Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Sep 1;270(2):473–481. doi: 10.1042/bj2700473

A 15N-n.m.r. study of cerebral, hepatic and renal nitrogen metabolism in hyperammonaemic rats.

N A Farrow 1, K Kanamori 1, B D Ross 1, F Parivar 1
PMCID: PMC1131747  PMID: 1976007

Abstract

1. Rats were infused with 15NH4+ or L-[15N]alanine to induce hyperammonaemia, a potential cause of hepatic encephalopathy. HClO4 extracts of freeze-clamped brain, liver and kidney were analysed by 15N-n.m.r. spectroscopy in combination with biochemical assays to investigate the effects of hyperammonaemia on tissue concentrations of ammonia, glutamine, glutamate and urea. 2. 15NH4+ infusion resulted in a 36-fold increase in the concentration of blood ammonia. Cerebral glutamine concentration increased, with 15NH4+ incorporated predominantly into the gamma-nitrogen atom of glutamine. Incorporation into glutamate was very low. Cerebral ammonia concentration increased 5-10-fold. The results suggest that the capacity of glutamine synthetase for ammonia detoxification was saturated. 3. Pretreatment with the glutamine synthetase inhibitor L-methionine DL-sulphoximine resulted in 84% inhibition of [gamma-15N]glutamine synthesis, but incorporation of 15N into other metabolites was not observed. The result suggests that no major alternative pathway for ammonia detoxification, other than glutamine synthetase, exists in rat brain. 4. In the liver 15NH4+ was incorporated into urea, glutamine, glutamate and alanine. The specific activity of 15N was higher in the gamma-nitrogen atom of glutamine than in urea. A similar pattern was observed when [15N]alanine was infused. The results are discussed in terms of the near-equilibrium states of the reactions involved in glutamate and alanine formation, heterogeneous distribution in the liver lobules of the enzymes involved in ammonia removal and their different affinities for ammonia. 5. Synthesis of glutamine, glutamate and hippurate de novo was observed in kidney. Hippurate, as well as 15NH4+, was contributed by co-extracted urine. 6. The potential utility and limitations of 15N n.m.r. for studies of mammalian metabolism in vivo are discussed.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bates T. E., Williams S. R., Kauppinen R. A., Gadian D. G. Observation of cerebral metabolites in an animal model of acute liver failure in vivo: a 1H and 31P nuclear magnetic resonance study. J Neurochem. 1989 Jul;53(1):102–110. doi: 10.1111/j.1471-4159.1989.tb07300.x. [DOI] [PubMed] [Google Scholar]
  2. Beech J. S., Williams S. R., Cohen R. D., Iles R. A. Gluconeogenesis and the protection of hepatic intracellular pH during diabetic ketoacidosis in rats. Biochem J. 1989 Nov 1;263(3):737–744. doi: 10.1042/bj2630737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CERIOTTI G., SPANDRIO L. A spectrophotometric method for determination of urea. Clin Chim Acta. 1963 Mar;8:295–299. doi: 10.1016/0009-8981(63)90171-2. [DOI] [PubMed] [Google Scholar]
  4. Cohen N. S., Kyan F. S., Kyan S. S., Cheung C. W., Raijman L. The apparent Km of ammonia for carbamoyl phosphate synthetase (ammonia) in situ. Biochem J. 1985 Jul 1;229(1):205–211. doi: 10.1042/bj2290205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cooper A. J., Plum F. Biochemistry and physiology of brain ammonia. Physiol Rev. 1987 Apr;67(2):440–519. doi: 10.1152/physrev.1987.67.2.440. [DOI] [PubMed] [Google Scholar]
  6. DUDA G. D., HANDLER P. Kinetics of ammonia metabolism in vivo. J Biol Chem. 1958 May;232(1):303–314. [PubMed] [Google Scholar]
  7. Deuel T. F., Louie M., Lerner A. Glutamine synthetase from rat liver. Purification, properties, and preparation of specific antisera. J Biol Chem. 1978 Sep 10;253(17):6111–6118. [PubMed] [Google Scholar]
  8. Elliott K. R., Tipton K. F. Kinetic studies of bovine liver carbamoyl phosphate synthetase. Biochem J. 1974 Sep;141(3):807–816. doi: 10.1042/bj1410807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fitzpatrick S. M., Hetherington H. P., Behar K. L., Shulman R. G. Effects of acute hyperammonemia on cerebral amino acid metabolism and pHi in vivo, measured by 1H and 31P nuclear magnetic resonance. J Neurochem. 1989 Mar;52(3):741–749. doi: 10.1111/j.1471-4159.1989.tb02517.x. [DOI] [PubMed] [Google Scholar]
  10. Friolet R., Colombo J. P., Lazeyras F., Aue W. P., Kretschmer R., Zimmermann A., Bachmann C. In vivo 31P NMR spectroscopy of energy rich phosphates in the brain of the hyperammonemic rat. Biochem Biophys Res Commun. 1989 Mar 15;159(2):815–820. doi: 10.1016/0006-291x(89)90067-3. [DOI] [PubMed] [Google Scholar]
  11. GLABMAN S., KOSE R. M., GIEBISCH G. Micropuncture study of ammonia excretion in the rat. Am J Physiol. 1963 Jul;205:127–132. doi: 10.1152/ajplegacy.1963.205.1.127. [DOI] [PubMed] [Google Scholar]
  12. Hems R., Ross B. D., Berry M. N., Krebs H. A. Gluconeogenesis in the perfused rat liver. Biochem J. 1966 Nov;101(2):284–292. doi: 10.1042/bj1010284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jungermann K., Katz N. Functional specialization of different hepatocyte populations. Physiol Rev. 1989 Jul;69(3):708–764. doi: 10.1152/physrev.1989.69.3.708. [DOI] [PubMed] [Google Scholar]
  14. Kanamori K., Legerton T. L., Weiss R. L., Roberts J. D. Effect of the nitrogen source on glutamine and alanine biosynthesis in Neurospora crassa. An in vivo 15N nuclear magnetic resonance study. J Biol Chem. 1982 Dec 10;257(23):14168–14172. [PubMed] [Google Scholar]
  15. Kanamori K., Weiss R. L., Roberts J. D. Ammonia assimilation in Bacillus polymyxa. 15N NMR and enzymatic studies. J Biol Chem. 1987 Aug 15;262(23):11038–11045. [PubMed] [Google Scholar]
  16. Krebs H. A., Hems R., Lund P. Some regulatory mechanisms in the synthesis of urea in the mammalian liver. Adv Enzyme Regul. 1973;11:361–377. doi: 10.1016/0065-2571(73)90024-1. [DOI] [PubMed] [Google Scholar]
  17. Levillain O., Hus-Citharel A., Morel F., Bankir L. Production of urea from arginine in pars recta and collecting duct of the rat kidney. Ren Physiol Biochem. 1989 Sep-Dec;12(5-6):302–312. doi: 10.1159/000173207. [DOI] [PubMed] [Google Scholar]
  18. Lin S., Raabe W. Ammonia intoxication: effects on cerebral cortex and spinal cord. J Neurochem. 1985 Apr;44(4):1252–1258. doi: 10.1111/j.1471-4159.1985.tb08751.x. [DOI] [PubMed] [Google Scholar]
  19. Malloy C. R., Cunningham C. C., Radda G. K. The metabolic state of the rat liver in vivo measured by 31P-NMR spectroscopy. Biochim Biophys Acta. 1986 Jan 23;885(1):1–11. doi: 10.1016/0167-4889(86)90032-7. [DOI] [PubMed] [Google Scholar]
  20. Ogawa S., Boens C. C., Lee T. M. A 31P nuclear magnetic resonance study of the pH gradient and the inorganic phosphate distribution across the membrane in intact rat liver mitochondria. Arch Biochem Biophys. 1981 Sep;210(2):740–747. doi: 10.1016/0003-9861(81)90241-1. [DOI] [PubMed] [Google Scholar]
  21. Pfaller W., Rittinger M. Quantitative morphology of the rat kidney. Int J Biochem. 1980;12(1-2):17–22. doi: 10.1016/0020-711x(80)90035-x. [DOI] [PubMed] [Google Scholar]
  22. SHERLOCK S., SUMMERSKILL W. H., WHITE L. P., PHEAR E. A. Portal-systemic encephalopathy; neurological complications of liver disease. Lancet. 1954 Sep 4;267(6836):454–457. [PubMed] [Google Scholar]
  23. Tannen R. L. Ammonia metabolism. Am J Physiol. 1978 Oct;235(4):F265–F277. doi: 10.1152/ajprenal.1978.235.4.F265. [DOI] [PubMed] [Google Scholar]
  24. Veech R. L., Harris R. L., Veloso D., Veech E. H. Freeze-blowing: a new technique for the study of brain in vivo. J Neurochem. 1973 Jan;20(1):183–188. doi: 10.1111/j.1471-4159.1973.tb12115.x. [DOI] [PubMed] [Google Scholar]
  25. WOLLENBERGER A., RISTAU O., SCHOFFA G. [A simple technic for extremely rapid freezing of large pieces of tissue]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:399–412. [PubMed] [Google Scholar]
  26. Williamson D. H., Lopes-Vieira O., Walker B. Concentrations of free glucogenic amino acids in livers of rats subjected to various metabolic stresses. Biochem J. 1967 Aug;104(2):497–502. doi: 10.1042/bj1040497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Williamson D. H., Lund P., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967 May;103(2):514–527. doi: 10.1042/bj1030514. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES