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Rethinking simultaneous suppression in
visual cortex via compressive
spatiotemporal population receptive fields

Eline R. Kupers 1 , Insub Kim 1 & Kalanit Grill-Spector 1,2

When multiple visual stimuli are presented simultaneously in the receptive
field, the neural response is suppressed compared to presenting the same
stimuli sequentially. The prevailing hypothesis suggests that this suppression
is due to competition among multiple stimuli for limited resources within
receptive fields, governed by task demands. However, it is unknown how
stimulus-driven computations may give rise to simultaneous suppression.
Using fMRI, we find simultaneous suppression in single voxels, which varies
with both stimulus size and timing, and progressively increases up the visual
hierarchy. Using population receptive field (pRF) models, we find that com-
pressive spatiotemporal summation rather than compressive spatial summa-
tion predicts simultaneous suppression, and that increased simultaneous
suppression is linked to larger pRF sizes and stronger compressive non-
linearities. These results necessitate a rethinking of simultaneous suppression
as the outcome of stimulus-driven compressive spatiotemporal computations
within pRFs, and open new opportunities to study visual processing capacity
across space and time.

The human visual system has limited processing capacity. We are
worse at processing multiple stimuli presented at once than when the
identical stimuli are shown one after the other in the same location.
This drop in performance hasbeenobserved in a variety of visual tasks,
such as searching for a target among distractors1,2, recognizing an
object when surrounded by flankers3, or keeping multiple items in
short-term visual working memory4.

A neural phenomenon attributed to limited visual capacity is
simultaneous suppression: a reduced response when multiple visual
stimuli are presented at once than when the identical stimuli are
shown one after the other in sequence5–12. Simultaneous suppression
is prevalent and robust: it is observed across the visual cortex, from
the level of single-neuron spiking5–7, all the way to the level of entire
visual areas using functional magnetic resonance imaging (fMRI)8–12,
with large effect sizes: up to two-fold amplitude differences between
sequential and simultaneous presentations of otherwise identical
stimuli8,9,12.

A prevailing explanation linking simultaneous suppression to
visual capacity is based on the influential theory of biased
competition7,8,13. This theory argues that visual processing capacity is
determined by the computational resources afforded by receptive
fields, where the visual system prioritizes inputs that are behaviorally
relevant for further processing. When a visual stimulus is presented
alone in the receptivefield, the itemcanbe fully processedwith limited
neural resources. However, when multiple stimuli are presented at
once in the receptivefield, the stimuli are hypothesized to compete for
neural resources, resulting in a reduced neural response. This expla-
nation of stimuli competing for neural resources is linked to visual
attention, as it has been suggested that competition can be governed
by task or behavioral demands13. As such, a large body of research has
examined how simultaneous suppression is modulated by visual
attention7,8,14–16 and stimulus context10,11. However, it is unknown how
stimulus-driven computations within receptive fields may give rise to
simultaneous suppression in the first place. Thus, the goal of the
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present study is to operationalize and elucidate the computational
mechanismsunderlying simultaneous suppression in the humanvisual
cortex.

A key prediction stemming from the biased competition theory is
that simultaneous suppression will only occur in neurons whose
receptive fields are large enough to encompass several stimuli9,12. It is
well documented that the size of receptive fields17 and population
receptive fields (pRFs, aggregate receptive field of the neuronal
population in an fMRI voxel18,19) progressively increase from earlier to
higher areas up the visual hierarchy. Consistent with this idea, several
studies reported that simultaneous suppression systematically
increases up the visual hierarchy and is absent in V17–9,12, suggesting
that the lack of suppression in V1 is because its receptive fields are too
small to encompass multiple visual stimuli. However, there is an
assumption in prior work, which is that neurons sum inputs linearly
over the duration of the stimulus7,9,12,20. This assumption has empha-
sized research on how the spatial overlap between stimuli and the
receptive field may affect simultaneous suppression8,9,12 and less on
how stimulus timing may affect simultaneous suppression.

As stimuli have identical duration, size, and location across
simultaneous and sequential conditions, neurons summing linearly
over visual space and linearly over stimulus duration are predicted to
respond identically in these conditions. Therefore, the lower respon-
ses for simultaneous than sequential presentations suggest nonlinear,
and in particular, subadditive summation. Although linear summation
within receptive fields is observed in some cases21–23, violations of
response linearity in the human visual system have been extensively
reported. Spatially, responses to bigger stimuli are typically less than
the sumof responses to smaller stimuli22,24–27. Temporally, responses to
longer stimuli are typically smaller than the sum of responses to
shorter stimuli28–44. While both hemodynamic45–47 and
neural27,35,39–42,48–51 mechanisms may contribute to observations made
with fMRI, empirical and computational modeling studies suggest that
the observed subadditivity is driven by compressive summation of
visual inputs within neurons’ receptive fields across space27,50 and
across time33,36,38,40–44. Therefore, rather than considering how context
or task demands affect simultaneous suppression, we asked: To what
extent is simultaneous suppression a consequence of compressive
computations within visual receptive fields? Here, we consider two
possible classes of compressive neural mechanisms thatmay generate
simultaneous suppression: compressive spatial summation (CSS) and
compressive spatiotemporal (CST) summation.

CSS within the receptive field predicts that the response to mul-
tiple stimuli presented together within the pRF (as in simultaneous
conditions) will be lower than the sum of responses to the individual
stimuli shown alone (as in sequential conditions). As the duration of
stimuli is matched between the simultaneous and sequential condi-
tions, the spatial summation hypothesis predicts that the level of
simultaneous suppression will depend only on the spatial overlap
between the stimuli and the pRF. As both average receptive field size
and compressive nonlinearities increase up the visual hierarchy27,50,
CSS also predicts that the level of simultaneous suppression will
increase from earlier to later visual areas.

CST summation within the receptive field predicts that simulta-
neous suppressionwill not onlydependon the spatial overlapbetween
the stimuli and the receptive field, but also on the timing of stimuli.
This prediction is based on the empirical observation that neuronal
responses to visual stimuli vary over time, typically showing an initial
strong transient response at stimulus onset (lasting for 100–200ms),
followedby aweaker sustained response lasting for the durationof the
stimulus32,42,44,52–55, and often a transient response at stimulus
offset42,44,54. These nonlinear temporal dynamics suggest that pre-
senting all stimuli at once in the pRF (as in simultaneous conditions)
results in two transients (at stimulus onset and offset). This response
will be lower than the accumulated response induced by multiple

visual transientswhenpresentingmultiple stimuli onebyone in a rapid
fashion (as in sequential conditions). Thus, the spatiotemporal
hypothesis predicts that the level of simultaneous suppression will
depend both on the spatial overlap between the stimuli and the pRF,
and the difference in the number of visual transients between simul-
taneous and sequential conditions. Similar to compressive spatial
nonlinearities, compressive temporal nonlinearities also increase the
visual hierarchy39–42,44,51, predicting an increase in the level of sup-
pression as pRF size and spatiotemporal compression increase.

Here, we used fMRI and a computational pRF framework to dis-
tinguish between these hypotheses. We conducted two fMRI experi-
ments. In the first (SEQ-SIM, Fig. 1a), we measured responses to
sequentially or simultaneously presented stimuli and examined how
stimulus size and timing affect the level of simultaneous suppression in
each voxel of the visual system (Fig. 1b). In the second experiment
(retinotopy, Fig. 1d), we estimated each voxel’s spatial pRF parameters
and used estimated parameters in a pRF modeling framework to pre-
dict the blood oxygen level-dependent (BOLD) time series for each
voxel in the SEQ-SIM experiment. We then implemented several pRF
models in our modeling framework to computationally test our
hypotheses. To test the CSS hypothesis, we used a CSS pRF model27 as
it successfully predicts subadditive responses to stimuli of different
sizes in pRFs across the visual hierarchy. To test the CST summation
hypothesis, we used a CST summation pRF model51, which captures
pRF responses to a large range of spatial and temporal stimulus con-
ditions by modeling neural responses in units of visual degrees and
milliseconds.

Results
To investigate what factors affect simultaneous suppression, we
designed an fMRI experiment in which participants viewed colorful
patterned square stimuli in upper and lower quadrants while per-
forming a 1-back rapid serial visual presentation (RSVP) letter task at
fixation. Squares could either be presented sequentially (one after the
other, in random order) or simultaneously (all at once) (Fig. 1a). For
each pair of sequential and simultaneous conditions, individual square
presentation is identical in size and duration within an 8-s block such
that linear summation of visual inputs in space and time will generate
identical responses for both sequence types. To distinguish between
spatial and spatiotemporal mechanisms of simultaneous suppression,
we varied square size and timing (Fig. 1b, c). Additionally, participants
completed an independent retinotopy experiment56 to delineate visual
areas and estimate spatial pRF parameters in each voxel (Fig. 1d).

In each visual area, we measured BOLD responses in voxels in
which pRF centers overlapped with SEQ-SIM stimulus quadrants. We
then determined how spatial and temporal stimulus properties affect
simultaneous suppression for each pRF across visual areas spanning
ventral, lateral, and dorsal processing streams. We predict that if
simultaneous suppression is of spatial origin, there will be greater
suppression in higher-level than early visual areas because higher-level
areas contain larger pRFs that will overlap multiple squares and also
show greater spatial compression27. Additionally, we predict that
varying square size but not timing will affect simultaneous suppres-
sion. If simultaneous suppression is of spatiotemporal origin, in addi-
tion to observing greater suppression for larger pRFs in higher-level
areas, we also predict stronger suppression for long (1 s) than short
(0.2 s) presentations because the former has longer sustained stimulus
periods, resulting in four times fewer visual transients in the 8-s sti-
mulus blocks than the latter (Fig. 1b).

To give a gist of the data, we first show results from example
voxels in early (V1) and higher-level (VO1/2) areas of the ventral stream.
These visual areas differ in overall pRF size and spatial compression: V1
pRFs are small and typically overlap only one square, whereas VO1/2
pRFs are large, typically overlap multiple squares, and have more
compression than V1 pRFs.
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V1 voxels with small pRFs show modest to no simultaneous
suppression
For a single V1 voxel with a small pRF overlapping only a single square,
we find similar responses for simultaneous vs sequential presentations
for the two stimulus sizes and presentation timings (Fig. 2a) as the
stimulus within the pRF is identical across the two types of presenta-
tion sequences. In other words, this voxel shows no simultaneous
suppression. Additionally, we observe that for this V1 voxel responses
are larger for short presentations (many visual transients) vs long
presentations (few visual transients) even though the total duration of
stimulation across the blocks is identical. However, there is no differ-
ence in the response amplitude for small vs big squares of the same
duration (left vs right panels).

To assess simultaneous suppression, we compare single voxel
response amplitudes for simultaneous vs sequential presentations for
each stimulus condition. No suppression will result in voxels falling on
the identity line, whereas simultaneous suppression will result in
voxels below thediagonal. In V1, wefind thatmany voxels fall closely or
just below the identity line (Fig. 2b, example participant and Supple-
mentary Fig. 1, all participants) even as response levels are higher for

short vs long stimulus presentation timings. To quantify this rela-
tionship, we fit a linear mixed model (LMM) relating the simultaneous
amplitude to the sequential amplitude across V1 voxels using a fixed
interaction effect for conditions, and a random effect for participants
(i.e., intercepts and slopes vary per participant and condition, Eq. 1).
LMM slopes of 1 indicate no suppression, slopes less than 1 indicate
simultaneous suppression, where smaller slopes correspond to
stronger suppression levels.

Across participants, the LMM captures 86% of the variance in V1,
with the following average (±SEM) suppression levels: small and long
squares: 0.81 ± 0.07 (95% confidence interval, (CI95% ) = 0.56–1.06),
small and short squares: 0.85 ± 0.06 (CI95% = 0.73–0.96), big and long
squares: 0.85 ± 0.09 (CI95% = 0.56–1.4), and big and short squares:
0.84 ±0.08 (CI95% = 0.57–1.1). Thus, V1 voxelswith relatively small pRFs
show modest to no simultaneous suppression.

Strong simultaneous suppression for large pRFs in higher-level
visual areas
For a single VO voxel with a large pRF overlapping all four large
squares, we find lower responses for simultaneous than sequential

Fig. 1 | Overview of fMRI experiments. a SEQ-SIM experiment. Example trials for
small and short stimuli. Four colorful squareswerepresented in the upper right and
lower left quadrants, presented either sequentially in random order (left) or
simultaneously (right) interspersed by blank periods to match the trial duration.
Observers performed a 1-back rapid serial visual presentation (RSVP) letter task at
fixation. The letter is enlarged for visibility. b Stimulus conditions. Square stimuli
were shown either sequentially (SEQ) or simultaneously (SIM) in one of two pre-
sentation timings (0.2 s or 1 s) and in one of two sizes (4deg2 or 16 deg2). The
number of trials per block was adjusted to create a 4:1 ratio in the number of
transients (stimulus onsets or offsets) for short vs long durations. The number of
transients indicated is based on a pRF overlapping all four squares, e.g., for 1-s
sequentially-presented squares there are 16 transients per block: 4 stimulus
frames × 2 on/offsets × 2 trials. If a pRFoverlapsonly a single square (time series not

shown), the number of transients will be identical for SEQ and SIM pairs. For each
SEQ-SIM pairing, individual squares were shown for the same duration within a
single trial (red bracket). Trials were repeated within an 8-s block (black bracket),
where square content was updated for each trial. c Example of SEQ-SIM stimulus
run. A single 332-s SEQ-SIM run contained 16 8-s pseudo-randomized stimulus
blocks, interspersedwith 12-s blankperiods. Data are analyzed in 23-s timewindows
containing a pre-stimulus baseline period, one stimulus block, and a subsequent
blank period (zoom). d Retinotopy experiment. Observers viewed bars containing
cropped cartoon stimuli traversing the visual field (left, Toonotopy56) whilefixating
and performing a color change detection task at fixation56. The fixation dot is
enlarged for visibility. Data were used to define visual areas and to select pRFs with
centers overlapping stimulus quadrants in the main experiment (right). Orange
dots: pRF centers. Black outlines: pRF size (two standard deviations).
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presentations for both square sizes and presentation timings (Fig. 3a).
In other words, this voxel shows simultaneous suppression across all
experimental conditions. Additionally, we observe that the overall
response amplitudes of this voxel are larger for the big squares and
short presentations compared to the small squares and long
presentations.

We observe this pattern of results across VO voxels. Plotting the
average amplitude for simultaneous vs sequential presentations, we
find a linear relationship between responses to simultaneous and
sequential pairings, where voxels show simultaneous suppression and
the level of suppression varies across experimental conditions (Fig. 3b,
example participant and Supplementary Fig. 1, all participants). This
relationship is not a given, as simultaneous suppression could have
tapered off with response level. Instead, our data suggests that sup-
pression can be summarized with a single slope per visual area and
experimental condition.

Quantitative analyses using a LMM (R2 = 97%) revealed significant
simultaneous suppression varying with stimulus size and timing, with
the following suppression levels: small and long squares: 0.40 ±0.07
(CI95% = 0.15–0.65), small and short squares: 0.65 ± 0.05

(CI95% = 0.55–0.75), big and long squares: 0.62 ± 0.1 (CI95% = 0.31–0.93),
and big and short squares: 0.70 ±0.03 (CI95% = 0.54–0.87). Notably, for
stimuli of the same duration, there is stronger suppression (smaller
slopes) for the small vs big squares. However, for the same square size,
there is stronger suppression for long vs short presentation timings.
This suggests that in VO1/2, in addition to the stimulus’ spatial overlap
with the pRF, timing also contributes to simultaneous suppression.

Simultaneous suppression increases up the visual hierarchy and
depends on stimulus size and presentation timing
We next quantified the relationship between responses in simulta-
neous vs sequential presentations across the visual hierarchy. Our data
show four findings. First, in each visual area and stimulus condition, we
find a linear relationship between voxels’ responses to simultaneous
and sequential stimuli (Fig. 4a, big and short stimuli and Supplemen-
tary Fig. 1, all conditions). Second, when quantifying this linear rela-
tionship by its slope, we find that simultaneous suppression is
prevalent at the voxel level in almost every visual area across partici-
pants. Third, across all stimulus conditions, we find that suppression
levels progressively increase from early visual areas (V1 to V2 to V3) to

Fig. 2 | V1 voxels showno to little simultaneous suppression. a Example V1 voxel
with small pRF overlapping a single square. The example voxel’s pRF (yellow circle)
is superimposed on square locations (black). Gray shaded area shows the example
voxel’s average BOLD time series ± standard error of themean (SEM) across repeats
for each stimulus condition. Above each time series is an example stimulus
sequence for eachcondition in an8-s block.Gray sequence: time series including all
square stimuli. Black sequence: time series for small pRF overlapping one square.
b Relation between BOLD amplitude (% signal change) for simultaneous vs

sequential blocks, for each size/duration condition. Data include all V1 voxels from
participant S3 with pRFs overlapping the square stimuli, averaged across a 9-s time
window centered on the peak response. Each dot is a voxel, colored by effective
pRF size from the independent retinotopy model fit (σ/√CSSn). Dashed line: no
suppression. Solid black line: linearmixedmodel (LMM) line fit for this participant’s
V1 data. Slope ± standard error (SE) is indicated in each panel. A slope of 1 indicates
no suppression.
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intermediate areas (hV4, LO1/2, and V3A/B), with the strongest simul-
taneous suppression in TO1/2 (Fig. 4b and Supplementary Table 1).
Fourth, up the visual hierarchy, simultaneous suppression levels
depend on stimulus conditions. In particular, higher-level visual areas
show stronger suppression for long vs short presentation timings, and
stronger suppression for small vs big square sizes. A two-way repeated
measures ANOVA revealed significant effects of visual area (F(8) = 23,
p = 7.3 × 10−27) and stimulus condition (F(3) = 27, p = 2.3 × 10−15) on
suppression slopes. There was no significant interaction between sti-
mulus condition and visual area (Supplementary Table 2; post-hoc
Bonferroni-corrected t-tests).

The increasing suppression levels across the visual hierarchy are
in line with our prediction that simultaneous suppression will be
stronger in visual areas that have larger pRF sizes. This relationship is
evident at the level of entire visual areas (Fig. 4b), but not across voxels
within an area (Fig. 4a). Within an area, we find similar suppression
levels for voxels with pRFs that drastically vary in size (e.g., VO1/2), yet
their level of suppression is predicted by a single line. Thus, while pRF
size is an important predictor of simultaneous suppression at the level
of an entire visual area, our data suggest that by itself, summation
within pRFs that vary in size is insufficient to explain different sup-
pression levels observed across stimulus conditions. Together, these
results reveal robust simultaneous suppression at the individual voxel

level that depends both on pRF size alongside stimulus size and timing
parameters.

To understand howmuch of the observed suppression in higher-
level visual areas is accumulated from earlier visual areas, we com-
pare suppression slopes between pairs of consecutive visual areas
within a processing stream. One possibility is that suppression
monotonically accumulates up the visual hierarchy irrespective of
stimulus condition (e.g., a consistent difference in slopes between
consecutive areas). Alternatively, suppression may increase until a
certain processing stage and then plateau (e.g., when the average
pRF size within a visual area is large enough to encompass all square
stimuli). Contrary to these predictions, we find that the difference in
suppression levels between consecutive visual areas varies by sti-
mulus condition, and suppression levels do not increase consistently
across the visual hierarchy nor plateau (Supplementary Fig. 2a).
Additionally, observed differences in suppression levels between
consecutive visual areas do not show a clear relationship with dif-
ferences in pRF size (Supplementary Fig. 2b) or differences in spa-
tiotemporal compressionwithin pRFs (Supplementary Fig. 2c). These
results suggest that there is some accumulation of simultaneous
suppression up the visual hierarchy, but that accumulation alone
cannot fully explain the observed simultaneous suppression levels in
higher visual areas.

Fig. 3 | Individual VO1/2 voxels with large pRFs show strong simultaneous
suppression effects. Same layout as Fig. 2, but for higher-level visual area VO1/2.
Data are from participant S3. a Example time series of a VO1 voxel. The example
voxel has a large pRF that covers all four squares of both sizes (yellow circle).

b Simultaneous vs sequential BOLD amplitude for all voxels in VO1/2. Dashed line:
no suppression. Solid black line: LMM line fit for this participant’s VO1/2 data. Slope
(± SE) is indicated in each panel.
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A spatiotemporal pRF modeling framework to predict simulta-
neous suppression at the single voxel level
To gain insight into the stimulus-driven computations that give rise to
different levels of simultaneous suppression at the voxel level, we
developed a computational framework that predicts the neural
population response in each voxel from its pRF given the frame-by-
frame stimulus sequence of the SEQ-SIM experiment (Fig. 5). To cap-
ture the brief nature of the stimuli and the neural response, both sti-
mulus sequence and predicted pRF responses have millisecond
resolution. This neural pRF response is then convolved with the
hemodynamic response function (HRF) to predict the voxel’s BOLD
response and downsampled to 1-s resolution to match the fMRI

acquisition resolution (Fig. 5a). Crucially, for each voxel, we use a
single pRF model and the stimulus sequence of the entire SEQ-SIM
experiment to predict its time series across all stimulus conditions at
once. For all tested pRFmodels, the spatial parameters of each voxel’s
pRF are identical and estimated from the independent retinotopy
experiment (Fig. 1d).

We test three pRF models. First, a CST summation pRF model51

(Fig. 5b) to quantitatively examine if compressive spatio-
temporal summation within pRFs can predict simultaneous suppres-
sion across all stimulus manipulations. The CST pRF model contains
three spatiotemporal channels that have the same spatial pRF (2D
Gaussian) but different neural temporal impulse response functions
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Fig. 4 | Simultaneous suppression increases up the visual hierarchy. a Sequen-
tial vs simultaneous BOLD amplitude of individual voxels for the small and short
stimulus condition. Each point is a voxel, colored by effective pRF size estimated
from independent retinotopy data. Each panel shows data of all ten participants.
Black solid line: LMM fit (average across participants). Dashed line: identity line.
Shaded area: CI95% across ten participants. Yellow circles: illustration of average
effective pRF size per visual area, ranging from 1° in V1 to 7.8° in TO1/2. b Sup-
pression levels for each stimulus condition and visual area. Slopes are derived from
LMM fit to simultaneous vs sequential average BOLD amplitude data from all ten

participants, for each visual area. A slope of 1 indicates no suppression. Smaller
slopes indicate increased suppression. Large colored dots: group average of a
visual area. Error bars: SEM across participants. Light gray dots: individual partici-
pant slopes (random effects). Early visual areas are in blue colors (V1: indigo, V2:
dark blue, and V3: light blue), ventral visual areas in green colors (hV4: dark green
and VO1/2: light green), dorsal visual areas are in purple colors (V3A/B: purple and
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(IRFs): a sustained, on-transient, and off-transient channel that cap-
tures stimulus duration, onsets, and offsets; neural IRFs use default
temporal pRF parameters from ref. 41. These spatiotemporal filter
outputs are rectified and subjected to a compressive static non-
linearity, which produces subadditive spatiotemporal summation for
both sustained and transient channels.

Second, we implement a CSS pRF model27 (Fig. 5c) to quantita-
tively test if subadditive spatial summation alone can explain simul-
taneous suppression. The CSS model is a 2D Gaussian followed by a
compressive static nonlinearity, and is successful in predicting spatial
subadditivity in voxels with larger pRFs beyond V1.

Third, we implement a linear spatial summationpRFmodel (LSS18)
(Fig. 5d) to quantitatively test if small voxels that show little to no
simultaneous suppression, such as those in V1, can be predicted by
linear summation in space and time. The LSS pRF is a 2D Gaussian and
sums over the stimulus linearly in time and across space. This model
was also used to validate our experimental design as it predicts that,
irrespective of pRF size, linear summation of stimuli in paired SEQ-SIM
conditions should result in the same response, i.e., no simultaneous
suppression.

We test these pRF models for four main reasons. First, they
describe a neuralmechanismwith a receptive field restricted to part of
the visual field; this restriction is needed to test the impact of stimulus
location and size. Second, the identical spatial pRF across models and

the similar static nonlinearity implementation for compressivemodels
(CST and CSS) allow for informative comparisons between models.
Third, both compressive models have the potential to predict simul-
taneous suppression within this stimulus regime. Fourth, CST and CSS
models have been successful in providing a comprehensive explana-
tion for subadditive visually-driven responses across visual cortex27,51.

Comparing pRF model performance in predicting observed
SEQ-SIM data
For each voxel, we generate three predicted BOLD responses, one for
each tested pRF model (CST, CSS, and LSS; see Supplementary Fig. 3
for example pRFmodel predictions). We fit eachmodel using split-half
cross-validation and quantified the cross-validated variance explained
(cv-R2) for each voxel. This provides a principled and unbiased way to
test the hypotheses.

For our example small V1 pRF, both spatial models (LSS and CSS)
predict the sameBOLD response for sequential and simultaneous pairs
(Fig. 6a, bottom andmiddle rows). This is because the pRF covers only
one small square, and consequently, the spatial summation is identical
across SIM and SEQ presentations. Comparing predictions to data,
both LSS and CSS models capture the voxel’s response to long sti-
mulus conditions, but underpredict the voxel’s response for short
stimulus conditions, resulting in the samecv-R2 of 44% for this V1 voxel.
In comparison, the CST pRFmodel best captures the response pattern

Fig. 5 | Computational modeling framework. a Model overview. From left to
right: given a binarized stimulus sequence and pRF model, the neural response is
predicted at millisecond time resolution. This neural response is convolved with
HRF to predict the BOLD response. After the convolution with the HRF, data are
downsampled to 1-s temporal resolution (TR in SEQ-SIM experiment). a.u.: arbitrary
units. b–d Tested pRFmodels. For each voxel, spatial pRF parameters are identical
for allmodels and estimated from the independent retinotopyexperiment (Fig. 1d).
Both CSS and LSS models sum linearly over time. For simulated pRF model pre-
dictions, see Supplementary Fig. 3. b Compressive spatiotemporal (CST) summa-
tion pRF model51. Temporal pRF parameters are default parameters from ref. 41.

Static power-law exponent parameter (< 1) is the same for all three spatiotemporal
channels and fitted to each voxel’s SEQ-SIM data. The overall predicted BOLD
response by the CST model is the weighted sum of the sustained and combined
transient channels. Red-blue color bar indicates the normalized amplitude of the
impulse response function (IRF). ReLU: rectified linear unit. c Compressive spatial
summation (CSS) pRF model27. 2D Gaussian followed by a static compressive
nonlinearity (power-law exponent < 1, estimated from retinotopy data). d Linear
spatial summation (LSS) pRF model18. LSS pRFs sum linearly across space and time
by computing the dot product between the binarized stimulus frame and the 2D
Gaussian pRF.
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across all stimulus conditions (cv-R2 = 51%), predicting no suppression
and larger BOLD amplitudes for short than long stimulus conditions
(Fig. 6a, top row).

When pRFs are large and cover multiple stimuli, like the example
VO1/2 voxel, the LSS pRFmodel predicts larger responses for big than
small squares, slightly higher responses for long than short presenta-
tions, and identical responses for sequential and simultaneous pairs.
As such, it fails to predict the observed simultaneous suppression in all
conditions (Fig. 6b, bottom row). On the other hand, the CSS pRF
model predicts simultaneous suppression because of spatial

subadditivity, as well as a modest increase in response with stimulus
size (Fig. 6b, middle row). Like the LSS model, the CSS model predicts
slightly larger responses for the long than short presentations of a
given sequence type (SIM/SEQ). Consequently, theCSSmodel predicts
simultaneous suppression well for long presentations across stimulus
sizes, but overpredicts simultaneous suppression for short presenta-
tions. In contrast, the CST pRF model best predicts all stimulus con-
ditions for this example voxel: it shows simultaneous suppression,
slightly larger responses for big vs small stimulus sizes, and larger
responses for short vs long presentation timings (Fig. 6b, top row).

Fig. 6 | Comparison of performance across pRFmodels. a V1 example voxel time
series.Gray shaded area: average ± SEM across repeats for each stimulus condition.
Data are from the same voxel as in Fig. 2a repeated for each row. PRFmodel fits are
shown in dashed lines. Split-half cross-validated variance explained (cv-R2) is
computed by fitting the predicted time series to the average of odd runs and
applying the model fit to the average of even runs and vice versa. Blue: CST sum-
mation model (top row). Orange: CSS model (middle row). Black: LSS model
(bottom row). b VO1/2 example voxel. Data are from the same voxel as in Fig. 3a
repeated for each row. Same color scheme as panel A. c Distribution of voxel-level

cv-R2 for each pRF model, all ten participants. Triangle: median. Dotted line: noise
ceiling computed from max split-half reliability across participants. Blue: CST.
Orange: CSS. Gray: LSS. Since a number of voxels varies per participant and visual
area, we assure equal contribution of each participant by resampling data 1000
times of each participant’s visual area.d Pairwisemodel comparison for each visual
area. Bars: average across ten participants of the voxelwise difference in cv-R2

between two pRF models. Error bars: SEM across ten participants. Individual dots:
average difference for each participant. Blue-gray: CST vs LSS. Blue-orange: CST vs
CSS. Orange-gray: CSS vs LSS.
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Across all voxels and visual areas, we find that the CST pRFmodel
best predicts the observed data in the SEQ-SIM experiment (Fig. 6c, d).
The CST pRFmodel explains more cv-R2 than LSS and CSS pRFmodels
and approaches the noise ceiling in V3 and higher-level visual areas
(Fig. 6c, dotted line). A two-way repeated measures ANOVA revealed
significant effects of pRF model (F(2) = 2.6 × 103, p = 10−209) and region
of interest (ROI) (F(8) = 3.4 × 103, p = 10−209) on cv-R2, as well as a sig-
nificant interaction between pRF model and ROI (F(2,8) = 65,
p = 2.8 × 10−209) (post-hoc Bonferroni-corrected t-tests are reported in
Supplementary Table 3). On average, the increase in cv-R2 for the CST
model compared to the other models ranges from ~5% in V1 to ~12% in
VO1/2 (Fig. 6d). Beyondearly visual cortex, theCSSmodel outperforms
LSS, but in V1 the LSS model slightly (M = 1.4%, SE = 0.24%) and sig-
nificantly (p = 2.7 × 10−8, CI95% = 0.80–2.0%) explains more cv-R2 than
the CSS model. These results suggest that V1 voxels largely sum line-
arly in space, but nonlinearly in time. However, across the visual
hierarchy, CST summation provides a more comprehensive explana-
tion of the empirical data.

To what extent do pRF models predict simultaneous suppres-
sion across visual cortex and stimulus conditions?
To understand the underlying neural computations that generate
simultaneous suppression, we use pRF models to predict the level of
simultaneous suppression in each voxel and condition of the SEQ-SIM
experiment. Then, we compare the model-based simultaneous sup-
pression against the observed suppression (Fig. 7, shaded gray bars).

The CST model best captures simultaneous suppression across
visual areas and stimulus conditions as its predictions are largely
within the range of data variability (Fig. 7, compare blue circles to
shaded gray bars). Specifically, the CST model predicts (i) progres-
sively increasing simultaneous suppression across the visual hierarchy,
(ii) stronger suppression for longer than shorter presentation timings
for squares of the same size, and (iii) weaker suppression for bigger

than smaller squares of the same timing. The CST model performs
similarly with pRF parameters that are optimized using data from the
independent spatiotemporal retinotopy experiment51 (Supplementary
Figs. 8 and 9).

The CSS model captures the progressively stronger simulta-
neous suppression across the visual hierarchy and the observed
simultaneous suppression for the long stimuli in a few visual areas
(V3A/B, IPS0/1, and TO1/2), but fails to predict suppression for short
stimuli and generally overpredicts the level of suppression (Fig. 7,
orange circles). In other words, the CSS model predicts much
stronger simultaneous suppression levels than observed, as model
predictions are consistently below the data. This overprediction is
largest for short presentation timings in early (V1–V3) and ventral
visual areas (hV4 and VO1). One reason for this mismodeling error is
that the CSS model does not encode visual transients: it predicts
stronger simultaneous suppression for small than big sizes but pre-
dicts similar simultaneous suppression for long and short presenta-
tions of the same square size.

Finally, and as expected, the LSS model does not predict simul-
taneous suppression altogether. This is because the LSS model sums
visual inputs linearly in space and time, and we designed our experi-
ment such that each square is shown for the same duration and loca-
tion in sequential and simultaneous conditions. Therefore, the LSS
model predicts the same responses for sequential and simultaneous
stimulus pairings and consequently no suppression (Fig. 7, black open
circles). For the big and long squares, the LSS model predicts slightly
higher responses for simultaneous vs sequential presentations. We
attribute this to our experimental design, which has different inter-
stimulus intervals (ISIs) of individual squares between sequential and
simultaneous blocks, see “Methods—LSS pRF model”).

Thus far, we primarily focused on two compressive pRF models
(CST and CSS) and found that CST pRFs best predict simultaneous
suppression. However, this does not rule out the possibility that
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other types of subadditive mechanisms within pRFs can account for
simultaneous suppression. One such mechanism is center-surround
suppression, which is most prevalent in the early stages of visual
processing (retina57, LGN24, and V158). To test this possibility, we
simulated difference of Gaussians (DoG) pRFs48 for voxels in V1
through hV4. In these visual areas, DoG pRFs have a positive center
that encompasses one or few squares while the larger, negative
surround covers more squares, which may suppress the overall
response in simultaneous conditions (Supplementary Fig. 7a). Yet,
we find that DoG pRFs predict no simultaneous suppression in V1
through hV4 for our stimuli (Supplementary Fig. 7b). Instead, like the
LSS model, DoG pRFs sum linearly over the spatial and temporal
extent of the stimulus, resulting in similar responses across SIM and
SEQ conditions.

A second potential subadditive mechanism is delayed
normalization42,44. To test this mechanism, we implement a delayed
normalization spatiotemporal (DN-ST) pRF model for seven partici-
pants who completed a separate spatiotemporal retinotopy
experiment51. Like the CST model, the DN-ST model captures the
increase in simultaneous suppression across the visual hierarchy, as
well as differences in suppression levels with stimulus size and timing
(Supplementary Fig. 8a). A two-way repeatedmeasures ANOVA reveals
significant effects of pRFmodel (F(2) = 1.1 × 102, p = 6.3 × 10−47) and ROI
(F(7) = 1.3 × 103, p = 10−47) on cv-R2 (Supplementary Fig. 8b), where the
DN-ST model with optimized pRF parameters predicts overall less cv-
R2 than either CST model: 3.9% less cv-R2 than CST pRFs with fixed
parameters and 1.5% less cv-R2 than CST pRFs with optimized para-
meters. In particular, DN-ST pRFs tend to underpredict the level of
simultaneous suppression for short stimulus timings (0.2 s) (Supple-
mentary Fig. 9a). The ANOVA also indicates a significant interaction
between the pRF model and ROI (F(2,7) = 5.0, p = 1.6 × 10−9), where
both CSTmodels perform significantly better than the DN-STmodel in
almost all visual areas, and the main CST pRF model explains slightly
but significantly more cv-R2 than the optimized CST pRF model in
visual areas V1, hV4, V3A/B, LO1/2, and TO1/2 (Supplementary Table 4,
post-hoc Bonferroni-corrected t-tests).

Together, these model comparisons suggest that accounting for
spatiotemporal nonlinearities rather than just spatial nonlinearities is
necessary for predicting simultaneous suppression across a variety of
spatial and temporal stimulus conditions.

What intrinsic pRF components drive the observed simulta-
neous suppression?
To elucidate what pRF components predict the varying levels of
simultaneous suppression across the visual system, we examine the
relationship between the average suppression level and CST pRF
model parameters. We find that simultaneous suppression increases
with pRF size, spatiotemporal compression (CSTn), and necessitates
contributions from both sustained and transient temporal channels
(Fig. 8). Visual areas with larger pRF sizes tend to show stronger
simultaneous suppression levels (smaller slopes, Pearson’s correlation
r = −0.72, CI95% = −0.81 to 0.59, p = 10−5) (Fig. 8a). Likewise, visual areas
with stronger spatiotemporal compression within pRFs (smaller
exponents) are linked to stronger simultaneous suppression levels
(Pearson’s r = 0.65, CI95% = 0.50–0.76, p = 10−5) (Fig. 8b).

Lastly, we find that across visual areas, both sustained and tran-
sient channels contribute to predicting single voxel BOLD responses,
as their β-weights are similar (no significant difference in β-weights
across channels) (Fig. 8c). These results indicate that both sustained
and transient channels are needed to predict simultaneous suppres-
sion across different stimulus size and timing conditions.

Examining the relationship between simultaneous suppression
and optimized CST model parameters underscores our findings that
larger pRF sizes, stronger compressive nonlinearity (i.e., smaller
exponents), and contributions of both sustained and transient chan-
nels are important for predicting the level of simultaneous suppres-
sion across the visual hierarchy, whereas time constant parameters do
not systematically co-vary with observed suppression levels (Supple-
mentary Fig. 9b–e). The DN-ST model shows similar a relationship as
the CST model, where increased levels of simultaneous suppression
are predicted by larger pRF sizes and stronger spatiotemporal com-
pression within the pRF via larger semi-saturation constants in the
denominator, smaller exponents, and increased exponential decay
time constants (Supplementary Fig. 9f–i). These results suggest that
simultaneous suppression can be predicted by more than one imple-
mentation of a CST mechanism (static nonlinearity vs delayed divisive
normalization).

Because the static nonlinearity in CST pRFs is applied to the
output of spatiotemporal channels, the compressive nonlinearity is of
a spatiotemporal nature and cannot be separated into spatial and
temporal dimensions. Nevertheless, we can gain insight into the

Fig. 8 | Simultaneous suppressiondependsonpRF size, compressive exponent,
and contributions from both sustained and transient channels. In all panels:
dots/bars show the average across ten participants. Error bars: SEM across ten
participants. a Simultaneous suppression level vs median pRF size. b Simultaneous
suppression level vs median CST pRF exponent. For effective size and exponent
pRF parameters, we first computed themedian across pRFs of a visual area for each
participant, as compressive exponent values in V1 and V2 voxels are not normally
distributed (see Supplementary Fig. 4), then we calculated the average median
value across participants. Pearson’s correlation (r) is computed using individual

participant data.p: p-value. cAverageβ-weights of sustained and transient channels
in CST pRFmodel. Beta weights are averaged first within a participant’s visual area,
then averaged across participants per visual area. Colored bars: sustained channel.
White bars with a colored outline: combined transient channel. Dark gray dots:
individual participant data for the sustained channel. Light gray dots: individual
participant data for the combined transient channel. Differences between sus-
tained and combined transient channels are not significant. d Median exponent
pRF parameters for CSS vs CST model. A dashed line indicates an equality line.
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different contributions of spatial versus spatiotemporal compression
by comparing the exponent across themain CST and CSS pRFmodels.
We find that across all visual areas, CSS pRFs have smaller exponents
(resulting in more compression) than CST pRFs with a fixed time
constant (Fig. 8d). This overly strong compression by the CSS model
likely explains its mismodeling of the short stimuli, where it predicts
too much suppression (Fig. 7). Interestingly, while CST pRFs with
optimized spatiotemporal parameters have similarly small exponents
likeCSS pRFs (Supplementary Fig. 9c), theCSTpRFs aremore accurate
than CSS pRFs in predicting simultaneous suppression across stimulus
conditions (Supplementary Fig. 9a).

Overall, these results suggest that both spatial and temporal
nonlinearities within pRFs are necessary to account for the observed
simultaneous suppression, and ultimately interact.

Discussion
Simultaneous suppression is a decades-old, yet perplexing neurophy-
siological phenomenon: Why is the response to multiple stimuli pre-
sented simultaneously substantially lower compared to the response
to the same stimuli presented sequentially? Here, we combined a new
experimental design, varying stimulus size and presentation timing,
with an innovative spatiotemporal pRF modeling framework to eluci-
date the stimulus-driven computations that may give rise to simulta-
neous suppression in individual voxels. Our results show that the level
of simultaneous suppression depends not only on the spatial overlap
between stimuli and the pRF, but also on the timing of stimuli and the
number of visual transients. Furthermore, we find that compressive
(subadditive) spatiotemporal computations by pRFs predict simulta-
neous suppression in eachvoxel across the visual hierarchy, and across
various experimental conditions. Thesefindings suggest that stimulus-
driven CST computations by pRFs generates simultaneous suppres-
sion and necessitates a rethinking of the neural mechanisms involved
in simultaneous suppression.

By investigating simultaneous suppressionunder a computational
lens, measuring and predicting each voxel’s pRF response indepen-
dently, we provide a mechanistic explanation on how the spatial
overlap between the stimulus and pRF drives simultaneous suppres-
sion at the single voxel level. This confirms the longstanding hypoth-
esis that the overlap between the receptive field and stimuli
matters8,9,12. Additionally, we show that increasing simultaneous sup-
pression up the visual hierarchy is predicted by both the progressive
increase in pRF size and strength of spatiotemporal compression.

Crucially, we are able to explain a wide range of simultaneous
suppression levels by stimulus-driven computationswithinpRFsalone,
which necessitates a rethinking of the neural processing underlying
simultaneous suppression. Thus, we propose a new idea that simul-
taneous suppression is a consequence of simple, stimulus-driven
spatiotemporal computations rather thana result of stimuli competing
for limited neural resources within receptive fields and prioritized by
task demands. As our computational framework uses a stimulus-
referred encoding model, it has predictive power. This allows future
research to make new predictions about suppression levels for any
stimulus sequence. The framework is also modular and can be
expanded to computationally operationalize the effects of stimulus
content, context, and task demands on simultaneous suppression.

Consistent with previous work7–9,12, our data show that simulta-
neous suppression increases up the visual hierarchy and is particularly
strong in ventral visual areas (hV4andVO1/2). Notably, wefind that not
only stimulus size and location, but also stimulus timing and number
of visual transients affect the level of simultaneous suppression: for
stimuli of the same size, longer timings (1 s) with fewer transients
generated stronger suppression levels than shorter timings (0.2 s)with
more transients.

Contrary to prior studies8–12, we find moderate levels of suppres-
sion already in V1, despite its small receptive fields. This may be

because of multiple differences between studies. First, differences in
the level of analysis:wequantify simultaneous suppression at the voxel
level vs ROI level in prior fMRI studies8–12. Second, differences in which
pRFs are analyzed: we include all pRFs that overlap the stimuli,
including small pRFs that partially overlap multiple squares, but prior
electrophysiology studies used stimuli that completely overlap with
neurons’ receptive fields5–7. Third, differences in stimulus timing: prior
studies used a single stimulus timing (0.25 s per stimulus)8–12, which is
similar to our short stimuli, for which we find weaker levels of simul-
taneous suppression.

To test whether CSS or CST summation can predict simultaneous
suppression across experimental conditions, we compared multiple
pRF models. Overall, the CST pRF model provides a comprehensive
explanation for simultaneous suppression across voxels spanning the
ventral, dorsal, and lateral visual processing streams, as well as stimuli
varying in size and presentation timing. This high performance of the
CST model across all visual areas is not a given, as different models
could have better predicted certain visual areas or processing streams.

Spatial pRF models captured some, but not all aspects of the
observed simultaneous suppression. For instance, CSS pRFs are able to
predict simultaneous suppression for long (1 s) but not shorter (0.2 s)
presentation timings in several visual areas. As LSS, DoG, and CSS pRF
models are developed for stimulus durations and intervals that evoke
BOLD responses that approximately sum linearly in time, thesemodels
are limited because they do not account for visual transients. This
assumption of temporal linearity is not only a limitation of the spatial
pRF models we tested, but of any other pRF model that sums linearly
over the stimulus duration, suchas linear spatiotemporal pRFmodels49

or other center-surround pRFs50.
Likewise, we show that other mathematical forms of subadditive

spatiotemporal summation, a DN-ST pRF model, can predict simulta-
neous suppression across stimulus conditions, as well as across visual
areas. When inspecting pRF parameters of the tested spatiotemporal
pRF models (CST and DN-ST), we find that pRF size and compressive
nonlinearities that incorporate visual transients at the neural level are
crucial for predicting simultaneous suppression.

While our spatiotemporal pRF models outperform spatial pRF
models in predicting simultaneous suppression across stimuli size and
timing, CST and DN-ST pRFmodels did not capture all spatiotemporal
nonlinearities. For instance, for long stimuli, both CST and DN-ST
models tend to overpredict suppression in early visual areas. Future
research may improve CST and DN-ST model performance by opti-
mizing parameters of both neural and hemodynamic temporal IRFs in
each voxel51. Additionally, the estimation of some pRF model para-
meters ismore sensitive to the experimental design andHRF variability
(e.g., pRF time constant) than others (e.g., pRF position)51. Therefore,
we stress that it is important to consider how the experimental design
may affect pRF parameter estimates and subsequent model
performance.

We are not the first to consider temporal aspects of BOLD
responses in models of the human visual system. Prior studies have
suggested other hemodynamic45–47 and neural35,39–42,48–50 IRFs to cap-
ture BOLD temporal nonlinearities (see review59). Notwithstanding the
success of these models, only the recent development of a CST pRF
model51 with neural IRFs in units of visual degrees and milliseconds
provided us with the opportunity to examine what subadditive spa-
tiotemporal computations contribute to simultaneous suppression for
the following reasons. First, a successful model needs to account for
neural nonlinearities. We believe that the observed nonlinearities are
of neural rather than hemodynamic origin, as electrocorticography
and single-unit recordings show that neural responses to brief visual
stimuli evoke strong visual transients and are nonlinear42. In a recent
study, we have shown that implementing such neural nonlinearities in
a computational model rather than optimizing hemodynamic
responses is necessary to predict BOLD temporal nonlinearities to
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brief stimuli as in the present study51. Second, to capture visual tran-
sients in rapid succession, the model requires neural IRFs with milli-
second precision and a 50–200ms response window rather than a
1–4 s window as afforded by hemodynamic models47,49. Third, the
model also requires a spatial pRF. While prior studies have modeled
neural IRFs with millisecond time resolution35,39–42, without a spatial
component these models are unable to predict differences in
responses to one vs multiple stimuli covering a pRF.

A key insight from our study is that both increasing pRF size and
stronger spatiotemporal compression contribute to increasing levels
of simultaneous suppression up the visual processing hierarchy. This
insight complements prior work8,9 which proposed that the pro-
gressive increase in receptive field size causes stronger simultaneous
suppression in higher-level areas.

Increasing receptive field size and compression from early to
higher-level visual areas have been interpreted as increasing summa-
tion windows that enhance invariance both in space22,27,50,60,61 and
time28,32,33,37,39,40,44. This aligns with the idea that spatial and temporal
compression of visual information shares a similar processing
strategy40 and suggests that CST summation may be a general com-
putational principle in the visual cortex. Moreover, our findings show
that spatiotemporal receptive field models can be leveraged to gain
insights about neural responses beyond the processing of visual
motion and dynamic information, such as predicting responses to
rapidly presented stimuli varying in spatial locations, as in the present
study. In addition to predicting the level of simultaneous suppression,
theCSTpRFmodel showed that ventral visual areasare highly sensitive
to the temporal properties of the visual input. Thesefindings are in line
with prior work showing that dynamic visual inputs affect not only
motion-sensitive neurons in V1 and MT but also drive ventral visual
stream areas V2, V3, hV4, and VO36,62–68.

Whatmaybe the role of compressive spatiotemporal summation?
Little is known regarding to the role of CST summation outside of
motion processing69–72. One possibility is that increasing CST summa-
tion generates representations that encode complex shape and
motion information that unfolds over time73. This may be useful for
binding different views of novel objects during unsupervised learning
associated with ventral stream functions74,75 or for perceiving complex
visual dynamics, actions, and social interactions associatedwith lateral
stream functions76–78. Another possibility is that spatiotemporal com-
pression within pRFs may enable neurons to prioritize novel visual
information13,79. Thismay be beneficial for visual search1,2 or short-term
visual working memory by converting redundant visual information
into a more efficient representation80. However, spatiotemporal
compression may also limit visual processing capacity, affecting
downstream cognitive processes such as worse memory for simulta-
neously vs sequentially presented items81. Thus, an important future
direction is characterizing and computationally linking the neural
phenomenon of simultaneous suppression to behaviors such as visual
capacity, and testing what computational mechanisms generalize
across scenarios and tasks.

In sum, our empirical data and voxel-wise pRFmodeling approach
call for a rethinking of the neural mechanisms that drive simultaneous
suppression and suggest that suppression is a byproduct of com-
pressive spatiotemporal computations. These findings provide an
exciting new framework to computationally understand how stimulus
content, context, and task demands affect simultaneous suppression
and visual processing capacity more broadly.

Methods
Participants
Ten participants (six self-identified as female, four self-identified as
male, ages 22–53 years, M = 30.1 years, SD = 8.7 years) with normal or
corrected-to-normal vision participated in a retinotopy and SEQ-SIM
fMRI experiment. Participants were recruited from the Stanford

University community, including the three authors. Participants gave
written informed consent, were compensated for their time, and all
procedures were approved by the Stanford Internal Review Board on
Human Subjects Research. We did not consider sex and/or gender in
this study design.

Stimuli and experimental design
Stimuli were generated using MATLAB R2017b (MathWorks, MA, USA)
and PsychToolbox82 on an Apple MacBook Pro laptop. Images were
presented using an Eiki LC-WUL100L projector (Eiki International, Inc.,
CA, USA) on a rear-projection screen via two largemirrors placed at the
back of the MRI scanner bed. The projected image had a resolution of
1920 × 1080 pixels, resulting in a field-of-view of ~38 × 24°, and a
refresh rate of 60Hz. The display was calibrated using a linearized
lookup table.

Retinotopy experiment. Participants completed four 3.4-min runs,
where bar stimuli cropped from colorful cartoons traversed across a
24 × 24° circular aperture (Toonotopy56). Cartoon images inside the
bar changed randomly at 8Hz. The bar swept in 12 discrete steps, 2-s
per bar position, for four orientations (0°, 45°, 90°, and 135°) and two
motion directions for each orientation. Observers fixated on a central
dot (diameter = 0.12°) and pressed a button every time the fixation dot
changed color (semi-random intervals, 6–36 s). Due to a coding error,
button presses were only recorded for 3 participants, who performed
at the ceiling (M = 98.7% correct, SD = 1.2%).

SEQ-SIM experiment. Participants completed eight ~5.5-min runs
(except for participant S5, completing six runs), where eight squares
were presented sequentially or simultaneously while fixating: four
squares in the lower left quadrant and four squares in the upper right
quadrant. Both sequential and simultaneous conditions used two
presentation timings (short: 0.2 s and long: 1 s) and two sizes (small:
2° × 2° and big: 4° × 4°), resulting in eight conditions.

Stimuli. Squares were randomly cropped from colorful cartoons and
placed on a mean luminance gray background. To ensure square sti-
muli would elicit responses in visual cortex, squares with little to no
contrast were excluded (normalized root mean square contrast across
pixels <10%). The content of individual squares differed for each trial
and quadrant, and never repeated within a run. Within a quadrant,
squares had a 2-by-2 layoutwith a0.82° gap between them, centered at
~7.1° eccentricity ([x,y] = [5°,5°]). Both sizes used identical gap and
eccentricity, such that four small squares extended horizontally and
vertically from 2.59° to 7.41°, and big squares extended from 0.59° to
9.41°. The lower left and upper right quadrants had the same square
locations but mirrored horizontally and vertically.

Experimental design. Stimuli were shown in ~8-s blocks, interspersed
by 12-s blank periods. Each run started with a 6-s countdown and a 12-s
blank and ended with a 12-s blank. Each condition was repeated four
times in a pseudo-randomized order across two runs. The block order,
as well as individual square presentationwithin a block, differed across
runs. Each participant was assigned a unique pair of runs, which were
repeated four times (three for participant S5) within the experiment
with different square content (see example: https://osf.io/7rqf4).

Sequential and simultaneous conditions had eight trials per block
for short stimuli and two trials per block for long stimuli. We used
different trial-per-block ratios such that short and long conditions had
a similar total block duration while the number of visual transients
quadrupled (16 vs 64)—matching the increase between small and big
square sizes (4 vs 16 deg2). In a sequential trial, the four squares in each
quadrant appeared one at a time, in random order, with a 33-ms ISI
between squares. In a simultaneous trial, all four squares in a quadrant
appeared at once for the same duration and location followed by a
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mean luminance gray display to match the duration of a
sequential trial.

Block onsets and stimulus conditions were identical across
quadrants, but the timing and order of individual square appearances
were independently determined per quadrant. In simultaneous blocks
with long stimulus presentations, stimuli in the first trial were pre-
sented atblock onset tomatch sequential blocks. Stimuli of the second
trial were presented 4 s later to avoid 7-s gaps between stimuli within a
block. In simultaneous blocks with short presentations, stimuli in the
first trial were also locked to block onset, but the onset of stimuli in the
following seven trials was randomized within a trial.

Task and behavioral performance. Participants performed a 1-back
letter RSVP task at fixation and pressed a button when a letter was
repeated (1/9 probability). The letters (diameter of ~0.5°) updated at
1.5Hz, alternating between black and white colors, and randomly drawn
fromapredefined list (‘A’, ‘S’, ‘D’, ‘F’, ‘G’, ‘H’, ‘J’, ‘K’, ‘B’, and ‘P’). Participants
had a 0.83-s response window after a letter appeared and performance
wasdisplayed after every run.Outside the scanner, participants did 1-min
practice runs until they reached at least 70% correct before starting the
experiment. In the scanner, participants performed the task well
(M=88% correct, SD=8.2%), ranging from 68–95% correct, and an
average false alarm rate of 2%. These behavioral data are confirmed by
steady fixation in eye movement data (Supplementary Fig. 5) and indi-
cate that participants were fixating throughout the experimental runs.

MRI data acquisition
Participants’ structural and functional data were collected using a
3 Tesla GE SignaMR750 scanner located in theCenter for Cognitive and
Neurobiological Imaging at Stanford University. Whole brain T1-
weighted anatomy data were acquired using a BRAVO pulse sequence
(1mm3 isotropic, inversion time =450ms, TE = 2.912ms, FA = 12°), using
a Nova 32-channel head coil. Functional data were collected using a
Nova 16-channel coil, using aT2*-sensitive gradient echoplanar imaging
sequence (2.4mm3 isotropic, FoV = 192mm, TE = 30ms, FA = 62°). EPI
slice prescriptions were oblique, roughly perpendicular to the calcarine
sulcus. The retinotopy experiment used a TR of 2000ms and 28 slices.
SEQ-SIM experiment used a TR of 1000ms and 14 slices. A T1-weighted
inplane image (0.75 ×0.75 × 2.4mm) was collected with the same coil
and slice prescription as the functional scans to align functional and
anatomical scans.

Left eye gaze data of nine participants were continuously recor-
ded in each SEQ-SIM run at 1000Hz using an EyeLink 1000 (SR
Research Ltd., Osgoode, ON, Canada). Eye position calibration and
validationwere conducted before the first run, using a 5-point grid.We
could not collect eye gaze data in one participant due to constraints in
themirror setup. Four participants were excluded prior to analysis due
to excessive measurement noise. Analysis details for eye gaze data are
in the Supplementary Material above Supplementary Fig. 5.

MRI data analysis
MRI preprocessing. Whole-brain T1-weighted scans were aligned to
theAC-PC line using SPM12 (https://github.com/spm/spm12) and auto-
segmented with FreeSurfer’s recon-all auto-segmentation83 (v6.0;
http://surfer.nmr.mgh.harvard.edu/). Small manual corrections of
segmentations were executed with ITK SNAP (v3.6.0; http://www.
itksnap.org/pmwiki/pmwiki.php). Functional data were slice-time
corrected, motion corrected, drift corrected, and converted to per-
cent signal change using the Vistasoft toolbox (https://github.com/
vistalab/vistasoft). Participants’ functional scans were aligned with the
inplane to their whole brain anatomy scan, using a coarse, followed by
a fine 3D rigid body alignment (6 DoF) using the alignvolumedata_auto
toolbox (https://github.com/cvnlab/alignvolumedata). The first 8
(SEQ-SIM) or 6 (Retinotopy) volumes of each functional scan were
removed to avoid data with unstable magnetization.

Retinotopy analysis. Retinotopy runs were averaged and analyzed
with Vistasoft’s CSS pRF model27 using a 2-stage optimization (coarse
grid-fit, followed by fine search-fit). For each voxel, this resulted in 2D
Gaussian pRFwith center coordinates (x0, y0) in degrees, pRF standard
deviation (σ) in degrees, and pRF static nonlinearity exponent (CSSn)
ranging from 0.01 to 1. To avoid pRFs that are not visually responsive,
we selectedpRFswithR2 ≥ 20% in the retinotopy experiment, similar to
previous pRF publications56,84.

Defining visual areas. Spatial pRF parameterswere converted to polar
angle and eccentricity maps and projected to the participant’s native
cortical surface using nearest neighbor interpolation. Visualfieldmaps
were used to define the following visual areas: V1, V2, and V385, hV4 and
VO1/286, LO1/2 and TO1/287, and V3A/B and IPS0/188.

Defining ROIs and selecting voxels. For each visual area, we selected
voxelswith pRFs centerswithin the circumference of the big squares in
the SEQ-SIM experiment, that is, within an 8.82° × 8.82° square located
0.59°–9.41° from thedisplay center in both x- and y-dimensions in each
quadrant. From these voxels, we used those with corresponding data
from the SEQ-SIM experiment. Overall, we obtained data in most
participants’ visual areas, except six participants who had insufficient
coverage of IPS0/1 and two participants who had insufficient coverage
of TO1/2, due to fewer slices in the SEQ-SIM experiment than in the
retinotopy experiment.

SEQ-SIManalysis.Weexcluded voxelswith a split-half reliability < 10%
to filter out those voxels with little to no visual response. Excluded
voxels weremostly fromV1 andV2, with small pRFs that fell in between
stimuli or on the border of stimuli. The two unique SEQ-SIM runs were
concatenated for each repeat. When applying split-half cross-valida-
tion for model fitting, the four concatenated runs were split into two
odd and two even runs, and averaged within each half.

Both observed and predicted run time series were averaged
across split-halves and segmented into 23-TR time windows. These
time windows spanned from 4 s pre-block onset, 8 s stimulus block, to
11 s post-block. For each voxel, we took the average time window and
standard error of the mean (SEM) across four repeats. The average
data and model time windows were summarized into eight values per
voxel (one per condition), by averaging the BOLD response within a
9-TR window centered on the peak, spanning from either 4–12 s or
5–13 s after stimulus block onset. These values were used in the LMMs
and scatter plots.We used a variable start per condition and visual area
because the BOLD accumulation rate differed. The start was deter-
mined by averaging (data ormodel) timewindows across voxelswithin
a visual area and condition, into a ‘grand mean’ time window and
finding the first TR after block onset where the BOLD response
exceeded 10% of the total cumulative sum. This averaging windowwas
applied to all voxels within a visual area.

Linear Mixed Model
To quantify simultaneous suppression, we fitted a linear mixed model
(LMM) to all participants’ voxels within a visual area with MATLAB’s
fitlme.m, using the maximum likelihood fitting method. This LMM
predicted the average simultaneous BOLD response of each voxel as a
function of the average sequential BOLD response, for each stimulus
condition (fixed interaction effect), allowing for a random intercept
and slope per participant and stimulus condition (random interaction
effect):

SIM ampl ∼ 1 + SEQ ampl ×Condition

+ ð1 + SEQ ampl ×Condition jParticipantÞ ð1Þ

where SIM ampl and SEQ ampl are matrices (nr voxels × 4) with con-
tinuous values, Condition is a categorial vector (1 × 4), and Participant
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is the group level for the randomeffects (ten participants formain pRF
models (LSS, CSS, CST, and DoG), 7 participants for CSTfix, CSTop, DN-
ST pRF models).

This LMMcaptured our data well (mean R2 = 90%, SD = 6.6%), with
V1: 86%, V2: 94%, V3: 94%, hV4: 92%, VO1/2: 97%, V3A/B: 95%, IPS0/1:
88%, LO1/2: 85%, and TO1/2: 76%). We tested this LMM against three
alternative LMMs: (i) mean sequential amplitude as a fixed factor (no
condition interaction effect) with one random intercept per partici-
pant, (ii) a fixed interaction effect with a single intercept per partici-
pant, identical for each stimulus condition, and (iii) a fixed interaction
effect with a random participant intercept for each condition. Despite
havingmore degrees of freedom (45) than the alternative LMMs (4, 10,
and 19), the main LMM was a better fit to the data as it had a sig-
nificantly higher log-likelihood than alternative LMMs, and lower AIC
and BIC for each visual area (Supplementary Fig. 6 and Supplementary
Table 5).

Summarizing simultaneous suppression effects. We summarized
LMM results for each condition and visual area as line fits with CI95%
using the slope and intercept of the individual participants
(Figs. 2b and 3b) or average across participants (Fig. 4a). For Fig. 4b,
we summarized the simultaneous suppression level using the aver-
age slope and SEM across participants. For Fig. 8, we first averaged
slopes across conditions within a participant, and then averaged
slopes across participants (± SEM). For Supplementary Fig. 2a, we
assessed differences in suppression levels between consecutive
visual areas. We computed the difference in suppression levels
separately for each participant by subtracting each participant’s
regression slopes of the earlier visual area from the subsequent
visual area. Visual area pairs are chosen based on a feedforward
visual hierarchy for each visual processing stream76–78. We then cal-
culated the average difference in suppression across ten participants
(± SEM) for each visual area pair and each stimulus condition. For
Supplementary Fig. 2b, c, we first calculated the average slopes
across stimulus conditions within a participant, then computed the
difference in suppression slopes between pairs of visual areas within
participants, and then computed the average difference in suppres-
sion across participants (± SEM).

pRF modeling framework
Ourmodeling framework contained threemain pRFmodels: (i) LSS, to
test linear spatial summation18, (ii) CSS, to test compressive spatial
summation27, and (iii) CST, to test compressive spatiotemporal
summation51. Both LSS and CSSmodels linearly sumover the temporal
duration of the stimulus.

Each model’s input is a 3D binarized stimulus sequence, pixels
by pixels (in visual degrees) by time (milliseconds). Each pRF is
applied to each frame of the stimulus sequence to predict the neural
pRF response. For each model, this neural response is then con-
volved with a canonical HRF (double-gamma SPM default) and
downsampled to the fMRI acquisition TR. This results in a predicted
BOLD response for the entire stimulus sequence. For each pRF that
overlapped stimuli in the SEQ-SIM experiment, predictions were
computed for each unique 5.5-min run, and then concatenated for
the two unique runs. Importantly, concatenated runs contained all
eight stimulus conditions, requiring each model to predict all con-
ditions simultaneously.

We model spatial pRF parameters in each voxel using indepen-
dent retinotopy data and then test which type of spatial and/or spa-
tiotemporal pRF computations predict simultaneous suppression in
each voxel in the main SEQ-SIM experiment.

LSS pRFmodel. The LSSmodel has a circular 2D Gaussian pRFwith an
area summing to 1. The pRF computes the dot product between the 2D
Gaussian and stimulus sequence at each time point to predict the

response of the neural population within a voxel:

Neural responseLSSðtÞ=
Z

S x, y, tð Þ � G x, yð Þdxdy ð2Þ

Gðx, yÞ= e
ðx�x0 Þ2 + ðy�y0 Þ2

2σ2 ð3Þ

where t is time in ms, S is the stimulus sequence with visual field
positions (x, y) in visual degrees by time in ms, and G is a circular 2D
Gaussian centered at visual field positions (x0, y0) with size in standard
devation (σ) in visual degrees.

This model sums inputs linearly in visual space and time, and
typically predicts the same BOLD response for sequential and simul-
taneous trials that arematched in stimulus size, location, and duration.
For longer stimulus durations, the LSS model occasionally predicts
larger responses for simultaneous than sequential conditions, due to a
difference in ISI between the two conditions. Specifically, the rando-
mized squareonset causes sequential ISIs to range from1–7 s,whichby
chance canbe longer than the fixed 4-s simultaneous ISI—especially for
small pRFs that overlap a single square. For these scenarios, the LSS
model predicts the BOLD responses accumulate less in the sequential
than simultaneous block.

CSSpRFmodel. TheCSSmodel has the same spatial pRFmodel as the
LSS model, followed by a static power-law nonlinearity:

Neural responseCSSðtÞ=
Z

S x, y, tð Þ � G x, yð Þdxdy
� �CSSn

ð4Þ

where t is time inms, the power-law exponent (CSSn) is boundbetween
0.01 and 1 and therefore results in compressive (subadditive)
summation.

CST pRF model. The CST model contains three spatiotemporal
channels for each voxel. Each channel has the same spatial pRF as the
LSS model, which is combined with a sustained, on-transient, or off-
transient neural temporal impulse response function (IRF).

For the main analysis, the sustained, on-transient, and off-
transient IRFs are identical across voxels, where neural IRFs are
based on the following gamma function:

IRF ðtÞ=
t
κτ

� �ðn�1Þe�
t
κτð Þ

κτ n� 1ð Þ!
ð5Þ

where t is time in ms, κ is the time constant ratio parameter, τ (tau) is
the time constant parameter in ms, and n is an exponent parameter.

The sustained IRF is amonophasic gamma function as in Eq. 5with
κ = 1, τ = 49.3ms and n = 9, resulting in a peak response between 40ms
and 50ms. The on-transient IRF is the difference of two gamma
functions: the sustained IRF and a second gamma function as in Eq. 5
with parameters: τ = 4.93ms, κ = 1.33, n = 10, resulting in a biphasic
function that generates a brief response at stimulus onset. These IRF
parameters are default V1 parameters from refs. 39,41, which are based
on human psychophysics89. The off-transient IRF is identical to the on-
transient IRF but with an opposite sign, generating a response at sti-
mulus offset. The area under the sustained IRF sums to 1, and the area
under each transient IRF sums to 0.

For each channel, we compute the spatiotemporal pRF response
to a stimulus sequence by first applying the dot product between the
spatial pRF and the stimulus sequence at each time point (ms resolu-
tion). This spatial pRF output is then convolved with the channel’s
neural temporal IRFs. The resulting spatiotemporal response is then
rectified to remove negative values in the transient channels as we
reasoned that either on- or off-transient responses will increase BOLD
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responses (sustained responses are always positive). The rectified
sustained, on-transient, and off-transient channel responses are then
subject to the same static power-law nonlinearity, controlled by the
exponent parameter (CSTn), resulting in the following neural response
for each channel:

Neural responseCSTi
tð Þ= IRFi tð Þ *

Z
S x, y, tð Þ � G x, yð Þdxdy

� �����
����

� �CSTn

ð6Þ

where i = [1, 2, 3] indicates the sustained, on-transient, or off-transient
channel, t is time in ms, * indicates convolution, and the power-law
exponent (CSTn) is bound between 0.1 and 1, compressing the
spatiotemporal channel responses. We use compressive nonlinearity
as we reasoned that simultaneous suppression is due to subadditive
summation.

After predicting neural responses for each channel, we sum on-
and off-transient channels. The sustained channel and combined
transient channels are then convolvedwith theHRF and downsampled
to 1-s resolution to predict fMRI data. The voxel’s response is the
weighted sumof the two (βs,βt) time series.Moredetails about theCST
model can be found in ref. 51.

Alternative pRF models. In addition to the main pRF models, we
tested two alternative spatiotemporal pRF models—CSTopt and DN-ST
—for 7 of our participants who took part in a separate spatiotemporal
retinotopy experiment51, and a difference of Gaussians (DoG) pRF
model48. We used CSTopt and DN-ST pRF model parameters that were
optimized with a default HRF to match the HRF of the main CST
pRF model).

Optimized compressive spatiotemporal (CSTopt) pRF model. The
same model as the above-mentioned CST model, but using optimized
spatial and temporal pRF parameters for each voxel, estimated from a
separate spatiotemporal retinotopy experiment (see ref. 51), to
understand the impact of using mostly fixed pRF parameters in the
CST model. When describing CSTopt model performance, we refer to
the main CST model as CSTfix, because its pRF parameters are fixed
(spatial parameters from the independent retinotopy experiment, a
fixed time constant from refs. 39,41), except for the exponent (CSTn),
which is estimated from the SEQ-SIM data.

Delayed normalization spatiotemporal (DN-ST) pRF model. A
delayed divisive normalization spatiotemporal pRF model, to test if
CST summationwithin the pRFwith a differentmathematical form can
equally well predict the SEQ-SIM data. The DN-ST model implements
subadditive summation using divisive normalization and an expo-
nential decay function40,42,44. As for the CSTopt, DN-ST model para-
meters are optimized for each voxel from a separate spatiotemporal
retinotopy experiment by Kim et al.51.

TheDN-STmodel has a 2D circularGaussian spatial pRFcombined
with a temporal IRF that contains a divisive normalization and an
exponential decay function as implemented in ref. 51:

Neural responseDN�ST tð Þ= r tð Þ
�� ��n

σDN
n + r tð Þ

�� �� * IRFDN2 tð Þ� �n ð7Þ

where t is time in ms, σDN is a semi-saturation constant, n is the
exponent, and r(t) is the linear component of the neural response
and computed as the convolution between the neural temporal
IRFDN1 and the spatial pRF response to the stimulus sequence (same
as Eq. 2):

r tð Þ= IRFDN1 tð Þ * Sðx, y, tÞ � Gðx, yÞ½ � ð8Þ

where IRFDN1 is a gamma function with time t in ms and first time
constant τ1 in ms:

IRFDN1 tð Þ= te�t=τ1 ð9Þ
The second temporal IRF in the denominator of the neural

response acts as a low-pass filter using an exponential decay function:

IRFDN2 tð Þ= e�t=τ2 ð10Þ

where t is time in ms and τ2 is the second time constant parameter in
ms. More details about the DN-ST model, spatiotemporal retinotopy
experiment, and optimization procedure can be found in ref. 51.

Difference of Gaussians (DoG) pRF model. To test whether center-
surround DoG pRFs predict simultaneous suppression, we simulate
each voxel’s pRF as the difference between two 2D Gaussians, a center
Gaussian from which a larger surround Gaussian is subtracted48. We
simulate DoG pRFs only for V1–hV4 for three reasons. First, the sur-
round pRF needs to encompass more visual input than the center pRF
to predict simultaneous suppression. These visual areas have pRFs
where the smaller pRF center will likely encompass a subset of square
stimuli and the larger suppressive surround pRF will likely encompass
more squares than the center. Second, the surround pRF of voxels in
visual areas beyond hV4will likely extend far beyond the visual display,
unlikely to make a significant contribution to the response. Third, the
effects of surround suppression are most prominent at early proces-
sing stages, including LGN24 and early visual cortex (V1–V348,50).

The center Gaussian is identical to the LSS pRF, estimated from
the retinotopy session (Eq. 2). The surround Gaussian has the same
center position with a larger size, where the scale factor was based on
the average center/surround size ratio from ref. 50; V1: 7.4, V2: 6.8, V3:
7.3, and hV4: 5.8 times the center size. We used a constant scaling for
all voxels within the same visual area, because directly estimating DoG
pRFs from the independent retinotopy data using the approach by
Zuiderbaan et al.48 resulted in unstable model fits. This instability is
likely due to the relatively few and short blank periods in our retino-
topy experiment compared to Zuiderbaan et al., which has 4 × 30 s-
blank periods for each 5.5-min run. We used scale factors by Aqil et al.
as Zuiderbaan et al. do not report average center-surround scale fac-
tors within a visual area and data are limited to V1, V2, and V3. We did
not implement the divisive normalization pRF model as described by
Aqil et al.50

Model fitting
We fitted each voxel’s pRFmodel prediction separately to data, using a
split-half cross-validation procedure. The maximum height of pre-
dicted BOLD run time series was normalized to 1 and we added a
column of 1’s to capture response offset. This resulted in two regres-
sors (β0,β1) for LSS andCSSmodels, and three regressors (β0, βs,βt) for
CST. We used linear regression (ordinary least squares) to fit these
regressors to the voxel’s observed run time series, separately for odd
and even splits. To determine model goodness-of-fit (variance
explained), we computed the cross-validated coefficient of determi-
nation (cv-R2) by using the scaled predicted run time series of one split
to predict observed run time series from the other split and vice versa
(i.e., β-weights are fixed and not refitted). Cv-R2 values and β-weights
were averaged across split halves for each voxel. Split-half reliability
across runs was used as the noise ceiling.

To check whether CST model performance could be inflated by
the extra regressor, we also computed cross-validated adjusted-R2,
which penalizes goodness-of-fit for the number of time points and
explanatory variables. The adjusted-R2 values were almost numerically
identical to R2 and did not significantly affect our results or statistical
comparisons.
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Fixed and optimized pRF parameters. Spatial pRF parameters were
independently estimated from each participant’s retinotopy experi-
ment using the CSS pRF model, resulting in a pRF center (x0, y0),
standard deviation (σ), and exponent (CSSn) parameter for each voxel.
The standard deviation and exponent parameter trade-off in the CSS
model (see ref. 27), where σffiffiffiffiffiffiffiffi

CSSn
p approximates the effective pRF size:

the standard deviation (σ) estimated with a linear pRF model (LSS, no
spatial compression). Therefore, to reconstruct CSS pRFs, we use each
voxel’s estimated CSS parameters (x0, y0, σ, and CSSn). To reconstruct
LSS and CST pRFs, we use the same estimated pRF center (x0, y0), but
for the standard deviation (σ) we use the effective pRF size ( σffiffiffiffiffiffiffiffi

CSSn
p ).

The time constant parameter (τ) for the temporal IRF in the main
CST model is fixed (from refs. 39,41) and we only optimized the
exponent (CSTn) using a grid-fit approach for each voxel. The best
fitting CSTn was determined by systematically evaluating the
goodness-of-fit of the predicted time series with CSTn between 0.1 and
1 (0.05 steps) and selecting the CSTn resulting in the highest cv-R2. We
used a grid-fit instead of a search-fit optimization approach to avoid
estimates getting stuck in a local minimum.

We used a fixed temporal IRF for the following reasons. First, we
predicted that the main driver of the suppression effect would be the
compressive static nonlinearity (power-law exponent). Second, by
using the same spatial parameters for all pRF models estimated from
the independent retinotopy experiment, themodel comparisonwill be
more informative as differences in model performance are due to
differences in nonlinear computations, not spatial position. Third, to
estimate all CST parameters we need a separate spatiotemporal pRF
retinotopy experiment51. We have such data for 7 out of ten partici-
pants, which we used for comparing CSTfix, CSTopt, and DN-ST spa-
tiotemporal models. For this comparison, we restricted our analysis to
voxels whose pRF centers overlap the square stimuli in the SEQ-SIM
experiment, as well as voxels whose variance explained by the spa-
tiotemporal pRF model was 20% or higher, and whose split-half relia-
bility in the SEQ-SIM experiment was 10% or higher. As in the
spatiotemporal retinotopy experiment, we excluded voxels with CST
time constants (τ) larger than 1000ms. This sub-selection of voxels
resulted in a substantially smaller numberof voxels per visual area than
we used to compare the main pRF models (~60% of the total) and
resulted in the removal of IPS0/1 from our results as only two partici-
pants contributed to this visual area.

Summarizing pRF parameters
We resampled pRF size, exponents (CSSn, CSTn, DN-ST n), time con-
stants (CSTopt τ, DN-ST τ1 and τ2), DN-ST semi-saturation constants
(σDN), and CST βs and βt 1000 times with replacement within a parti-
cipant’s visual area, because the number of voxels varied across areas
and participants. For pRF size, exponents, time constants, and semi-
saturation constant, we report the median resampled parameter for
each participant and visual area because the V1 and V2 CSTn were not
normally distributed (see Supplementary Fig. 4). CST βs and βt were
normally distributed; hence, we report the average resampled β-
weights per participant and visual area. For group results, we report
the average (± SEM) across participants’ mean or median resampled
parameter value, for each visual area. For Supplementary Fig. 2b, c, we
first compute the difference in median pRF size (or CSTn) for each
visual area pair within participants, and then the average difference
(Δ, delta) in pRF size (or CSTn) values across participants (± SEM).

Statistical analyses
To quantify differences in LMM regression slopes, we ran a two-way
repeated measures ANOVA with factors of visual area and stimulus
conditions across participants. To quantify differences in pRF model
cv-R2, we ran a two-way repeated measures ANOVA with factors pRF

model and visual area (ROI) across voxels of all participants and visual
areas. For both ANOVA results, if there was amain effect (p < 0.05), we
used Bonferroni-corrected post-hoc multiple comparison t-tests (two-
sided) to evaluate differences between pRF models, or visual area and
stimulus condition. We used Pearson’s correlation (r) to quantify the
relationship between participant slopes averaged across conditions
and effective pRF size, exponents (CSTn or DN-ST n), time constants
(CSTopt τ, DN-ST τ1 and τ2), or DN-ST semi-saturation constant (σDN)
across visual areas.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The fMRI and behavioral data, model fits, and parameter data gener-
ated in this study have been deposited on the Open Science Frame-
work (OSF) database90 (https://osf.io/rpuhs/). The model fits and
parameter data that relate to the Supplementary Information are
available on OSF (https://osf.io/e83az/). All source data files and
custom-written code necessary to reproduce the data figures in this
paper are publicly available in the OSF database90 https://osf.io/rpuhs/
and GitHub (see Code Availability). Source data are provided with
this paper.

Code availability
Analyses were conducted in MATLAB (R2020b). Code for analysis and
reproducing data figures from minimally preprocessed data are pub-
licly available on GitHub (https://github.com/VPNL/simseqPRF; v1.0.0:
https://doi.org/10.5281/zenodo.12658143)91 and (https://github.com/
VPNL/spatiotemporalPRFs; v1.0.1: https://doi.org/10.5281/zenodo.
12658232)92. In addition, we used the following publicly-available
software: SPM 12 (https://github.com/spm/spm12; commit version
3085dac), FreeSurfer https://surfer.nmr.mgh.harvard.edu/, v6.0)83,
ITK SNAP (http://www.itksnap.org/pmwiki/pmwiki.php; v3.6.0), Vista-
soft toolbox (https://github.com/vistalab/vistasoft; commit version
7f0102c), alignvolumedata toolbox (https://github.com/cvnlab/
alignvolumedata; commit version b513116). Identification by two-
means clustering (I2MC) toolbox (https://github.com/royhessels/
I2MC; commit version f39948d)93.
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