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Abstract 
Understanding the intracellular dynamics of brain cells entails performing three-dimensional molecular simulations incorporating 
ultrastructural models that can capture cellular membrane geometries at nanometer scales. While there is an abundance of neuronal 
morphologies available online, e.g. from NeuroMorpho.Org, converting those fairly abstract point-and-diameter representations into 
geometrically realistic and simulation-ready, i.e. watertight, manifolds is challenging. Many neuronal mesh reconstruction methods 
have been proposed; however, their resulting meshes are either biologically unplausible or non-watertight. We present an effective and 
unconditionally robust method capable of generating geometrically realistic and watertight surface manifolds of spiny cortical neurons 
from their morphological descriptions. The robustness of our method is assessed based on a mixed dataset of cortical neurons with a 
wide variety of morphological classes. The implementation is seamlessly extended and applied to synthetic astrocytic morphologies 
that are also plausibly biological in detail. Resulting meshes are ultimately used to create volumetric meshes with tetrahedral domains 
to perform scalable in silico reaction-diffusion simulations for revealing cellular structure–function relationships. Availability and 
implementation: Our method is implemented in NeuroMorphoVis, a neuroscience-specific open source Blender add-on, making it 
freely accessible for neuroscience researchers. 
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Introduction 
Revealing the underlying mechanisms governing brain function 
requires an in-depth understanding of cellular and network 
dynamics at multiple levels of detail, with significant biolog-
ical computations also taking place in very small volumes 
within critically defined ultrastructures [1, 2]. Although wet 
lab experiments, such as in vivo and in vitro studies, remain 
essential in neuroscience, the use of computer simulation-based, 
or in silico, experiments complements the research cycle [3], 
allowing certain observations that are unattainable through 
traditional methods. Particularly at the cellular and subcellular 
levels, this complementary approach entails employing high-
performance simulations that utilize biophysically plausible and 
highly detailed structural models of brain cells, such as neurons 
and glial cells [4], in which cellular kinetics can be simulated 
to characterize structure–function relationships. Simulations 
have been performed previously using reduced (one-dimensional) 
compartmental models employing the Neuron simulator [5] 
to compute electrophysiological responses on a cellular level. 
Those simulations range from single cells up to large networks 
of digitally reconstructed circuits [6]. Simulation scalability 
was attainable relying on an optimized version of the Neuron 
simulator called CoreNeuron [7]. Nevertheless, these simulations 
neglected the precise physical structure of the neuron and 
therefore could not be used to capture the dynamics of subcellular 

scales. Reaction-diffusion models were introduced to address this 
challenge [8], by incorporating detailed cellular morphologies 
with geometrically realistic structures into three-dimensional 
(3D) simulations with which we can realize complex signaling 
pathways in the brain in space and time [9–11]. While there 
has been extensive ongoing research focused on improving the 
performance of reaction-diffusion simulators to run efficiently 
on large-scale supercomputing architectures, for example, with 
STEPS 4.0 [12], there is still a large unfilled gap in the generation 
of those ultrastructural data models needed to conduct the 
simulations. Our method is introduced to fill in this gap, enabling 
computational neuroscientists to automate the generation of 
brain tissue models with realistic cellular boundaries to conduct 
high-performance molecular simulations. 

Neuronal models and the watertightness 
challenge 
Reaction-diffusion simulations are principally applied to 3D vol-
umetric meshes that are subdivided into tetrahedral subdomains 
where molecular interactions can be contained [12]. Such tetra-
hedral meshes are ordinarily created from corresponding surface 
counterparts, for example, using TetGen [13]. However, this pro-
cess requires the input surface mesh to be a watertight manifold, 
i.e. two-manifold (with zero non-manifold edges and vertices) 
with no self-intersecting facets (refer to Supplementary Section 1
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Figure 1. The structure of a neuronal morphology in three formats: (A) 
individual samples, where each sample has a unique identifier, position 
and diameter, (B) segments, in which each pair of connected samples form 
conical segments, and (C) sections, where adjacent segments between 
two branching points construct an individual section. The arbors are 
composed of a set of connected sections and stored in acyclic graphs. 
Dendritic spines are not shown. 

and Supplementary Fig. S1). While TetWild [14] is developed 
specifically to handle non-watertight meshes, it has impractical 
performance and cannot process thin structures. The watertight-
ness requirement is relatively challenging to attain for brain cells, 
particularly for neuronal morphologies that are characterized 
by complex arborizations with thin fibers, irregular branching 
geometries, large spatial extents, and low volume occupancy. 

Neuronal cells are commonly available from open neuro-
science databases, such as NeuroMorpho.Org, in a hierarchical 
structure with point-and-diameter representations [15], which 
further complicates the generation of biologically realistic models 
that can be plugged directly into the simulation. Morphological 
models of biological neurons are typically segmented from 
optical, tomography, or electron microscopy stacks [16, 17]. 
Segmentation can be manual, semi-automated, or even fully 
automated [18]. Moreover, biologically inspired neuronal models 
are becoming more available thanks to recent studies that 
utilize biophysical simulations to synthesize neurons relying on 
advanced protocols derived from the analysis of realistic coun-
terparts [19]. After their segmentation or synthesis, morphologies 
are restructured into a conventional hierarchical representation 
based on a connected set of digitized samples. This representation 
uses directed acyclic graphs to store and build the connectivity 
between those samples where the root node represents the cell 
body (or soma) and the leaf nodes represent the terminal samples. 
Neuronal skeletons are composed of a set of morphological 
samples; each pair of adjacent samples defines a segment and 
a set of connected segments between two branching samples 
defines a section. The arbors, or neurites, are composed of a 
set of connected sections in a tree structure (Fig. 1). Converting 
this structure into a continuous watertight manifold in a reliable 
manner is missing. 

Related work 
Reconstructing surface meshes of neurons from fairly abstract 
graph representation has been investigated in several interdisci-
plinary studies either in computer graphics and visual computing 
or in bioinformatics. The majority of those studies focused on 
designing meshing algorithms capable of creating visually appeal-
ing—and more importantly lightweight—mesh models that could 
be applied in domain-specific visual analytics applications, e.g. 
to visualize the electrophysiological activity [20–22] of digitally 
reconstructed neuronal networks [6] using the compartmental 
reports generated with Neuron [5]. Those algorithms were 

primarily concerned with the tessellation of the resulting models, 
i.e. creating appearance-preserving meshes with minimal polygon 
counts, allowing the visualization of compartmental simulations 
of large-scale circuits containing several hundreds of thousands 
or millions of neurons [23, 24]. Some approaches presented 
advanced solutions to improve the realism of the resulting 
models with different objectives: (i) to construct faithful 3D 
somatic profiles using physics simulations, e.g. Neuronize [25], 
NeuroTessMesh [26], and NeuroMorphoVis [27, 28], as opposed 
to earlier applications that used simplified primitives such as 
spheres [29] and cylinders [18] to model the soma; (ii) to create 
smooth and accurate branching geometries along the neuronal 
arbors using skin modifiers [22] and Laplacian smoothing with 
Boolean unions [30]; and (iii) to integrate geometrically realistic 
spine models (extracted from electron microscopy) along the 
dendrites of the neurons [31]. However, watertightness was 
lacking and the usability of the resulting neuronal meshes 
was consequently limited either to visual analytics or content 
creations purposes. 

On the contrary, and until recently, the watertightness aspect 
in neuronal mesh generation was only accomplished in two prin-
cipal studies [32, 33]. McDougal et al. developed the constructive 
tessellated neuronal geometry (CTNG) algorithm to create a 

continuous intermediate representation of the cellular plasma 
membrane, with which an extended version of the marching 
cubes algorithm (called constructive marching cubes) is applied 
to convert this intermediate surface into a watertight manifold 
consistent with the neuronal morphology [32]. This CTNG algo-
rithm uses a complex set of geometric subroutines to fill the gaps, 
remove the overlaps and extrusions between the consecutive 
segments of the arbors and along the connections between the 
soma and first-order sections. The CTNG algorithm was coded in 
a combination of C, Python, and Cython, and the implementation 
was open sourced on ModelDB, but the code is deprecated and can  
no longer be used with the recent versions of Python. Therefore we 
were unable to assess either its performance or the quality of its 
resulting meshes. 

Mörschel et al. developed AnaMorph, another domain-
specific solution tailored to create watertight neuronal meshes 
from SWC morphologies using non-linear piecewise analytical 
modeling and union operators [33]. AnaMorph is publicly 
available under LGPL license, the code is entirely implemented 
in modern C++ and can be easily compiled on Unix-based 
operating systems. Nonetheless, this solution was limited in the 
following aspects: (i) it did not account for a realistic somatic 
profile since somata were approximated by spheres; (ii) the 
implementation fails if local self-intersections exist; (iii) the 
volume of the resulting mesh is significantly lower than the 
actual volume of the morphology; and, finally, (iv) the algorithm 
was incapable of incorporating spine models with realistic 
shapes into the final meshes but rather approximated them with 
cylinders. 

To address this challenge, we present an efficient, unique, 
and accessible solution that can combine the aspects of realism 
and watertightness in a straightforward way, without requiring 
any complex geometric operations. This approach enables the 
creation of a continuous and smooth surface mesh reflecting the 
plasma membrane of a neuron from its graph. 

Contributions 
1. Intuitive and unconditionally robust algorithm for synthe-

sizing geometrically realistic, watertight, and optimized 
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Figure 2. The neuronal morphology (A) is initially used to create a set of corresponding proxy meshes of every individual component of the morphology, 
which are then combined into a single mesh object with overlapping geometries using a joint operation (B). The Voxel remesher is applied to this mesh 
object to create a volumetric representation of the membrane (C) with which all the overlapping structures are eliminated. This remesher creates a 
watertight manifold with a continuous and smooth surface (D), which can be used to synthesize a volumetric mesh (E), for example, using TetGen, to  
perform a stochastic reaction-diffusion simulation in STEPS (F). Dendritic spines are not shown. 

manifolds of spiny neurons from their morphological traces, 
making it possible to improve the biological accuracy of 
reaction-diffusion simulations. 

2. Efficient implementation of the algorithm using the 
modeling toolsets of Blender and its multi-threaded Voxel 
remesher. 

3. Integrating the implementation into the Meshing Toolbox 
of the NeuroMorphoVis add-on [28] and exposing the func-
tionality to users from the graphical user interface (GUI) 
of Blender and the command line interface (CLI) of the 
add-on. 

4. Applying the implementation to thousands of neurons with 
different morphological classes [6] and evaluating the quan-
titative and qualitative aspects of the resulting meshes. 

5. Extending the implementation to create watertight mani-
folds of synthetic astroglial morphologies with realistic end-
feet data [34]. 

Methods 
We present an effective method capable of synthesizing a smooth 
watertight surface manifold that can model the plasma mem-
brane of a spiny neuron from its abstract skeletal representa-
tion. Our algorithm consists of three principal stages. The first 
builds individual, overlapping, and non-watertight proxy meshes 
of the different components of the neuron, which are nonetheless 
geometrically realistic. These include arbors, somata, and spines. 
The second stage assembles those proxies into a joint mesh 
object that is rasterized and polygonized to yield an intermediate 
coarse watertight mesh of the neuron. This stage is implemented 
exclusively relying on the Voxel remeshing modifier that has 
been incorporated into the recent versions of Blender. The last 
stage optimizes the intermediate mesh to generate a volume-
preserved, watertight and continuous surface manifold of the 
neuronal membrane. To complete the pipeline, the resulting mesh 
is then used by TetGen [13] to create a compartmental vol-
ume grid with tetrahedral subdomains for performing stochastic 
reaction-diffusion simulations, mainly in STEPS [12]. The pipeline 
is graphically illustrated, end-to-end, in Fig. 2. The specific details 
of the tetrahedralization and simulation protocols are beyond the 
scope of this work. 

Morphology preprocessing 
Biological neuronal morphologies extracted from tissue samples 
are typically traced and digitized in a manual or semi-automated 
manner. This reconstruction process can be accompanied by 
various patterns of artifacts either due to the staining procedure 
itself or due to other manual errors introduced by the operator. 
A set of predefined processing operations are therefore applied 
to the input morphology to assert the elimination of any skeletal 
artifacts that might lead to subsequent geometric deficits with 
potential impact on the simulation results. However, these opera-
tions do not change the structure of the morphology, such as the 
connectivity between the branches. This process includes the fol-
lowing: (i) verification of the connectivity of the emanating arbors 
from the soma; (ii) removal of the morphological samples that 
are located within the somatic spatial extent; and (iii) adaptive 
resampling of the morphological sections to eliminate the high-
frequency perturbations along the surface of the resulting mesh. 

Generation of proxy arbors 
Proxies of neuronal arbors are generated using one of the two 
following algorithms: (i) node-to-leaf path construction or (ii) 
articulated sections. The first algorithm uses depth-first traversal 
to construct, per neurite, a set of paths starting from the root node 
of the morphology graph (first-order sections) to its leaf nodes (ter-
minal sections). Before the construction of the paths, each section 
in the morphology is labeled as either primary or secondary, for 
the purpose of deciding at the respective branching points which 
child section forms the most natural continuation along the path. 
This labeling scheme is adopted in previous methods [21, 30] to  
form piecewise linear paths on a per-section-basis, using cubic 
splines to form the path. 

The articulated sections algorithm uses geodesic polyhedra— 
or icospheres—to connect between the different sections of the 
morphological hierarchy. The diameter of each icosphere is cal-
culated based on the largest sample at each respective branch-
ing point; this guarantees a seamless continuation from parent 
to child sections. Unlike the first method, the samples of each 
section are used to build an independent path that has no con-
nectivity with parent or child sections. This connection is main-
tained by the articulation icospheres. The difference between 
the two methods is illustrated in Fig. 3. In both cases, and after
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Figure 3. Two approaches are used to construct the proxies of the arbors: 
node-to-leaf path constructions (A) and articulated sections, where an 
icosphere (or geodesic polyhedra) is added at every branching point along 
the arbor (B). 

the construction of the linear paths, a circular cross-sectional 
ring is used to interpolate those paths and construct a set of 
tubular proxy geometries, which can be rasterized by the Voxel 
remesher. 

Reconstruction of realistic somatic profiles 
Due to certain limitations in the acquisition process, the soma 
is identified in the majority of biological reconstructions with 
a sphere, whose radius approximates the distance between the 
local centroid of the soma and the initial segments of all the 
emanating branches. More advanced reconstructions integrate 
a two-dimensional somatic profile reflecting the projection of 
the soma along the optical axis of the microscope. Modeling 
somata with primitive spheres remains a limitation, particularly 
when the resulting model is employed within the context of 
a geometrically realistic simulation, where structure impacts 
the function. Implicit surfaces have been used to reconstruct 
approximate somatic profiles (Fig. 4A) better than spheres [30, 
35]. However, connecting the arbors to the reconstructed shapes 
requires a brute force approach such as a boolean operation 
or a complex geometric algorithm in which arbors can be 
bridged to emanate smoothly from the soma. A recent Blender-
based implementation [27] incorporated mass-spring models 
and Hooke’s law to simulate the somatic growth in a physically 
plausible manner. This implementation can reconstruct faithful 
somatic profiles (Fig. 4B) starting from an icosphere that is 
expanding towards the initial segments of all the arbors that 
are verified in the pre-processing stage to be directly connected 
to the soma. The final shape of the soma depends on three 
parameters: (i) the initial radius of the sphere used in the 
simulation; (ii) its stiffness; and (iii) the number of time steps used 
in the simulation as depicted in (Fig. 4C). As elaborated earlier 
and shown in Fig. 3, the continuity between the soma and the 
arbors at their respective initial segments is guaranteed either by 
adding auxiliary segments that connect the initial sample of each 
arbor to the center of the soma (Fig. 3A1) or by adding auxiliary 
spheres (Fig. 3B1). The principal advantage of this technique is 
that somata are, intuitively, integrated in the mesh—there is no 
need to use boolean or bridging operators to weld the somatic 
mesh with the arbors. Contrary to the Union operators approach 
[30], the Voxel remesher can seamlessly handle this problem 
and guarantee the resulting manifold to be continuous and 
watertight. 

Figure 4. Creation of somatic profiles using implicit surfaces (A) and soft 
body simulations (B). The realism of the resulting profile using the soft 
body approach requires tuning the stiffness of the soft body object— 
indicated on the side of every simulation—and the initial radius of the 
icosphere used to build the mesh (C). 

Integrating geometrically realistic spines 
Spines are those tiny bulbous protruding structures (1–3 μm 
in length) distributed along neuronal dendrites, whose function 
is to receive excitatory synaptic inputs from pre-synaptic neu-
rons to generate a compartmentalized post-synaptic response 
[36]. Traces of individual neuronal morphologies, for example, 
those that are available from NeuroMorpho.Org, do  not  comprise  
any relevant information on the spines; the traces are typically 
acquired using optical microscopy with limited lateral resolu-
tion, making it difficult to reconstruct spine morphologies with 
enough detail [37]. Electron microscopy (EM) is used in relevant 
studies [4] to visualize the neuron ultrastructure, allowing the 
reconstruction of detailed morphologies of dendritic spines with 
realistic geometries at nanometer resolutions. Those EM neuronal 
reconstructions are used to identify and segment a set of dendritic 
spine geometries that can be used to improve the realism of 
the resulting neuronal models as opposed to using cylinders to 
represent the spines [38]. 

Our implementation integrates those spine models 
(Supplementary Fig. S6) only along the membranes of neuronal 
morphologies that are part of a digitally reconstructed cortical 
circuit [6], where we can identify spine types, dimensions, 
locations and correct orientations. In a similar study, spine 
models were also integrated along the dendritic shafts of 
neurons using union operators [30], but the resulting meshes 
were not watertight. Our proposed method takes advantage of 
having accurate and smooth connection between the dendritic 
membrane and the spine without performing any geometric 
operations that are error-prone and might fail if the topology 
of the mesh is not good as shown in Fig. 5. 

The Voxel remesher 
After the generation of the proxies corresponding to soma, arbors 
and spines, a joint operator is applied to create a single proxy 
mesh. This mesh is guaranteed to have no geometric gaps, but it 
indeed has self-intersecting facets, particularly at the branching 
points, at the junctions between the soma and the emanating 
arbors, and between the dendritic membranes and the spines, 
as illustrated by the closeup in Fig. 2B. The Voxel remesher is 
then applied to the joint proxy mesh to create an intermediate 
uniformly sampled volumetric representation of the neuron as 
showin in Fig. 2C. Logically, and while it preserves the structure of 
the membrane, this conversion into a voxel-based model removes 
all the self-intersections of the proxy mesh. This volume is then 
used to create a watertight surface manifold (Fig. 2D) using an

https://www.blender.org
https://neuromorpho.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae393#supplementary-data


Synthesis of watertight neuronal ultrastructure manifolds | 5

Figure 5. Integration of spines models with realistic geometries along the 
dendrites of a pyramidal neuron (A). The mesh in light red is created 
using union operators [30], while that in blue is created with our proposed 
method. The closeups in (B1–3) demonstrate the smooth connectivity 
between the spines and the dendrites. Wireframe visualizations are 
shown in Fig. 8. (B4) The union operator fails to weld the spine meshes 
with the dendritic mesh resulting in a fragmented mesh. 

Figure 6. (A) A closeup on a dendritic segment of a spiny neuron showing 
the resulting meshes with different voxelization resolutions: 0.07 and 0.1 
μm for the red and blue meshes, respectively. Using lower resolution with-
out taking into consideration the dimensions of the spine meshes results 
in fragmented mesh partitions as demonstrated by the magnifications in 
(B). 

advanced implementation of the marching cubes algorithm. To 
capture all the geometric details of the neuron, the voxelization 
resolution is defined based on the size of the smallest mor-
phological sample in the morphology and the thinnest cross-
section of the smallest spine. Using a greater value might lead 
to creating a fragmented mesh as shown in Fig. 6. Therefore, a 
post-processing operation is applied to verify whether the final 
mesh has a single continuous manifold—that is essential for the 
simulation—or is composed of multiple disconnected partitions. 
One main advantage of the Voxel remesher is its performance; it 
has a multi-threaded implementation, contrary to the metaball 
polygonization modifier. 

Mesh optimization and watertightness 
verification 
As shown in Fig. 6, and in order to capture the finest structure of 
the neuron—mainly the extrusions of the spines from the apical 
dendrites, the Voxel remesher is applied with a decent resolution 
that is sufficient to reconstruct the ultrastructural geometric 
details of the smallest spine in the final mesh. This leads to 
creating over-tessellated surface manifolds with several millions 
or even tens of millions of facets, which limits the potential 
usability of the resulting meshes in some simulation applications. 
To address this challenge, we use adaptive geometry-preserving 
mesh optimization to decimate the surface of the intermediate 

Figure 7. The neuronal mesh generated from the Voxel remesher (left) is 
typically highly tessellated ( ∼100k triangles). This mesh is re-tessellated 
using coarsening to create an adaptively optimized clone (right)—with 
∼68k triangles, where local regions with high frequency contain more 
facets than flat regions. Complete analysis of both meshes is illustrated 
Fig. 9. 

Figure 8. While adaptive optimization eliminates unnecessary vertices of 
flat regions of the manifold—mainly across the somatic region as shown 
in Fig. 7, the topology of the mesh around spines still have sufficient 
number of vertices to capture their geometric details. 

mesh, as much as possible, while preserving the geometric aspects 
of the morphology ( Figs 7 & 8). The mesh optimization procedure 
includes surface coarsening, iterative face and normal smoothing. 
We implemented an extended and efficient library called OMesh 
(or OptimizationMesh) with dedicated Python bindings that can 
be seamlessly integrated into Blender to optimize the meshes 
produced by the Voxel remesher within the same context. 

Mesh coarsening impacts the watertightness of the mesh by 
introducing self-intersecting facets along its surface [39]. While 
iterative smoothing reduces the number of self-intersecting 
facets, it cannot guarantee the complete elimination of all the 
self-intersections produced in the coarsening stage (as shown in 
Supplementary Fig. S5), which makes our algorithm unrobust. 
We resolved this issue by implementing an effective iterative 
watertightness verification scheme that detects any elements 
(non-manifold edges, non-manifold vertices, thin-faces, zero-
faces, or self-intersections) that might affect the watertightness 
of the mesh. The vertices corresponding to those elements are 
marked for elimination, and a re-triangulation operation is then 
applied to close the holes introduced across the surface of the 
mesh. This procedure is detailed in Supplementary Section 4. 

Implementation 
Our algorithm is implemented in Blender 3.5 using its embed-
ded Python interpreter and API modules. The implementation is 
integrated to the Meshing Toolbox of the NeuroMorphoVis [28] 
add-on. The functionality is made accessible to users, primarily 
computational neurobiologists and neuroanatomists, from the 
GUI of Blender (for single-cell analysis and mesh generation) and

OMesh
http://blender.org
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Figure 9. Comparative quantitative and qualitative analyses of the meshes generated from the Voxel remesher (in light red) and the mesh optimizer (in 
light blue) shown in Fig. 7. Note that the volume of the mesh is preserved. 

also from the CLI of the add-on (for executing batch jobs of neuron 
groups). The implementation takes advantage of the capabilities 
of NeuroMorphoVis to generate the meshes in parallel on a 
computing cluster using the Slurm scheduler. 

Results and discussion 
Reliability and performance of our technique are assessed by 
applying the meshing implementation to a set of 60 classes of 
various types of cortical morphologies, each class has 100 neu-
rons. Those exemplary neurons are randomly sampled from a 
digitally simulated cortical circuit [6, 40] containing 4.2 million 
biophysically detailed compartmental neurons and 13.4 billion 
synapses covering  8 cortical subregions.  Fig. 10 shows a collective 
collage assembling a set of 60 meshes, each representing a distinct 
morphological type (Supplementary Table S1). Resulting meshes 
are exported into STL file format to be compatible with TetGen. 
All the meshes are verified to have continuous watertight mani-
folds and high quality qualitative distributions (refer to fact sheets 
in the Supplementary Figs S7–S126). 

Meshing qualitative and quantitative analysis 
While watertightness and adaptive mesh refinement are principal 
objectives of the presented work, high quality geometric measures 
are still necessary to accomplish—they significantly impact the 
accuracy of the simulation results. The Verdict library [41] pro-
vides a set of metrics with which geometric qualities of a trian-
gulated surface mesh can be evaluated. This set includes radius 
ratio, edge ratio, radius to edge ratio, minimum, and maximum 
dihedral angles. To make a complete analysis of the resulting 
meshes, a collective fact sheet that combines qualitative and 
the quantitative measures is created. This fact sheet provides 
comparative results of the intermediate mesh generated with the 
Voxel remesher and the optimized one that is used for the sim-
ulation. Fig. 9 demonstrates a comparative analysis fact sheet of 
the meshes created from a neuron with L6_SBC type. The analysis 
of the meshes of the other morphological types is provides in 
Supplementary Figs S7–S126. This analysis includes wireframe 
visualizations of each mesh to highlight the difference in tessel-
lation between the intermediate and final meshes. 

Performance analysis 
The theoretical performance of our algorithm depends on the 
following factors: (i) the arborization complexity of the morphol-
ogy, in terms of its maximum branching order and the total 
number of segments per section; (ii) the total count of dendritic 

spines in the morphology; (iii) the spatial extent, or the bounding 
box of the morphology; (iv) the size of the finest structure in 
the morphology; and (v) the complexity (number of triangles) of 
the intermediate mesh generated from the Voxel remesher. The 
arborization complexity determines the tessellation (or number 
of polygons) of the proxy arbors. While the generation time of the 
proxies is relatively fast, the more those proxies are tessellated, 
the longer it takes to rasterize the polygons during the application 
of the Voxel remesher on the joint proxy. Moreover, and since 
we use geometrically realistic morphologies for the dendritic 
spines, having more spines along the dendrites of the neuron will 
reduce the performance of the joint operation that merges all 
the proxies into a single mesh object and will similarly impact 
the performance of the Voxel remesher. The resolution of the 
volume grid used to voxelize the joint proxy is determined based 
on the smallest structure in the morphology; either the diameter 
of the smallest segment (typically 0.10 μm) in the morphology, 
if the neuron is aspiny (without spines), or the size of the finest 
spine (∼0.06 - 0.80 μm). The optimization procedure is iterative. 
Depending on the presence of any self-intersections (due to sharp 
edges or extremely thin faces), the mesh will be subject to a 
new watertightness verification loop. Therefore, the timing of the 
optimization procedure cannot be estimated (Section 4 in the 
Supplementary Document). 

We assessed the overall performance of our implementation 
using 60 exemplar neurons, each one represents a distinct 
morphological type. The benchmarks, shown in Fig. 10, highlight 
the performance variations for the three stages of the workflow: 
proxies generation, Voxel remeshing, and mesh optimization. The 
pre-processing stage is relatively negligible, and proxies genera-
tion and Voxel remeshing (with multi-threaded implementation) 
take on average ∼10–12 seconds. The optimization procedure is 
executed on a per-vertex basis to evaluate if a specific vertex 
can be deleted from the mesh. This local operation requires 
querying the neighboring vertices, which make this process 
unparallizable. Therefore, it takes a few hundreds of seconds to 
complete. 

These benchmarks are measured on a commodity compute 
node shipped with 32 GBytes of memory and an Intel core i7-
8700 CPU running at 3.2 GHz. These specifications are sufficient 
to process and mesh large pyramidal neurons that have tens of 
thousands of dendritic spines. A comparative performance anal-
ysis between our Voxel-based remeshing implementation and 
other meshing algorithms that are exclusively implemented in 
Blender is thoroughly discussed in the Supplementary document 
(Section 7).

https://github.com/BlueBrain/NeuroMorphoVis
https://slurm.schedmd.com/overview.html
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae393#supplementary-data
https://en.wikipedia.org/wiki/STL_(file_format)
https://wias-berlin.de/software/index.jsp?id=TetGen&#x0026;lang=1
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae393#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae393#supplementary-data
https://www.blender.org
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Figure 10. Performance benchmarks (in seconds) for our implementation based on a data set consisting of 60 various morphological types of cortical 
neurons [6, 40]. The timing of the Proxy Mesh Reconstruction stage comprises the soma simulation time, arbors reconstruction, and the integration of 
the spines along the dendritic arbors. The mesh optimization time comprises the mesh coarsening and smoothing. Axons of the shown neurons are 
limited to second-order branching only. 

Figure 11. Our algorithm is applied to a synthetic astroglial cell [34] (A)  
to create a corresponding watertight mesh with a single manifold (B). 
Perisynaptic processes, perivascular processes, and endfeet are colored 
in red, blue, and green, respectively. The wireframe closeup highlights the 
topology of the mesh around the astrocytic soma. 

Application to astrocytic morphologies 
Astrocytic morphologies have similar branching structure to 
neurons, but they contain further endfeet processes wrapped 
around the vessels of cerebral vasculature to transmit energy to 
the neurons in the NGV tripartite [4]. A recent implementation 
extended NeuroMorphoVis to load and visualize astrocytic 
morphologies [34] to create corresponding polygonal mesh 
models using implicit surfaces polygonization [35]. Nonetheless, 
resulting meshes were not watertight and further post-processing 
was necessary to ensure watertightness. In comparison, our 
implementation is fit-for-purpose extended and applied to 
astrocytic morphologies to create watertight meshes in a single 
step. Figure 11 illustrates a synthetic astrocyte morphology and 
its corresponding watertight mesh created with our technique. 

Application: reaction-diffusion simulation 
While resulting meshes can still be used for other analytics appli-
cations that necessitate watertightness such as diffusion MRI sim-
ulations [42], the principal objective of our work is to automate the 
reaction-diffusion simulation pipelines as demonstrated earlier 
in Fig. 2. From an abstract point-and-diameter description of the 
neuron, a faithful and geometrically realistic surface mesh model 
is created with which we can synthesize a tetrahedral counterpart 
using TetGen to ultimately run an accurate STEPS simulation, for

https://github.com/BlueBrain/NeuroMorphoVis
https://wias-berlin.de/software/index.jsp?id=TetGen&#x0026;lang=1
https://github.com/CNS-OIST/STEPS4ModelRelease/
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Figure 12. A tetrahedral mesh of a pyramidal neuron visualizing random 
simulation reports at multiple time steps, mimicking the variations of 
the Ca+2 signals across the cellular membrane. The watertight mesh 
created with our implementation is used to synthesize the tetrahedral 
counterpart relying on TetGen. 

example, Ca +2 signaling. Figure 12 shows a visualization of ran-
domly generated simulation reports with a geometrically realistic 
pyramidal neuron model. The mechanisms of the simulation as 
well as the interpretation of the simulation results are beyond the 
scope of our work. 

Comparative analysis with existing methods 
There are several methods that can synthesize neuronal mesh 
representations from morphological trees [21, 22, 25, 30], but there 
are only two implementations capable of generating watertight 
manifolds: the CTNG technique [32] and  AnaMorph [33]. The 
validity of the resulting meshes from the CTNG implementation 
could not be verified because the code is deprecated and cannot 
be executed on recent hardware. However, we were able to make 
some comparative analysis demonstrating the resulting mani-
folds synthesized with our implementation and those generated 
with AnaMorph. This analysis is illustrated in Fig. 13. Our imple-
mentation outperforms AnaMorph in two principal aspects: (i) 
AnaMorph can only approximate somatic profiles using primitive 
sphere, while our implementation generates a faithful and realis-
tic 3D somatic profile using physics simulation, and (ii) AnaMorph 
has no support to load or integrate geometrically realistic spines 
along the dendritic branches of the neuronal membrane. 

Conclusion 
With the recent advances of computational modeling in neu-
roscience, detailed and geometrically realistic spatial models 
of neurons are becoming essential to better understand the 
impact of cellular morphology and subcellular structures on the 
underlying functions. While there is major ongoing research and 
increasing demand to build more efficient and scalable molecular 

Figure 13. A side-by-side comparison between a neuronal mesh recon-
structed with AnaMorph [33] (left) and our method (right). While 
AnaMorph approximates the soma with a symbolic sphere (A), our 
method is capable of reconstructing a faithful 3D profile of the soma 
based on mass-spring modeling and soft body dynamics (B). The meshing 
algorithm of AnaMorph cannot integrate any realistic spines along the 
dendritic branches of the neuron (C). Our implementation can seamlessly 
integrate detailed and highly realistic spine geometries that emanate 
smoothly from the neuronal membrane (D). 

simulators, the models with which we can perform accurate 
simulations are lacking. Biologically speaking, neurons have 
interweaving arborizations characterized by thin branches, 
complex branching geometries and large spatial extents. For these 
reasons, creating high-quality and simulation-ready models that 
can accurately reflect their plasma membranes is challenging. 
In this use case, we present an intuitive, efficient and robust 
method capable of creating watertight mesh models of spiny 
neurons from their corresponding morphological descriptions. 
Our method uses the modeling toolsets in Blender to initially 
create a set of accurate but non-watertight and overlapping 
proxies and then uses the Voxel remesher to create a continuous 
watertight manifold that can accurately represent the surface 
membrane of the neuron. The performance and scalability of 
our implementation is assessed with a mixed dataset of neurons 
representing 60 various types of cortical morphologies. To make 
it publicly available and easily accessible, the implementation is 
integrated into the domain-specific NeuroMorphoVis framework. 
This integration expands the usability of the framework as a 
meshing tool, making it possible to generate lightweight meshes 
for visual analytics purposes on the one hand and to generate 
geometrically realistic watertight manifolds on the other hand. 
Our method can be seamlessly applied to other brain cells such as 
astrocytes and microglia, and even cerebral vasculature networks 
that are represented by cyclic graphs. 

Key Points 
• A plethora of neuronal morphologies is available in 

a point-and-diameter format, but there are no robust 
techniques capable of converting these morphologies 
into geometrically realistic models that can be used to 
conduct subcellular simulations. 

• We present a scalable method capable of synthesiz-
ing high-fidelity watertight ultrastructural manifolds of 
complete neuronal models from their one-dimensional 

https://wias-berlin.de/software/index.jsp?id=TetGen&#x0026;lang=1
https://github.com/NeuroBox3D/AnaMorph
https://github.com/NeuroBox3D/AnaMorph
https://github.com/NeuroBox3D/AnaMorph
https://github.com/NeuroBox3D/AnaMorph
https://github.com/NeuroBox3D/AnaMorph
https://github.com/NeuroBox3D/AnaMorph
https://github.com/NeuroBox3D/AnaMorph
https://github.com/NeuroBox3D/AnaMorph
https://www.blender.org/download/releases/3-5/
https://github.com/BlueBrain/NeuroMorphoVis
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descriptions using the synaptic data obtained from the 
digitally reconstructed neuronal circuits of the Blue 
Brain Project. 

• Resulting manifold models comprise geometrically real-
istic somata and spine geometries, enabling accurate 
in silico experiments that can probe intricate structure-
function relationships. 

• Our method is extensible and can be seamlessly applied 
to other cellular structures such as astroglial morpholo-
gies and even large networks of cerebral vasculature. 

Data sources 
Neuronal morphologies shown in Fig. 10 and Supplementary 
Figs S7–S125 are available from the reconstructions made by 
Henry Markram [6]. Similar neuronal morphologies are publicly 
available from NeuroMorpho.Org [15]. Astrocytic morphologies 
(Fig. 11) are provided by Eleftherios Zisis [34]. Supplementary data 
including the resulting meshes of the 60 morphologies described 
in Fig. 10 and their analysis factsheets are available on Zenodo 
(https://doi.org/10.5281/zenodo.10558475). 

Software availability 
The voxelization-based remeshing algorithm is implemented in 
Blender [43] based on its Python API. The technique is integrated 
within the Meshing Toolbox of the NeuroMorphoVis [28] add-
on. The code is released to public as an open-source software 
(OSS) in accordance with the regulations of the Blue Brain Project, 
École polytechnique fédérale de Lausanne (EPFL) for open sourc-
ing under the GNU GPL3 license. 
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