further by the influence of so-
cioeconomic, lifestyle, and psychological factors that chal-
lenge precise characterization. Previous MRs were mostly
conducted on European populations and often relying on
summary-level data, failing to provide specific quantitative
descriptions. The utility of MR lies in its use of genetic
variation as a tool to mitigate racial genetic differences, en-
abling the development of predictive models for specific
races, countries, and between sexes. This approach allows
for a more nuanced exploration of alcohol consumption and
CVD in a more in-depth and fundamental way.

Using a prospective Asian cohort, Hu et al. [55]
found a linear increase in CVD incidence and mortality
with rising alcohol intake, suggesting no genetic safe con-
sumption threshold. Conversely, research within a Chi-
nese population [56], explored the relationship between
genotype-predicted mean alcohol consumption, carotid
plaque, and carotid intima–media thickness (cIMT) across
both sexes. These findings indicated a significant as-
sociation between greater alcohol intake and increased
carotid plaques in males—attributable primarily to alco-
hol rather than pleiotropic genetic effects—while no clear
dose–response relationship emerged among females [55].

Similar to alcohol, the link between tea consump-
tion and CVD is inconclusive. Multiple MR analyses [57]
probing the habitual tea use-CVD association concluded no
genetically predicted causal relationship, underscoring the
complexities in determining the impacts of lifestyle factors
like alcohol and tea consumption on cardiovascular health.
These studies highlight the importance of considering ge-
netic backgrounds and individual differences when assess-
ing risk factors for CVD, providing a more comprehensive
understanding of the interplay between genetics, lifestyle
choices, and cardiovascular outcomes.

3.4 Diagnostic Criteria and CVD Risk

Diagnostic criteria for CVD include, blood biochem-
ical tests in addition to clinical signs and symptoms. No-
tably, MR has been instrumental in the discovery of novel
biomarkers. Observational studies have linked high circu-
lating blood copper levels with increased CVD risk through
a mechanism involving inflammation-induced oxidative
stress [58,59]. However, some MR studies have presented
opposing results [60]. In particular, Jäger et al. [61] inves-
tigated the causal association of genetically related blood
copper levels with stroke, CAD, and type 2 diabetes melli-
tus in a two-sample MR study. Their results demonstrated
that elevated genetically-induced copper levels were in-
versely related to CAD and systolic blood pressure [61].
Furthermore, integrating blood copper levels with systolic
blood pressure in a predictive model suggested that blood

copper may influence CAD risk through systolic blood
pressure modulation [61].

The causal relationship between apolipoprotein B
(apoB) and CAD has been extensively studied, with recent
studies have focused on the relationship between apoB and
non-HDL-C/apoB particle concentrations [62]. Utilizing
235 variants as IVs for single-sample MR analysis revealed
that both non-HDL-C and apoB were associated with the
risk of CAD in a dose–dependent manner [62]. Importantly,
incorporating non-HDL-C into a model already featuring
apoB markedly enhanced the prediction of genetically de-
termined CAD, a finding not reciprocated when apoB was
added to a non-HDL-C inclusive model [62]. This pattern
held true across five CAD datasets, suggesting that for in-
dividuals with similar non-HDL-C levels, the quantity of
apoB particles does not influence CAD development [62].
Furthermore, the investigators focused on genetic varia-
tions associated with triglycerides, using non-HDL-C/apoB
as secondary hypertriglyceridemia risk enabled the identi-
fication of 51 sequence variants [62]. This highlights the
strong genetic contribution of apoB particles to cholesterol,
which was particularly evident under statin–treatment, sug-
gesting the clinical benefits of lipid–lowering therapies may
derive from non-HDL-C reduction, rather than apoB levels
[62].

Moreover, in a cohort from an Icelandic population
[63], MR–predicted non-HDL-C levels exhibited a stronger
association with CAD than LDL-C, supporting non-HDL-C
as a superior biomarker for overall CAD lipoprotein burden.
Additionally, Henry et al. [39] conducted an observational
study on four independent samples, identifying 44 circulat-
ing associated with an increased risk of heart failure. Pri-
mary MR analysis confirmed that 17 of these proteins had
a causal association with heart failure [39]. Interestingly,
among proteins not correlated in the observational study,
MR identified nine proteins were causally associated with
heart failure [39]. Furthermore, primary cis-MR analysis
was used to assess eight proteins closely related to heart
failure, exploring the causal relationship with heart failure-
related symptoms, aiding in identifying potentially novel
drug targets [39]. In AF, a study [64] identified 91 new
genetic loci by through a GWAS analysis, enhancing AF-
related comorbidity predictions with a polygenic risk score.
This breadth of research underscores the multifaceted ap-
proach to understanding CVD, leveraging genetic insights
to refine risk assessment and unearth new therapeutic av-
enues.

3.5 Comorbid Diseases and CVD Risk

While exploring the relationships between CVD and
disease comorbidities, Wang and Ding [65] utilized two-
sample MR to demonstrate that genetic predisposition to
major depression is linked to an elevated AF risk, high-
lighting the intersection between mental health and CVDs.
While chronic kidney disease (CKD) was identified as an
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independent CVD risk factor, traditional cardiovascular
risk prediction tools, derived from the general population,
are less effective in CKD patients [66]. Through MR anal-
ysis focused on a non-dialysis-dependent CKD cohort, re-
searchers identified 18 proteins causally associated with ad-
verse CVD outcomes [66]. This led to the development of
32 protein models to predict the risk of myocardial infarc-
tion, heart failure, stroke, and cardiovascular death in this
population, which is more applicable to proteomics model-
ing risk stratification than existing clinical risk models [66].

Additionally, the relationship between type 2 diabetes
mellitus (T2D) and CAD was explored through the con-
struction of a genetic risk score (GRS) based on T2D ge-
netic variants [67]. The GRS’s association with the severity
of CAD in patients with acute coronary syndromes (ACS)
indicates a linear relationship between GRS and an in-
creased risk of multivessel disease in ACS patients [67].
This suggests that the impact of T2D on CAD risk may be
partially mediated through genetic predispositions, provid-
ing a clearer understanding of how T2D contributes to car-
diovascular complications. These studies collectively em-
phasize the importance of genetic and proteomic analyses in
uncovering the complex interplay between various diseases
and their impact on cardiovascular health.

In summary, we can see the advantages that MR pos-
sesses in the prediction of CVD risk. (1) Targeted insights:
for different genders, ages, ethnicities and other risk factors
with a strong genetic relationship, MR can provide more
accurate evidence of causality. This is particularly criti-
cal for CVDs, where genetic links play a significant role
in disease development. (2) Stability: unlike traditional
observational studies, which rely on questionnaires, bio-
chemical markers, and imaging, genetic variation begins
at birth and remains relatively stable throughout the lifes-
pan. This constancy ensures that MR-derived associations
are not subject to causal inversion and are minimally in-
fluenced by confounding factors, offering more reliable in-
sights into causal relationships. (3) Simplicity and acces-
sibility: MR leverages widely accessible GWAS data. Re-
sources like the UK Biobanking Cohort [68], MR-BASE
platform [69], and similar GWAS summary data provide
extensive information on genetic instruments, human traits,
diseases, and diverse population samples. Compared to the
complexity and logistical challenges of RCTs, MR offers a
straightforward and efficient approach to research, poten-
tially conserving significant time, effort, and financial re-
sources. (4) Timeliness: for many risk factors, traditional
RCTs may not be able to assess long-term cardiovascular
outcomes, such as smoking—MR studies are exceptionally
suited for these contexts. They can evaluate the lifelong
implications of exposures on disease risk, offering timely
and relevant insights that might not be feasible to obtain
through RCTs. Overall, MR’s unique strengths in targeting,
stability, simplicity, and timeliness underscore its potential
to enhance our understanding of CVD risk factors and to in-

form the development of effective prevention and treatment
strategies.

4. Current Limitations and Future Directions
The inherent characteristics of genes provide a solid

basis for their use as IVs in MR. However, there are still
many limitations for applying MR analysis in CVD. For in-
stance, alcohol research with MR is complex due to non-
genetic factors like reporting honesty and educational back-
ground, which introduce confusion [70]. Alcohol-related
genes have multiple genetic loci and the genetic loci can
affect outcomes through many different pathways. This in-
cludes their effect on alcohol exposure levels in addition to
alcohol metabolites which can influence health outcomes
[71]. Such scenarios can violate the core assumptions of
MR IV [71]. Furthermore, the applicability of MR’s instru-
mental variable assumptions and their biological plausibil-
ity might not always hold true [24,72]. Genetic variation
does not always adhere to Mendel’s law of independent as-
sortment, with linkage disequilibrium illustrating that not
all traits’ determining genes segregate independently and
randomly [24,72].

Violation of (1)–(3) of the aforementioned instrumen-
tal variable conditions introduces “weak instrument bias”,
“uncorrelated horizontal pleiotropy (UHP)”, and “corre-
lated horizontal pleiotropy (CHP)”, respectively [24,72].
Horizontal pleiotropy (HP) occurs when a genetic variant
influences the outcome through pathways other than the ex-
posure [24,72]. Meanwhile, CHP refers to situations where
the correlation between an IV and both the exposure and
outcome is generated from shared confounding variables
affecting both systems [24,72]. Finally, UHP occurs when
an IV’s effect on the outcome is not related to its effect on
exposure, meaning the instrumental variable impacts the
exposure and outcome through two different mechanisms
[24,72].

The presence of these two levels of pleiotropy tends
to result in higher false positives for MR. In practical
applications, the availability of cis-eQTL (expression–
quantification–trait–loci) for most genes in the genome that
are used as IVs is limited, and frequently reflects the com-
plex genetic basis of traits and pathways between the traits
[73]. While there are solutions for both levels of pleiotropy,
most are not well developed [74]. Notably, MR poly-
tropic residuals (MR-PRESSO) [74], iterative MR poly-
trope (IMRP) [75] by hypothesis testing, and MR-Egger
by regression analysis can address UHP. Weighted Median,
MR-Robust, and MR-Lasso attempt to solve UHP/CHP
problems by robust loss function [76]. Unlike UHP whose
impact was appropriately addressed by most of the previ-
ous MR studies, some researchers may have ignored CHP,
whichwould have resulted in a higher rate of false positives.

In recent years, some models have also been devel-
oped to be able to address the effects of both UHP and
CHP at the same time [24,77–80], including Gaussian mix-
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ture models, MR contamination mixture (MR-Conmix),
causal analysis using summary effect (CAUSE), MR con-
strained maximum likelihood (MR–CML), MR with corre-
lated horizontal pleiotropy unraveling shared etiology and
confounding (MR–CUE). The use of multiple genetic vari-
ants in combination in MR can improve statistical efficacy,
as combinations are valuable for detecting or avoiding bias
when certain genetic variants do not satisfy IV conditions
[34]. When using SNPs, the overlap between the dataset
used to select for genetic variation and the dataset used
for measurement can lead to a “winner’s curse”, causing
an overfitting bias. However, recent studies have demon-
strated that these bias effects can be accounted for and
corrected when strong instrument variables are used [81].
Through the use of an F statistic >10, the bias can be sig-
nificantly decreased. Meanwhile, a “collider bias” occurs
when both the exposure and the outcome affect a third vari-
able, and that variable is controlled for in the study design
[82]. When both exposure and outcome affect a third vari-
able and that variable is controlled for in the study design,
“collider bias” occurs, an outcome which is less easily ob-
served [82]. Similarly, the IVs used in multivariable MR
are a concatenation of the exposure-specific IVs used in uni-
variateMR [83,84]. As the GWAS sample size grows, more
and more small and moderate causal variants are identi-
fied [83,84]. The accumulation results in “weak instrument
bias”, a phenomenon that can be addressed through proper
calibration. This bias can be mitigated through the correc-
tion of weighted least squares equations [85–88]. A multi-
variableMR approach, specifically the novel bias-corrected
estimating equation (MRBEE) has been developed to esti-
mate the causal effect of exposures with minimal bias and
optimal frequency of coverage [89]. It effectively addresses
the challenges posed by CHP, UHP, variations in GWAS
sample sizes, and weak instrument bias [89]. Furthermore,
thismethodwas validated in the analysis of real-world CAD
data [89].

Deciphering causal relationships directly from ge-
nomic data presents significant challenges. When genetic
variation is significantly associated with the expression of
a single gene, it allows for straightforward hypothesis for-
mation and inference. However, when genetic variation is
associated with multiple target genes, or when there is an
inter-regulatory relationship between target genes, the ap-
plication of causal network inference becomes important
[90]. Several methods have been proposed to improve pre-
cision and efficiency. The multi-tissue dual-sample MR
method ROBust to invalid IV (MR-MtRobin) [91], uses
eQTL summary statistics. It identifies and corrects for er-
rors due to pleiotropy, enabling accurate causal inference
even in the presence of null IV [91]. Another method, MR-
Corr2, uses GWAS summary-level data to account for cor-
related HP and genetic variation. It efficiently models poly-
genic SNPs in linkage disequilibrium through a binary nor-
mal distribution approach, including an efficient algorithm

with paralleled Gibbs sampling to infer the posterior mean
of causal effect [80]. These advancements signify impor-
tant progress towards more precise and efficient causal in-
ference in genomic research, especially in the context of
pleiotropy and genetic linkage.

The quality of analysis and reporting can vary greatly
between MR studies. Despite genes serving as IV, they are
still susceptible to biases from multiple factors including
weak instruments, challenges in ensuring the multiplicity of
validity, sample overlap, complications with back-text vari-
ants, difficulties in variant replications, missing data, asso-
ciations of IV with both the exposure andoutcome, and bias
introduced by one-sample and two-sample methods [92].
The use of MR in CVD has specific limitations.

4.1 Poor Generalizability

Significant heterogeneity exists among CVD-
associated SNPs, and thus the results of MR need to be
interpreted with caution. If the available study data are
limited, the generalizability of expected results is often
restricted to a particular region and ethnicity [42,93].
These differences emphasize the need for further studies
to elucidate underlying mechanisms and to understand the
influence of genetic and environmental factors [42,93]. At
the same time, the associations identified may not directly
reflect observations from animal-based mechanobiological
studies [94]. One solution to this shortcoming would be
to include data from as many different ethnic groups as
possible, which may further introduce bias due to popu-
lation stratification and admixture [95]. The acquisition
of larger scale GWAS data remain an important goal for
future studies.

4.2 Challenges of Time-Varying Exposures in MR

One inherent challenge in MR studies is the assump-
tion that the effect of genetic variants on an exposure is con-
stant throughout an individual’s life. The evolving nature of
exposure over time has always been a major challenge for
MR studies. Exposuresmay change over time, and their im-
pact on disease risk can vary at different life stages. Certain
exposures are only correlated with outcomes during spe-
cific periods. Richardson et al. [96] utilized Life Course
MR to elucidate the relationship between body size at dif-
ferent stages of life and the risk of coronary heart disease
(CHD). Life Course MR treats exposures at different time
points as separate exposures for MR analysis, employing
both univariable and multivariable MR to assess the direct
and indirect effects of exposures at different time points
on the outcome. The results show that while body size in
early life is associated with CHD risk, multivariable MR
suggests that the direct effect of adult body size predom-
inates in influencing CHD risk. This result is also sup-
ported by real-world data studies. Despite one large clin-
ical study indicating an increased risk of CHD in adulthood
associated with higher BMI during childhood, subsequent
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research has demonstrated a significant reduction in CHD
risk after weight loss surgery, suggesting a direct associa-
tion between adult obesity and CHD [97–99]. O’Nunain
et al. [100] also used a similar approach to demonstrate
that body size during childhood, rather than adulthood, in-
fluences cardiac structure in adulthood. By examining the
specific critical periods when exposures exert their effects,
we can more accurately control exposure factors to reduce
the risk of disease occurrence. This complexity is partic-
ularly relevant for CVD, where risk factors such as blood
pressure and cholesterol levels may have different impacts
depending on the age of the individual [101].

4.3 Potential Pitfalls in MR Interpretation

Estimates used in MR can be skewed by several fac-
tors, which if not properly addressed, can mislead interpre-
tations. One significant challenge is pleiotropy, where ge-
netic variants used as IVs affect multiple phenotypes be-
yond the exposure under investigation, potentially biasing
causal estimates. Another issue is population stratification,
which occurs when differences in allele frequencies and dis-
ease risks across various populations due to ancestry lead
to false associations. Additionally, measurement errors in
exposure assessment can also introduce biases into MR es-
timates. These inaccuracies in quantifying exposures can
compound, further skewing the results and complicating the
causal inference drawn from MR studies.

4.4 Challenge of Non-Linear Mendelian Randomization

As mentioned earlier, conventional MR methods as-
sume a linear association between exposure and outcome,
which may not always hold true. Staley and Burgess [26]
were the first to use semiparametric methods, including
the fractional polynomial method and a piecewise linear
method, to estimate the nonlinear relationship betweenBMI
and systolic and diastolic blood pressure. This approach
was widely used in later CVD research, particularly in as-
sessing the L-shaped relationship between vitamin D and
CVD risk [25].

However, as research progressed, some began to ques-
tion the validity of the assumption that genetic variation has
the same effect on stratified exposures in these methods
[102]. Burgess et al. [103] employed the doubly-ranked
method to mitigate this problem, and found the original re-
sults no longer held after using the updated method, indi-
cating significant flaws in traditional nonlinear MR. Wade
et al. [104] further refuted the validity of existing nonlin-
ear MR through negative control methodology. They found
that both semiparametric methods and the doubly-ranked
method resulted in a higher likelihood of participants who
have lower BMI to be female, even though BMI cannot af-
fect gender [104]. This suggests that caution should be used
when approaching and interpreting the conclusions of exist-
ing nonlinear MR studies.

4.5 Difficult to Assess Qulity

Due to the growth in the number of MR studies, the
need for standardized methodology guidance has become
apparent. Reviews of the MR literature have identified a
broad spectrum of issues across numerous studies, leading
to questions about the quality and reliability of their find-
ings [92,105]. In response to this, the Reporting of Ob-
servational Studies Using MR to Enhance Epidemiology
(STROBE–MR) guidelines were developed [106]. These
guidelines detail key objectives for various aspects of MR
research, including the background, purpose, study design,
data sources, statistical methods, and sensitivity analyses
[106]. They fulfill a critical role by helping researchers nav-
igate methodological decisions effectively throughout their
studies and by providing a basis for evaluating the quality,
limitations, and findings of MR research. This framework
is vital for ensuring the methodological integrity and rel-
evance of MR studies, thereby improving their generaliz-
ability and the usefulness of their conclusions in broader
epidemiological contexts.

4.6 Poor Precision

The interpretability of effect estimates in MR stud-
ies is constrained, as they do not directly indicate the pre-
dicted change per unit of change in the exposure pheno-
type [107,108]. Additionally, determining the linearity re-
lationship often requires larger studies for confirmation,
while accessing individual patient-level data presents sig-
nificant challenges [94,95]. Variability in data sources in-
troduces distinct potential biases [109], which can be some-
what controlled through adjustments for pooled associa-
tions using covariates. Employing larger datasets that in-
clude individual-level data could elucidate more precise re-
lationships such as dose and threshold effects [110]. A no-
table gap in current MR research is the lack of studies con-
ducted during disease progression, which typically have a
latency period [111]. Biobanks linking participant data to
electronic health records offer a promising avenue for gain-
ing insights into disease progression [111].

Finally, asMR studies rely on genes as IV, it is impera-
tive to emphasize several critical regulatory and ethical con-
siderations. It’s essential to have stringent procedures for
obtaining informed consent from study participants, ensur-
ing participants fully understand the genetic nature of the re-
search and its potential implications. Protecting against ge-
netic discrimination is paramount, necessitating measures
to safeguard individuals from any negative impacts stem-
ming from analysis of their genetic data. Additionally,
transparency and interpretability in MR research are also
vital aspects that warrant thorough attention. Researchers
must strive for clear communication of methodologies, re-
sults, and potential limitations to ensure the integrity and
comprehensibility of their work. Addressing these ethical,
regulatory, and methodological issues is imperative for ad-
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vancing MR research and maximizing its contributions to
understanding complex diseases.

5. Future Applications of Mendelian
Randomization in CVD Diseases

Recently MR has evolved from an experimental tech-
nique to a versatile tool with applications extending beyond
the study of diseases and their risk factors. Nowadays, re-
searchers utilize MR in varied contexts, tailoring the choice
of exposure, outcome, or IV to suit the specific problem at
hand. This flexibility allows for the exploration of com-
plex relationships across a broad spectrum of disciplines,
ranging from environmental science to behavioral genetics
and beyond. By selecting different types of exposures, out-
comes, or IVs, researchers can adapt MR to address diverse
questions, providing valuable insights into the causal mech-
anisms underlying various phenomena.

5.1 Drug Target Identification

The increasing use of MR has led to its adoption for
the identification of potential targets for novel pharma-
ceutical treatments. Prior to the integration of MR into
this investigative process, GWAS successfully identified
proprotein convertase subtilisin/kexin type 9 (PCSK9) and
angiopoietin-like 4 (ANGPTL4), two prominent targets for
lipid-reduction therapies [30]. Compared to traditional sin-
gle sample or two-sample MR, the introduction of IVs rep-
resents a watershed moment in the field. Unlike tradi-
tional approaches that employed SNPs as the IV, contem-
porary MR utilizes genetic variants that are directly linked
to the function or expression of the drug targeting protein
[112,113]. When using the expression level of certain pro-
tein or mRNA as the trait, the genetic variation identified
by GWAS will become quantitative trait locus (QTL). MR
studies dedicated to drug target identification leverage these
QTLs as IVs, with a specific disease as the outcome, facili-
tating the exploration of new drugs applications [112,113].

Treatment of CVD, with the prevalence of chronic and
degenerative conditions, requires careful identification and
selection of drug targets. Aortic aneurysms (AA) represent
a significant life-threatening condition without any satis-
factory therapeutic interventions to decelerate clinical pro-
gression. Utilizing MR analysis, Chen et al. [114] high-
lighted four potential drug targets for AA treatment, specif-
ically proteasome 20S subunit alpha 4 (PSMA4), plasmino-
gen activator, and urokinase. Further studies suggested that
inhibiting plasminogen activator, urokinase (PLAU) and
PSMA4 could mitigate AA risk without exacerbating car-
diovascular or metabolic diseases. Expanding the scope
to aortic stenosis, another formidable cardiovascular chal-
lenge, Ciofani et al. [115] evaluated the potential of im-
munomodulatory drugs through MR. Instead of using tra-
ditional QTL as IVs, the research team used genetic prox-
ies, specifically SNPs associated with serum CRP levels
to identify drug target proteins [115]. The study identified

tocilizumab, an interleukin 6 (IL-6) inhibitor, as a potential
therapeutic target [115].

While drug target MR studies are valuable for assess-
ing outcome traits, gaining deeper insights into drug effi-
cacy, adverse reactions, and potential repurposing oppor-
tunities, the technique is not without limitations. For in-
stance, it cannot account for post-transcriptional and post-
translational modifications, which can significantly influ-
ence the activity and function of proteins targeted by drugs.
Additionally, drug targetMRmay not fully capture the vari-
ations in drug effects across different tissues and popula-
tions, highlighting an essential aspect of pharmacodynam-
ics and pharmacokinetics that require either preclinical or
clinical studies.

5.2 Determining Ancestry–Specific Causal Relationships

Themigration and colonization patterns of human civ-
ilization have created a tapestry of genetic diversity across
different sociocultural and ethnic groups, leading to sig-
nificant variations in allele frequencies [95]. This genetic
heterogeneity has imparted unique CVD epidemiological
patterns across different populations. Understanding the
population specificity of risk factors is crucial for the de-
velopment of precise health care strategies. In this con-
text, MR analysis, which relies on the genome data from
large populations, underscores the critical role of careful
population selection. Initially, MR research predominantly
focused on European populations driven by the early es-
tablishment of comprehensive databases, such as the UK
biobanks and FinnGen in Europe. However, the advent
of databases encompassing a broader spectrum of genomic
data and phenotypic details from a variety of ethnic groups
has expanded the utility of MR. It has evolved into a pow-
erful tool for identifying ancestry–specific causal relation-
ships, enabling researchers to tailor healthcare interventions
more accurately to the genetic and epidemiological profiles
of different populations.

Several studies have employed MR to compare the
causal relationship of risk factors and CVD between Euro-
pean and East Asian populations. Particularly, Wang et al.
[116] reported that the risk factors of CAD largely overlap
between these two populations, with the notable exception
of uric acid and BMI, which have a greater impact on CAD
risk in East Asians. The similarity of causal relationships
was supported by Ciofani et al. [117], who assessed the link
between traditional CVD risk factors and disease outcomes.
However, they noted a distinct pattern in Europeans, where
ischemic stroke and heart failure were significantly associ-
ated with all risk factors, whereas in East Asian populations
only elevated blood pressure was significantly associated
with these conditions [117].

While MR can be instrumental in uncovering
ancestry–specific causal relationships, similar to findings
from meta-analyses, challenges persist. These include the
small sample sizes of genomic data from non-European
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populations and potential selection bias [118]. It is also
essential to consider that non-causal risk factors may
serve as proxies for other difficult-to-measure causal
factors. Their inclusion in risk prediction models can offer
valuable insights into the complex interplay of genetic
and environmental factors contributing to CVD. Future
research should aim to integrate both causal and non-causal
factors to refine and enrich the precision and accuracy
of CVD risk prediction models, thereby fostering a more
nuanced understanding of disease mechanisms across
diverse populations.

6. Conclusions
MR has emerged as a transformative tool in CVD

risk prediction, leveraging genetic variation to elucidate
causal relationships between risk factors and disease out-
comes. Despite its potential, MR faces challenges such
as pleiotropy and population stratification, which can af-
fect the generalizability of findings across different ethnic
groups. Looking forward, MR promises to refine CVD risk
models through advanced analytics and expansive genomic
datasets, offering insights into genetic influences on CVD
and unveiling new targets for prevention and treatment. As
we navigate its complexities and ethical considerations, MR
stands as a beacon in genetic epidemiology, poised to en-
hance our understanding and management of CVD.
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