
Received: March 11, 2024. Revised: June 6, 2024. Accepted: July 29, 2024
© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Briefings in Bioinformatics, 2024, 25(5), bbae393

https://doi.org/10.1093/bib/bbae393

Problem Solving Protocol

Synthesis of geometrically realistic and watertight
neuronal ultrastructure manifolds for in silico modeling
Marwan Abdellah*, Alessandro Foni, Juan José García Cantero, Nadir Román Guerrero, Elvis Boci, Adrien Fleury, Jay S. Coggan,

Daniel Keller, Judit Planas, Jean-Denis Courcol, Georges Khazen

Blue Brain Project, École Polytecnique Fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, Genève 1202, Switzerland

*Corresponding author. Email: marwan.abdellah@epfl.ch

Abstract
Understanding the intracellular dynamics of brain cells entails performing three-dimensional molecular simulations incorporating
ultrastructural models that can capture cellular membrane geometries at nanometer scales. While there is an abundance of neuronal
morphologies available online, e.g. from NeuroMorpho.Org, converting those fairly abstract point-and-diameter representations into
geometrically realistic and simulation-ready, i.e. watertight, manifolds is challenging. Many neuronal mesh reconstruction methods
have been proposed; however, their resulting meshes are either biologically unplausible or non-watertight. We present an effective and
unconditionally robust method capable of generating geometrically realistic and watertight surface manifolds of spiny cortical neurons
from their morphological descriptions. The robustness of our method is assessed based on a mixed dataset of cortical neurons with a
wide variety of morphological classes. The implementation is seamlessly extended and applied to synthetic astrocytic morphologies
that are also plausibly biological in detail. Resulting meshes are ultimately used to create volumetric meshes with tetrahedral domains
to perform scalable in silico reaction-diffusion simulations for revealing cellular structure–function relationships. Availability and
implementation: Our method is implemented in NeuroMorphoVis, a neuroscience-specific open source Blender add-on, making it
freely accessible for neuroscience researchers.

Keywords: ultrasturcture; mesh reconstruction; surface and solid voxelization; watertight; in silico; molecular simulations; reaction-
diffusion simulations

Introduction
Revealing the underlying mechanisms governing brain function
requires an in-depth understanding of cellular and network
dynamics at multiple levels of detail, with significant biolog-
ical computations also taking place in very small volumes
within critically defined ultrastructures [1, 2]. Although wet
lab experiments, such as in vivo and in vitro studies, remain
essential in neuroscience, the use of computer simulation-based,
or in silico, experiments complements the research cycle [3],
allowing certain observations that are unattainable through
traditional methods. Particularly at the cellular and subcellular
levels, this complementary approach entails employing high-
performance simulations that utilize biophysically plausible and
highly detailed structural models of brain cells, such as neurons
and glial cells [4], in which cellular kinetics can be simulated
to characterize structure–function relationships. Simulations
have been performed previously using reduced (one-dimensional)
compartmental models employing the Neuron simulator [5]
to compute electrophysiological responses on a cellular level.
Those simulations range from single cells up to large networks
of digitally reconstructed circuits [6]. Simulation scalability
was attainable relying on an optimized version of the Neuron
simulator called CoreNeuron [7]. Nevertheless, these simulations
neglected the precise physical structure of the neuron and
therefore could not be used to capture the dynamics of subcellular

scales. Reaction-diffusion models were introduced to address this
challenge [8], by incorporating detailed cellular morphologies
with geometrically realistic structures into three-dimensional
(3D) simulations with which we can realize complex signaling
pathways in the brain in space and time [9–11]. While there
has been extensive ongoing research focused on improving the
performance of reaction-diffusion simulators to run efficiently
on large-scale supercomputing architectures, for example, with
STEPS 4.0 [12], there is still a large unfilled gap in the generation
of those ultrastructural data models needed to conduct the
simulations. Our method is introduced to fill in this gap, enabling
computational neuroscientists to automate the generation of
brain tissue models with realistic cellular boundaries to conduct
high-performance molecular simulations.

Neuronal models and the watertightness
challenge
Reaction-diffusion simulations are principally applied to 3D vol-
umetric meshes that are subdivided into tetrahedral subdomains
where molecular interactions can be contained [12]. Such tetra-
hedral meshes are ordinarily created from corresponding surface
counterparts, for example, using TetGen [13]. However, this pro-
cess requires the input surface mesh to be a watertight manifold,
i.e. two-manifold (with zero non-manifold edges and vertices)
with no self-intersecting facets (refer to Supplementary Section 1

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

 7925 15973 a 7925 15973 a

mailto:marwan.abdellah@epfl.ch
mailto:marwan.abdellah@epfl.ch
mailto:marwan.abdellah@epfl.ch
NeuroMorpho.Org
NeuroMorpho.Org
NeuroMorphoVis
https://blender.org
https://www.neuron.yale.edu/neuron/
https://www.neuron.yale.edu/neuron/
https://github.com/BlueBrain/CoreNeuron
https://github.com/CNS-OIST/STEPS4ModelRelease/
https://wias-berlin.de/software/index.jsp?id=TetGen&lang=1
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae393#supplementary-data

2 | Abdellah et al.

Figure 1. The structure of a neuronal morphology in three formats: (A)
individual samples, where each sample has a unique identifier, position
and diameter, (B) segments, in which each pair of connected samples form
conical segments, and (C) sections, where adjacent segments between
two branching points construct an individual section. The arbors are
composed of a set of connected sections and stored in acyclic graphs.
Dendritic spines are not shown.

and Supplementary Fig. S1). While TetWild [14] is developed
specifically to handle non-watertight meshes, it has impractical
performance and cannot process thin structures. The watertight-
ness requirement is relatively challenging to attain for brain cells,
particularly for neuronal morphologies that are characterized
by complex arborizations with thin fibers, irregular branching
geometries, large spatial extents, and low volume occupancy.

Neuronal cells are commonly available from open neuro-
science databases, such as NeuroMorpho.Org, in a hierarchical
structure with point-and-diameter representations [15], which
further complicates the generation of biologically realistic models
that can be plugged directly into the simulation. Morphological
models of biological neurons are typically segmented from
optical, tomography, or electron microscopy stacks [16, 17].
Segmentation can be manual, semi-automated, or even fully
automated [18]. Moreover, biologically inspired neuronal models
are becoming more available thanks to recent studies that
utilize biophysical simulations to synthesize neurons relying on
advanced protocols derived from the analysis of realistic coun-
terparts [19]. After their segmentation or synthesis, morphologies
are restructured into a conventional hierarchical representation
based on a connected set of digitized samples. This representation
uses directed acyclic graphs to store and build the connectivity
between those samples where the root node represents the cell
body (or soma) and the leaf nodes represent the terminal samples.
Neuronal skeletons are composed of a set of morphological
samples; each pair of adjacent samples defines a segment and
a set of connected segments between two branching samples
defines a section. The arbors, or neurites, are composed of a
set of connected sections in a tree structure (Fig. 1). Converting
this structure into a continuous watertight manifold in a reliable
manner is missing.

Related work
Reconstructing surface meshes of neurons from fairly abstract
graph representation has been investigated in several interdisci-
plinary studies either in computer graphics and visual computing
or in bioinformatics. The majority of those studies focused on
designing meshing algorithms capable of creating visually appeal-
ing—and more importantly lightweight—mesh models that could
be applied in domain-specific visual analytics applications, e.g.
to visualize the electrophysiological activity [20–22] of digitally
reconstructed neuronal networks [6] using the compartmental
reports generated with Neuron [5]. Those algorithms were

primarily concerned with the tessellation of the resulting models,
i.e. creating appearance-preserving meshes with minimal polygon
counts, allowing the visualization of compartmental simulations
of large-scale circuits containing several hundreds of thousands
or millions of neurons [23, 24]. Some approaches presented
advanced solutions to improve the realism of the resulting
models with different objectives: (i) to construct faithful 3D
somatic profiles using physics simulations, e.g. Neuronize [25],
NeuroTessMesh [26], and NeuroMorphoVis [27, 28], as opposed
to earlier applications that used simplified primitives such as
spheres [29] and cylinders [18] to model the soma; (ii) to create
smooth and accurate branching geometries along the neuronal
arbors using skin modifiers [22] and Laplacian smoothing with
Boolean unions [30]; and (iii) to integrate geometrically realistic
spine models (extracted from electron microscopy) along the
dendrites of the neurons [31]. However, watertightness was
lacking and the usability of the resulting neuronal meshes
was consequently limited either to visual analytics or content
creations purposes.

On the contrary, and until recently, the watertightness aspect
in neuronal mesh generation was only accomplished in two prin-
cipal studies [32, 33]. McDougal et al. developed the constructive
tessellated neuronal geometry (CTNG) algorithm to create a

continuous intermediate representation of the cellular plasma
membrane, with which an extended version of the marching
cubes algorithm (called constructive marching cubes) is applied
to convert this intermediate surface into a watertight manifold
consistent with the neuronal morphology [32]. This CTNG algo-
rithm uses a complex set of geometric subroutines to fill the gaps,
remove the overlaps and extrusions between the consecutive
segments of the arbors and along the connections between the
soma and first-order sections. The CTNG algorithm was coded in
a combination of C, Python, and Cython, and the implementation
was open sourced on ModelDB, but the code is deprecated and can
no longer be used with the recent versions of Python. Therefore we
were unable to assess either its performance or the quality of its
resulting meshes.

Mörschel et al. developed AnaMorph, another domain-
specific solution tailored to create watertight neuronal meshes
from SWC morphologies using non-linear piecewise analytical
modeling and union operators [33]. AnaMorph is publicly
available under LGPL license, the code is entirely implemented
in modern C++ and can be easily compiled on Unix-based
operating systems. Nonetheless, this solution was limited in the
following aspects: (i) it did not account for a realistic somatic
profile since somata were approximated by spheres; (ii) the
implementation fails if local self-intersections exist; (iii) the
volume of the resulting mesh is significantly lower than the
actual volume of the morphology; and, finally, (iv) the algorithm
was incapable of incorporating spine models with realistic
shapes into the final meshes but rather approximated them with
cylinders.

To address this challenge, we present an efficient, unique,
and accessible solution that can combine the aspects of realism
and watertightness in a straightforward way, without requiring
any complex geometric operations. This approach enables the
creation of a continuous and smooth surface mesh reflecting the
plasma membrane of a neuron from its graph.

Contributions
1. Intuitive and unconditionally robust algorithm for synthe-

sizing geometrically realistic, watertight, and optimized

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae393#supplementary-data
https://github.com/Yixin-Hu/TetWild
https://neuromorpho.org/
https://www.neuron.yale.edu/neuron/
http://gmrv.es/neuronize/
https://vg-lab.es/neurotessmesh/
https://github.com/BlueBrain/NeuroMorphoVis
https://senselab.med.yale.edu/ModelDB/showmodel.cshtml?model=146950##tabs-1
https://github.com/ModelDBRepository/146950
https://github.com/NeuroBox3D/AnaMorph
SWC
https://github.com/NeuroBox3D/AnaMorph

Synthesis of watertight neuronal ultrastructure manifolds | 3

Figure 2. The neuronal morphology (A) is initially used to create a set of corresponding proxy meshes of every individual component of the morphology,
which are then combined into a single mesh object with overlapping geometries using a joint operation (B). The Voxel remesher is applied to this mesh
object to create a volumetric representation of the membrane (C) with which all the overlapping structures are eliminated. This remesher creates a
watertight manifold with a continuous and smooth surface (D), which can be used to synthesize a volumetric mesh (E), for example, using TetGen, to
perform a stochastic reaction-diffusion simulation in STEPS (F). Dendritic spines are not shown.

manifolds of spiny neurons from their morphological traces,
making it possible to improve the biological accuracy of
reaction-diffusion simulations.

2. Efficient implementation of the algorithm using the
modeling toolsets of Blender and its multi-threaded Voxel
remesher.

3. Integrating the implementation into the Meshing Toolbox
of the NeuroMorphoVis add-on [28] and exposing the func-
tionality to users from the graphical user interface (GUI)
of Blender and the command line interface (CLI) of the
add-on.

4. Applying the implementation to thousands of neurons with
different morphological classes [6] and evaluating the quan-
titative and qualitative aspects of the resulting meshes.

5. Extending the implementation to create watertight mani-
folds of synthetic astroglial morphologies with realistic end-
feet data [34].

Methods
We present an effective method capable of synthesizing a smooth
watertight surface manifold that can model the plasma mem-
brane of a spiny neuron from its abstract skeletal representa-
tion. Our algorithm consists of three principal stages. The first
builds individual, overlapping, and non-watertight proxy meshes
of the different components of the neuron, which are nonetheless
geometrically realistic. These include arbors, somata, and spines.
The second stage assembles those proxies into a joint mesh
object that is rasterized and polygonized to yield an intermediate
coarse watertight mesh of the neuron. This stage is implemented
exclusively relying on the Voxel remeshing modifier that has
been incorporated into the recent versions of Blender. The last
stage optimizes the intermediate mesh to generate a volume-
preserved, watertight and continuous surface manifold of the
neuronal membrane. To complete the pipeline, the resulting mesh
is then used by TetGen [13] to create a compartmental vol-
ume grid with tetrahedral subdomains for performing stochastic
reaction-diffusion simulations, mainly in STEPS [12]. The pipeline
is graphically illustrated, end-to-end, in Fig. 2. The specific details
of the tetrahedralization and simulation protocols are beyond the
scope of this work.

Morphology preprocessing
Biological neuronal morphologies extracted from tissue samples
are typically traced and digitized in a manual or semi-automated
manner. This reconstruction process can be accompanied by
various patterns of artifacts either due to the staining procedure
itself or due to other manual errors introduced by the operator.
A set of predefined processing operations are therefore applied
to the input morphology to assert the elimination of any skeletal
artifacts that might lead to subsequent geometric deficits with
potential impact on the simulation results. However, these opera-
tions do not change the structure of the morphology, such as the
connectivity between the branches. This process includes the fol-
lowing: (i) verification of the connectivity of the emanating arbors
from the soma; (ii) removal of the morphological samples that
are located within the somatic spatial extent; and (iii) adaptive
resampling of the morphological sections to eliminate the high-
frequency perturbations along the surface of the resulting mesh.

Generation of proxy arbors
Proxies of neuronal arbors are generated using one of the two
following algorithms: (i) node-to-leaf path construction or (ii)
articulated sections. The first algorithm uses depth-first traversal
to construct, per neurite, a set of paths starting from the root node
of the morphology graph (first-order sections) to its leaf nodes (ter-
minal sections). Before the construction of the paths, each section
in the morphology is labeled as either primary or secondary, for
the purpose of deciding at the respective branching points which
child section forms the most natural continuation along the path.
This labeling scheme is adopted in previous methods [21, 30] to
form piecewise linear paths on a per-section-basis, using cubic
splines to form the path.

The articulated sections algorithm uses geodesic polyhedra—
or icospheres—to connect between the different sections of the
morphological hierarchy. The diameter of each icosphere is cal-
culated based on the largest sample at each respective branch-
ing point; this guarantees a seamless continuation from parent
to child sections. Unlike the first method, the samples of each
section are used to build an independent path that has no con-
nectivity with parent or child sections. This connection is main-
tained by the articulation icospheres. The difference between
the two methods is illustrated in Fig. 3. In both cases, and after

https://wias-berlin.de/software/index.jsp?id=TetGen&lang=1
https://steps.sourceforge.net/STEPS/default.php
https://www.blender.org/download/releases/3-5/
Voxel
https://github.com/BlueBrain/NeuroMorphoVis/wiki/Mesh-Reconstruction
https://github.com/BlueBrain/NeuroMorphoVis
https://www.blender.org/download/releases/3-5/
https://www.blender.org/
https://wias-berlin.de/software/index.jsp?id=TetGen&lang=1
https://steps.sourceforge.net/STEPS/default.php

4 | Abdellah et al.

Figure 3. Two approaches are used to construct the proxies of the arbors:
node-to-leaf path constructions (A) and articulated sections, where an
icosphere (or geodesic polyhedra) is added at every branching point along
the arbor (B).

the construction of the linear paths, a circular cross-sectional
ring is used to interpolate those paths and construct a set of
tubular proxy geometries, which can be rasterized by the Voxel
remesher.

Reconstruction of realistic somatic profiles
Due to certain limitations in the acquisition process, the soma
is identified in the majority of biological reconstructions with
a sphere, whose radius approximates the distance between the
local centroid of the soma and the initial segments of all the
emanating branches. More advanced reconstructions integrate
a two-dimensional somatic profile reflecting the projection of
the soma along the optical axis of the microscope. Modeling
somata with primitive spheres remains a limitation, particularly
when the resulting model is employed within the context of
a geometrically realistic simulation, where structure impacts
the function. Implicit surfaces have been used to reconstruct
approximate somatic profiles (Fig. 4A) better than spheres [30,
35]. However, connecting the arbors to the reconstructed shapes
requires a brute force approach such as a boolean operation
or a complex geometric algorithm in which arbors can be
bridged to emanate smoothly from the soma. A recent Blender-
based implementation [27] incorporated mass-spring models
and Hooke’s law to simulate the somatic growth in a physically
plausible manner. This implementation can reconstruct faithful
somatic profiles (Fig. 4B) starting from an icosphere that is
expanding towards the initial segments of all the arbors that
are verified in the pre-processing stage to be directly connected
to the soma. The final shape of the soma depends on three
parameters: (i) the initial radius of the sphere used in the
simulation; (ii) its stiffness; and (iii) the number of time steps used
in the simulation as depicted in (Fig. 4C). As elaborated earlier
and shown in Fig. 3, the continuity between the soma and the
arbors at their respective initial segments is guaranteed either by
adding auxiliary segments that connect the initial sample of each
arbor to the center of the soma (Fig. 3A1) or by adding auxiliary
spheres (Fig. 3B1). The principal advantage of this technique is
that somata are, intuitively, integrated in the mesh—there is no
need to use boolean or bridging operators to weld the somatic
mesh with the arbors. Contrary to the Union operators approach
[30], the Voxel remesher can seamlessly handle this problem
and guarantee the resulting manifold to be continuous and
watertight.

Figure 4. Creation of somatic profiles using implicit surfaces (A) and soft
body simulations (B). The realism of the resulting profile using the soft
body approach requires tuning the stiffness of the soft body object—
indicated on the side of every simulation—and the initial radius of the
icosphere used to build the mesh (C).

Integrating geometrically realistic spines
Spines are those tiny bulbous protruding structures (1–3 μm
in length) distributed along neuronal dendrites, whose function
is to receive excitatory synaptic inputs from pre-synaptic neu-
rons to generate a compartmentalized post-synaptic response
[36]. Traces of individual neuronal morphologies, for example,
those that are available from NeuroMorpho.Org, do not comprise
any relevant information on the spines; the traces are typically
acquired using optical microscopy with limited lateral resolu-
tion, making it difficult to reconstruct spine morphologies with
enough detail [37]. Electron microscopy (EM) is used in relevant
studies [4] to visualize the neuron ultrastructure, allowing the
reconstruction of detailed morphologies of dendritic spines with
realistic geometries at nanometer resolutions. Those EM neuronal
reconstructions are used to identify and segment a set of dendritic
spine geometries that can be used to improve the realism of
the resulting neuronal models as opposed to using cylinders to
represent the spines [38].

Our implementation integrates those spine models
(Supplementary Fig. S6) only along the membranes of neuronal
morphologies that are part of a digitally reconstructed cortical
circuit [6], where we can identify spine types, dimensions,
locations and correct orientations. In a similar study, spine
models were also integrated along the dendritic shafts of
neurons using union operators [30], but the resulting meshes
were not watertight. Our proposed method takes advantage of
having accurate and smooth connection between the dendritic
membrane and the spine without performing any geometric
operations that are error-prone and might fail if the topology
of the mesh is not good as shown in Fig. 5.

The Voxel remesher
After the generation of the proxies corresponding to soma, arbors
and spines, a joint operator is applied to create a single proxy
mesh. This mesh is guaranteed to have no geometric gaps, but it
indeed has self-intersecting facets, particularly at the branching
points, at the junctions between the soma and the emanating
arbors, and between the dendritic membranes and the spines,
as illustrated by the closeup in Fig. 2B. The Voxel remesher is
then applied to the joint proxy mesh to create an intermediate
uniformly sampled volumetric representation of the neuron as
showin in Fig. 2C. Logically, and while it preserves the structure of
the membrane, this conversion into a voxel-based model removes
all the self-intersections of the proxy mesh. This volume is then
used to create a watertight surface manifold (Fig. 2D) using an

https://www.blender.org
https://neuromorpho.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae393#supplementary-data

Synthesis of watertight neuronal ultrastructure manifolds | 5

Figure 5. Integration of spines models with realistic geometries along the
dendrites of a pyramidal neuron (A). The mesh in light red is created
using union operators [30], while that in blue is created with our proposed
method. The closeups in (B1–3) demonstrate the smooth connectivity
between the spines and the dendrites. Wireframe visualizations are
shown in Fig. 8. (B4) The union operator fails to weld the spine meshes
with the dendritic mesh resulting in a fragmented mesh.

Figure 6. (A) A closeup on a dendritic segment of a spiny neuron showing
the resulting meshes with different voxelization resolutions: 0.07 and 0.1
μm for the red and blue meshes, respectively. Using lower resolution with-
out taking into consideration the dimensions of the spine meshes results
in fragmented mesh partitions as demonstrated by the magnifications in
(B).

advanced implementation of the marching cubes algorithm. To
capture all the geometric details of the neuron, the voxelization
resolution is defined based on the size of the smallest mor-
phological sample in the morphology and the thinnest cross-
section of the smallest spine. Using a greater value might lead
to creating a fragmented mesh as shown in Fig. 6. Therefore, a
post-processing operation is applied to verify whether the final
mesh has a single continuous manifold—that is essential for the
simulation—or is composed of multiple disconnected partitions.
One main advantage of the Voxel remesher is its performance; it
has a multi-threaded implementation, contrary to the metaball
polygonization modifier.

Mesh optimization and watertightness
verification
As shown in Fig. 6, and in order to capture the finest structure of
the neuron—mainly the extrusions of the spines from the apical
dendrites, the Voxel remesher is applied with a decent resolution
that is sufficient to reconstruct the ultrastructural geometric
details of the smallest spine in the final mesh. This leads to
creating over-tessellated surface manifolds with several millions
or even tens of millions of facets, which limits the potential
usability of the resulting meshes in some simulation applications.
To address this challenge, we use adaptive geometry-preserving
mesh optimization to decimate the surface of the intermediate

Figure 7. The neuronal mesh generated from the Voxel remesher (left) is
typically highly tessellated (∼100k triangles). This mesh is re-tessellated
using coarsening to create an adaptively optimized clone (right)—with
∼68k triangles, where local regions with high frequency contain more
facets than flat regions. Complete analysis of both meshes is illustrated
Fig. 9.

Figure 8. While adaptive optimization eliminates unnecessary vertices of
flat regions of the manifold—mainly across the somatic region as shown
in Fig. 7, the topology of the mesh around spines still have sufficient
number of vertices to capture their geometric details.

mesh, as much as possible, while preserving the geometric aspects
of the morphology (Figs 7 & 8). The mesh optimization procedure
includes surface coarsening, iterative face and normal smoothing.
We implemented an extended and efficient library called OMesh
(or OptimizationMesh) with dedicated Python bindings that can
be seamlessly integrated into Blender to optimize the meshes
produced by the Voxel remesher within the same context.

Mesh coarsening impacts the watertightness of the mesh by
introducing self-intersecting facets along its surface [39]. While
iterative smoothing reduces the number of self-intersecting
facets, it cannot guarantee the complete elimination of all the
self-intersections produced in the coarsening stage (as shown in
Supplementary Fig. S5), which makes our algorithm unrobust.
We resolved this issue by implementing an effective iterative
watertightness verification scheme that detects any elements
(non-manifold edges, non-manifold vertices, thin-faces, zero-
faces, or self-intersections) that might affect the watertightness
of the mesh. The vertices corresponding to those elements are
marked for elimination, and a re-triangulation operation is then
applied to close the holes introduced across the surface of the
mesh. This procedure is detailed in Supplementary Section 4.

Implementation
Our algorithm is implemented in Blender 3.5 using its embed-
ded Python interpreter and API modules. The implementation is
integrated to the Meshing Toolbox of the NeuroMorphoVis [28]
add-on. The functionality is made accessible to users, primarily
computational neurobiologists and neuroanatomists, from the
GUI of Blender (for single-cell analysis and mesh generation) and

OMesh
http://blender.org
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae393#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae393#supplementary-data
https://www.blender.org/
https://docs.blender.org/api/current/index.html
https://github.com/BlueBrain/NeuroMorphoVis/wiki/Mesh-Reconstruction
https://github.com/BlueBrain/NeuroMorphoVis
https://www.blender.org/

6 | Abdellah et al.

Figure 9. Comparative quantitative and qualitative analyses of the meshes generated from the Voxel remesher (in light red) and the mesh optimizer (in
light blue) shown in Fig. 7. Note that the volume of the mesh is preserved.

also from the CLI of the add-on (for executing batch jobs of neuron
groups). The implementation takes advantage of the capabilities
of NeuroMorphoVis to generate the meshes in parallel on a
computing cluster using the Slurm scheduler.

Results and discussion
Reliability and performance of our technique are assessed by
applying the meshing implementation to a set of 60 classes of
various types of cortical morphologies, each class has 100 neu-
rons. Those exemplary neurons are randomly sampled from a
digitally simulated cortical circuit [6, 40] containing 4.2 million
biophysically detailed compartmental neurons and 13.4 billion
synapses covering 8 cortical subregions. Fig. 10 shows a collective
collage assembling a set of 60 meshes, each representing a distinct
morphological type (Supplementary Table S1). Resulting meshes
are exported into STL file format to be compatible with TetGen.
All the meshes are verified to have continuous watertight mani-
folds and high quality qualitative distributions (refer to fact sheets
in the Supplementary Figs S7–S126).

Meshing qualitative and quantitative analysis
While watertightness and adaptive mesh refinement are principal
objectives of the presented work, high quality geometric measures
are still necessary to accomplish—they significantly impact the
accuracy of the simulation results. The Verdict library [41] pro-
vides a set of metrics with which geometric qualities of a trian-
gulated surface mesh can be evaluated. This set includes radius
ratio, edge ratio, radius to edge ratio, minimum, and maximum
dihedral angles. To make a complete analysis of the resulting
meshes, a collective fact sheet that combines qualitative and
the quantitative measures is created. This fact sheet provides
comparative results of the intermediate mesh generated with the
Voxel remesher and the optimized one that is used for the sim-
ulation. Fig. 9 demonstrates a comparative analysis fact sheet of
the meshes created from a neuron with L6_SBC type. The analysis
of the meshes of the other morphological types is provides in
Supplementary Figs S7–S126. This analysis includes wireframe
visualizations of each mesh to highlight the difference in tessel-
lation between the intermediate and final meshes.

Performance analysis
The theoretical performance of our algorithm depends on the
following factors: (i) the arborization complexity of the morphol-
ogy, in terms of its maximum branching order and the total
number of segments per section; (ii) the total count of dendritic

spines in the morphology; (iii) the spatial extent, or the bounding
box of the morphology; (iv) the size of the finest structure in
the morphology; and (v) the complexity (number of triangles) of
the intermediate mesh generated from the Voxel remesher. The
arborization complexity determines the tessellation (or number
of polygons) of the proxy arbors. While the generation time of the
proxies is relatively fast, the more those proxies are tessellated,
the longer it takes to rasterize the polygons during the application
of the Voxel remesher on the joint proxy. Moreover, and since
we use geometrically realistic morphologies for the dendritic
spines, having more spines along the dendrites of the neuron will
reduce the performance of the joint operation that merges all
the proxies into a single mesh object and will similarly impact
the performance of the Voxel remesher. The resolution of the
volume grid used to voxelize the joint proxy is determined based
on the smallest structure in the morphology; either the diameter
of the smallest segment (typically 0.10 μm) in the morphology,
if the neuron is aspiny (without spines), or the size of the finest
spine (∼0.06 - 0.80 μm). The optimization procedure is iterative.
Depending on the presence of any self-intersections (due to sharp
edges or extremely thin faces), the mesh will be subject to a
new watertightness verification loop. Therefore, the timing of the
optimization procedure cannot be estimated (Section 4 in the
Supplementary Document).

We assessed the overall performance of our implementation
using 60 exemplar neurons, each one represents a distinct
morphological type. The benchmarks, shown in Fig. 10, highlight
the performance variations for the three stages of the workflow:
proxies generation, Voxel remeshing, and mesh optimization. The
pre-processing stage is relatively negligible, and proxies genera-
tion and Voxel remeshing (with multi-threaded implementation)
take on average ∼10–12 seconds. The optimization procedure is
executed on a per-vertex basis to evaluate if a specific vertex
can be deleted from the mesh. This local operation requires
querying the neighboring vertices, which make this process
unparallizable. Therefore, it takes a few hundreds of seconds to
complete.

These benchmarks are measured on a commodity compute
node shipped with 32 GBytes of memory and an Intel core i7-
8700 CPU running at 3.2 GHz. These specifications are sufficient
to process and mesh large pyramidal neurons that have tens of
thousands of dendritic spines. A comparative performance anal-
ysis between our Voxel-based remeshing implementation and
other meshing algorithms that are exclusively implemented in
Blender is thoroughly discussed in the Supplementary document
(Section 7).

https://github.com/BlueBrain/NeuroMorphoVis
https://slurm.schedmd.com/overview.html
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae393#supplementary-data
https://en.wikipedia.org/wiki/STL_(file_format)
https://wias-berlin.de/software/index.jsp?id=TetGen&lang=1
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae393#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae393#supplementary-data
https://www.blender.org

Synthesis of watertight neuronal ultrastructure manifolds | 7

Figure 10. Performance benchmarks (in seconds) for our implementation based on a data set consisting of 60 various morphological types of cortical
neurons [6, 40]. The timing of the Proxy Mesh Reconstruction stage comprises the soma simulation time, arbors reconstruction, and the integration of
the spines along the dendritic arbors. The mesh optimization time comprises the mesh coarsening and smoothing. Axons of the shown neurons are
limited to second-order branching only.

Figure 11. Our algorithm is applied to a synthetic astroglial cell [34] (A)
to create a corresponding watertight mesh with a single manifold (B).
Perisynaptic processes, perivascular processes, and endfeet are colored
in red, blue, and green, respectively. The wireframe closeup highlights the
topology of the mesh around the astrocytic soma.

Application to astrocytic morphologies
Astrocytic morphologies have similar branching structure to
neurons, but they contain further endfeet processes wrapped
around the vessels of cerebral vasculature to transmit energy to
the neurons in the NGV tripartite [4]. A recent implementation
extended NeuroMorphoVis to load and visualize astrocytic
morphologies [34] to create corresponding polygonal mesh
models using implicit surfaces polygonization [35]. Nonetheless,
resulting meshes were not watertight and further post-processing
was necessary to ensure watertightness. In comparison, our
implementation is fit-for-purpose extended and applied to
astrocytic morphologies to create watertight meshes in a single
step. Figure 11 illustrates a synthetic astrocyte morphology and
its corresponding watertight mesh created with our technique.

Application: reaction-diffusion simulation
While resulting meshes can still be used for other analytics appli-
cations that necessitate watertightness such as diffusion MRI sim-
ulations [42], the principal objective of our work is to automate the
reaction-diffusion simulation pipelines as demonstrated earlier
in Fig. 2. From an abstract point-and-diameter description of the
neuron, a faithful and geometrically realistic surface mesh model
is created with which we can synthesize a tetrahedral counterpart
using TetGen to ultimately run an accurate STEPS simulation, for

https://github.com/BlueBrain/NeuroMorphoVis
https://wias-berlin.de/software/index.jsp?id=TetGen&lang=1
https://github.com/CNS-OIST/STEPS4ModelRelease/

8 | Abdellah et al.

Figure 12. A tetrahedral mesh of a pyramidal neuron visualizing random
simulation reports at multiple time steps, mimicking the variations of
the Ca+2 signals across the cellular membrane. The watertight mesh
created with our implementation is used to synthesize the tetrahedral
counterpart relying on TetGen.

example, Ca +2 signaling. Figure 12 shows a visualization of ran-
domly generated simulation reports with a geometrically realistic
pyramidal neuron model. The mechanisms of the simulation as
well as the interpretation of the simulation results are beyond the
scope of our work.

Comparative analysis with existing methods
There are several methods that can synthesize neuronal mesh
representations from morphological trees [21, 22, 25, 30], but there
are only two implementations capable of generating watertight
manifolds: the CTNG technique [32] and AnaMorph [33]. The
validity of the resulting meshes from the CTNG implementation
could not be verified because the code is deprecated and cannot
be executed on recent hardware. However, we were able to make
some comparative analysis demonstrating the resulting mani-
folds synthesized with our implementation and those generated
with AnaMorph. This analysis is illustrated in Fig. 13. Our imple-
mentation outperforms AnaMorph in two principal aspects: (i)
AnaMorph can only approximate somatic profiles using primitive
sphere, while our implementation generates a faithful and realis-
tic 3D somatic profile using physics simulation, and (ii) AnaMorph
has no support to load or integrate geometrically realistic spines
along the dendritic branches of the neuronal membrane.

Conclusion
With the recent advances of computational modeling in neu-
roscience, detailed and geometrically realistic spatial models
of neurons are becoming essential to better understand the
impact of cellular morphology and subcellular structures on the
underlying functions. While there is major ongoing research and
increasing demand to build more efficient and scalable molecular

Figure 13. A side-by-side comparison between a neuronal mesh recon-
structed with AnaMorph [33] (left) and our method (right). While
AnaMorph approximates the soma with a symbolic sphere (A), our
method is capable of reconstructing a faithful 3D profile of the soma
based on mass-spring modeling and soft body dynamics (B). The meshing
algorithm of AnaMorph cannot integrate any realistic spines along the
dendritic branches of the neuron (C). Our implementation can seamlessly
integrate detailed and highly realistic spine geometries that emanate
smoothly from the neuronal membrane (D).

simulators, the models with which we can perform accurate
simulations are lacking. Biologically speaking, neurons have
interweaving arborizations characterized by thin branches,
complex branching geometries and large spatial extents. For these
reasons, creating high-quality and simulation-ready models that
can accurately reflect their plasma membranes is challenging.
In this use case, we present an intuitive, efficient and robust
method capable of creating watertight mesh models of spiny
neurons from their corresponding morphological descriptions.
Our method uses the modeling toolsets in Blender to initially
create a set of accurate but non-watertight and overlapping
proxies and then uses the Voxel remesher to create a continuous
watertight manifold that can accurately represent the surface
membrane of the neuron. The performance and scalability of
our implementation is assessed with a mixed dataset of neurons
representing 60 various types of cortical morphologies. To make
it publicly available and easily accessible, the implementation is
integrated into the domain-specific NeuroMorphoVis framework.
This integration expands the usability of the framework as a
meshing tool, making it possible to generate lightweight meshes
for visual analytics purposes on the one hand and to generate
geometrically realistic watertight manifolds on the other hand.
Our method can be seamlessly applied to other brain cells such as
astrocytes and microglia, and even cerebral vasculature networks
that are represented by cyclic graphs.

Key Points
• A plethora of neuronal morphologies is available in

a point-and-diameter format, but there are no robust
techniques capable of converting these morphologies
into geometrically realistic models that can be used to
conduct subcellular simulations.

• We present a scalable method capable of synthesiz-
ing high-fidelity watertight ultrastructural manifolds of
complete neuronal models from their one-dimensional

https://wias-berlin.de/software/index.jsp?id=TetGen&lang=1
https://github.com/NeuroBox3D/AnaMorph
https://github.com/NeuroBox3D/AnaMorph
https://github.com/NeuroBox3D/AnaMorph
https://github.com/NeuroBox3D/AnaMorph
https://github.com/NeuroBox3D/AnaMorph
https://github.com/NeuroBox3D/AnaMorph
https://github.com/NeuroBox3D/AnaMorph
https://github.com/NeuroBox3D/AnaMorph
https://www.blender.org/download/releases/3-5/
https://github.com/BlueBrain/NeuroMorphoVis

Synthesis of watertight neuronal ultrastructure manifolds | 9

descriptions using the synaptic data obtained from the
digitally reconstructed neuronal circuits of the Blue
Brain Project.

• Resulting manifold models comprise geometrically real-
istic somata and spine geometries, enabling accurate
in silico experiments that can probe intricate structure-
function relationships.

• Our method is extensible and can be seamlessly applied
to other cellular structures such as astroglial morpholo-
gies and even large networks of cerebral vasculature.

Data sources
Neuronal morphologies shown in Fig. 10 and Supplementary
Figs S7–S125 are available from the reconstructions made by
Henry Markram [6]. Similar neuronal morphologies are publicly
available from NeuroMorpho.Org [15]. Astrocytic morphologies
(Fig. 11) are provided by Eleftherios Zisis [34]. Supplementary data
including the resulting meshes of the 60 morphologies described
in Fig. 10 and their analysis factsheets are available on Zenodo
(https://doi.org/10.5281/zenodo.10558475).

Software availability
The voxelization-based remeshing algorithm is implemented in
Blender [43] based on its Python API. The technique is integrated
within the Meshing Toolbox of the NeuroMorphoVis [28] add-
on. The code is released to public as an open-source software
(OSS) in accordance with the regulations of the Blue Brain Project,
École polytechnique fédérale de Lausanne (EPFL) for open sourc-
ing under the GNU GPL3 license.

Acknowledgments
We thank Grigori Chevtchenko for the impactful discussions on
watertight meshing and Pawel Podhajski on technical assistance
to deploy the software on Blue Brain 5. We also thank Karin Holm
for her valuable comments on the manuscript.

Supplementary data
Supplementary data is available at Briefings in Bioinformatics
online.

Conflict of interests: None declared.

Funding
This study was supported by funding to the Blue Brain Project, a
research center of the École polytechnique fédérale de Lausanne
(EPFL), from the Swiss government’s ETH Board of the Swiss

Federal Institutes of Technology and also supported by the King
Abdullah University of Science and Technology (KAUST) Office of
Sponsored Research (OSR) under Award No. OSR-2017-CRG6-3438.

Authors’ contributions
M.A. conceived the study. M.A., A.F., and J.J.G.C. co-led the study.
M.A. designed and implemented the algorithm in NeuroMorpho
Vis, reconstructed and analyzed the resulting models, and wrote
the manuscript with input and critique from all authors. A.F.

implemented the morphology and mesh analysis code. J.J.G.C.
assisted in the implementation of the soma generation algo-
rithm and contributed to the manuscript. N.R.G implemented
the surface smoothing filters and contributed to the manuscript.
E.B contributed to the design of the figures. A.F. improved the
performance of the optimization code and assisted in the inte-
gration of the code via pybind. J.S.C. contributed to the simulation
discussions and the manuscript. D.K. contributed to the discus-
sions on the simulation requirements and the watertight meshing
performance. J.P., J.D.C., and G.K managed the project. All authors
reviewed and approved the manuscript.

References
1. Keller DX, Franks KM, Bartol TM Jr. et al. Calmodulin activation

by calcium transients in the postsynaptic density of dendritic
spines. PloS One 2008;3:e2045. https://doi.org/10.1371/journal.
pone.0002045.

2. D’Angelo E, Jirsa V. The quest for multiscale brain mod-
eling. Trends Neurosci 2022;45:777–90. https://doi.org/10.1016/j.
tins.2022.06.007.

3. Di Ventura B, Lemerle C, Michalodimitrakis K. et al. From in vivo
to in silico biology and back. Nature 2006;443:527–33. https://doi.
org/10.1038/nature05127.

4. Coggan JS, Calì C, Keller D. et al. A process for digitizing and simu-
lating biologically realistic oligocellular networks demonstrated
for the neuro-glio-vascular ensemble. Front Neurosci 2018;12.
https://doi.org/10.3389/fnins.2018.00664.

5. Hines ML, Carnevale NT. The NEURON simulation environ-
ment. Neural Comput 1997;9:1179–209. https://doi.org/10.1162/
neco.1997.9.6.1179.

6. Markram H, Muller E, Ramaswamy S. et al. Reconstruction and
simulation of neocortical microcircuitry. Cell 2015;163:456–92.
https://doi.org/10.1016/j.cell.2015.09.029.

7. Kumbhar P, Hines M, Fouriaux J. et al. CoreNEURON: an opti-
mized compute engine for the NEURON simulator. Front Neuroin-
form 2019;13:63. https://doi.org/10.3389/fninf.2019.00063.

8. Hepburn I, Chen W, Wils S. et al. STEPS: e cient sim-
ulation of stochastic reaction di usion models in real-
istic morphologies. BMC Syst Biol 2012;6:1 19. https://doi.
org/10.1186/1752-0509-6-36.

9. Coggan JS, Bartol TM, Esquenazi E. et al. Evidence for ectopic neu-
rotransmission at a neuronal synapse. Science 2005;309:446–51.
https://doi.org/10.1126/science.1108239.

10. Grein S, Stepniewski M, Reiter S. et al. 1D-3D hybrid model-
ing from multi-compartment models to full resolution mod-
els in space and time. Front Neuroinform 2014;8:68. https://doi.
org/10.3389/fninf.2014.00068.

11. Bartol TM, Keller DX, Kinney JP. et al. Computational recon-
stitution of spine calcium transients from individual pro-
teins. Front Synaptic Neurosci 2015;7:17. https://doi.org/10.3389/
fnsyn.2015.00017.

12. Chen W, Carel T, Awile O. et al. STEPS 4.0: fast and memory-
e cient molecular simulations of neurons at the nanoscale.
Front. Neuroinform. 2022 03. 2022;16. https://doi.org/10.3389/
fninf.2022.883742.

13. Hang S. TetGen, a Delaunay-based quality tetrahedral mesh
generator. ACM Trans Math Softw 2015;41:1–36. https://doi.
org/10.1145/2629697.

14. Hu Y, Zhou Q, Gao X. et al. Tetrahedral meshing in the wild.
ACM Trans Graph 2018;37:1–14. https://doi.org/10.1145/3197517.
3201353.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae393#supplementary-data
NeuroMorpho.Org
NeuroMorpho.Org
Zenodo
https://doi.org/10.5281/zenodo.10558475
https://doi.org/10.5281/zenodo.10558475
https://doi.org/10.5281/zenodo.10558475
https://doi.org/10.5281/zenodo.10558475
Blender
https://github.com/BlueBrain/NeuroMorphoVis/wiki/Mesh-Reconstruction
NeuroMorphoVis
https://www.epfl.ch/research/domains/bluebrain/
http://epfl.ch
https://www.gnu.org/licenses/gpl-3.0.en.html
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae393#supplementary-data
https://www.epfl.ch/research/domains/bluebrain/
https://www.epfl.ch/en/
https://www.kaust.edu.sa/en
https://github.com/BlueBrain/NeuroMorphoVis
https://doi.org/10.1371/journal.pone.0002045
https://doi.org/10.1371/journal.pone.0002045
https://doi.org/10.1371/journal.pone.0002045
https://doi.org/10.1371/journal.pone.0002045
https://doi.org/10.1371/journal.pone.0002045
https://doi.org/10.1016/j.tins.2022.06.007
https://doi.org/10.1016/j.tins.2022.06.007
https://doi.org/10.1016/j.tins.2022.06.007
https://doi.org/10.1016/j.tins.2022.06.007
https://doi.org/10.1016/j.tins.2022.06.007
https://doi.org/10.1038/nature05127
https://doi.org/10.1038/nature05127
https://doi.org/10.1038/nature05127
https://doi.org/10.1038/nature05127
https://doi.org/10.3389/fnins.2018.00664
https://doi.org/10.3389/fnins.2018.00664
https://doi.org/10.3389/fnins.2018.00664
https://doi.org/10.3389/fnins.2018.00664
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.1186/1752-0509-6-36
https://doi.org/10.1186/1752-0509-6-36
https://doi.org/10.1186/1752-0509-6-36
https://doi.org/10.1126/science.1108239
https://doi.org/10.1126/science.1108239
https://doi.org/10.1126/science.1108239
https://doi.org/10.1126/science.1108239
https://doi.org/10.3389/fninf.2014.00068
https://doi.org/10.3389/fninf.2014.00068
https://doi.org/10.3389/fninf.2014.00068
https://doi.org/10.3389/fninf.2014.00068
https://doi.org/10.3389/fnsyn.2015.00017
https://doi.org/10.3389/fnsyn.2015.00017
https://doi.org/10.3389/fnsyn.2015.00017
https://doi.org/10.3389/fnsyn.2015.00017
https://doi.org/10.3389/fninf.2022.883742
https://doi.org/10.3389/fninf.2022.883742
https://doi.org/10.3389/fninf.2022.883742
https://doi.org/10.3389/fninf.2022.883742
https://doi.org/10.1145/2629697
https://doi.org/10.1145/2629697
https://doi.org/10.1145/2629697
https://doi.org/10.1145/3197517.3201353

10 | Abdellah et al.

15. Ascoli GA, Donohue DE, Halavi M. NeuroMorpho.Org: a central
resource for neuronal morphologies. J Neurosci 2007;27:9247–51.
https://doi.org/10.1523/JNEUROSCI.2055-07.2007.

16. Perkins G, Renken CW, Song JY. et al. Electron tomography
of large, multicomponent biological structures. J Struct Biol
1997;120:219–27. https://doi.org/10.1006/jsbi.1997.3920.

17. Donohue DE, Ascoli GA. Automated reconstruction of neuronal
morphology: an overview. Brain Res Rev 2011;67:94–102. https://
doi.org/10.1016/j.brainresrev.2010.11.003.

18. Gleeson P, Steuber V, Silver RA. neuroConstruct: a tool for mod-
eling networks of neurons in 3D space. Neuron 2007;54:219–35.
https://doi.org/10.1016/j.neuron.2007.03.025.

19. Kanari L, Ramaswamy S, Shi Y. et al. Objective morphological
Classi cation of neocortical pyramidal cells. Cereb Cortex 2019;29:
1719–35. https://doi.org/10.1093/cercor/bhy339.

20. Eilemann S. Bilgili A, Abdellah M. et al. Parallel rendering on
hybrid multi-GPU clusters In: Eurographics Symposium on Parallel
Graphics and Visualization. Aire-la-Ville, Switzerland, p. 109–17,
2012. https://doi.org/10.2312/EGPGV/EGPGV12/109-117.

21. Lasserre S, Hernando J, Hill S. et al. A neuron membrane mesh
representation for visualization of electrophysiological simula-
tions. IEEE Trans Vis Comput Graph 2012;18:214–27. https://doi.
org/10.1109/TVCG.2011.55.

22. Abdellah M, Favreau C, Hernando J. et al. Generating high delity
surface meshes of neocortical neurons using skin modi ers.
In: Vidal FP, Tam GKL, Roberts JC (eds) Computer Graphics and
Visual Computing (CGVC). Aire-la-Ville, Switzerland, The Euro-
graphics Association, 2019. isbn: 978-3-03868-096-3. https://doi.
org/10.2312/cgvc.20191257.

23. Hernando JB, Biddiscombe J, Bohara B. et al. Practical parallel
rendering of detailed neuron simulations. In: Marton F,
Moreland K (eds), Eurographics Symposium on Parallel Graphics and
Visualization. Aire-la-Ville, Switzerland, The Eurographics Asso-
ciation, 2013. https://doi.org/10.2312/EGPGV/EGPGV13/049-
056.

24. Eilemann S, Makhinya M, Pajarola R. Equalizer: a scalable par-
allel rendering framework. IEEE Trans Vis Comput Graph 2009;15:
436–52. https://doi.org/10.1109/TVCG.2008.104.

25. Brito JP, Mata S, Bayona S. et al. Neuronize: a tool for build-
ing realistic neuronal cell morphologies. Front Neuroanat 2013;7.
https://doi.org/10.3389/fnana.2013.00015.

26. Garcia-Cantero JJ, Brito JP, Mata S. et al. NeurotessMesh: a tool for
the generation and visualization of neuron meshes and adaptive
on-the-fly Re nement. Front Neuroinform 2017;11:38. https://doi.
org/10.3389/fninf.2017.00038.

27. Abdellah M, Hernando J, Antille N. et al. Reconstruction and visu-
alization of large-scale volumetric models of neocortical circuits
for physically-plausible in silico optical studies. BMC Bioinformat-
ics 2017;18:402. https://doi.org/10.1186/s12859-017-1788-4.

28. Abdellah M, Hernando J, Eilemann S. et al. NeuroMorphoVis:
a collaborative framework for analysis and visualization
of neuronal morphology skeletons reconstructed from
microscopy stacks. Bioinformatics 2018;34:i574–82. https://
doi.org/10.1093/bioinformatics/bty231 https://github.com/
BlueBrain/NeuroMorphoVis.

29. Glaser JR, Glaser EM. Neuron imaging with Neurolucida a
PC-based system for image combining microscopy. Comput
Med Imaging Graph 1990;14:307–17. https://doi.org/10.1016/0895-
6111(90)90105-K.

30. Abdellah M, Cantero JJG, Foni A. et al. Meshing of spiny neuronal
morphologies using union operators. In: Vangorp, P., Turner, M.
J. (eds), Computer Graphics and Visual Computing (CGVC). Aire-la-
Ville, Switzerland, The Eurographics Association, 2022. isbn: 978-
3-03868-188-5. https://doi.org/10.2312/cgvc.20221168.

31. Velasco I, Toharia P, Benavides-Piccione R. et al. Neuronize v2:
bridging the gap between existing proprietary tools to optimize
neuroscienti c work ows. Front Neuroanat 2020;14:585793. https://
doi.org/10.3389/fnana.2020.585793.

32. McDougal RA, Hines ML, Lytton WW. Water-tight membranes
from neuronal morphology les. J Neurosci Methods 2013;220:
167–78. https://doi.org/10.1016/j.jneumeth.2013.09.011.

33. Mörschel K, Breit M, Queisser G. Generating neuron geometries
for detailed three-dimensional simulations using anamorph.
Neuroinformatics 2017;15:247–69. https://doi.org/10.1007/
s12021-017-9329-x.

34. Zisis E, Keller D, Kanari L. et al. Digital reconstruction of the
neuro-glia-vascular architecture. Cereb Cortex 2021;31:5686–703.
https://doi.org/10.1093/cercor/bhab254.

35. Abdellah M, Foni A, Zisis E. et al. Metaball skinning of synthetic
astroglial morphologies into realistic mesh models for in silico
simulations and visual analytics. Bioinformatics 2021;37:i426–33.
https://doi.org/10.1093/bioinformatics/btab280.

36. Gipson CD, Olive MF. Structural and functional plasticity of
dendritic spines root or result of behavior? Genes Brain Behav
2017;16:101–17. https://doi.org/10.1111/gbb.12324.

37. Son J, Song S, Lee S. et al. Morphological change tracking of
dendritic spines based on structural features. J Microsc 2011;241:
261–72. https://doi.org/10.1111/j.1365-2818.2010.03427.x.

38. Chen W, De Schutter E. Time to bring single neuron modeling
into 3D. Neuroinformatics 2017;15:1–3. https://doi.org/10.1007/
s12021-016-9321-x.

39. Attene M. A lightweight approach to repairing digitized polygon
meshes. Vis Comput 2010;26:1393–406. https://doi.org/10.1007/
s00371-010-0416-3.

40. Ramaswamy S, Ramaswamy S, Courcol JD. et al. The neocortical
microcircuit collaboration portal: a resource for rat somatosen-
sory cortex. Front Neural Circuits 2015;9. https://doi.org/10.3389/
fncir.2015.00044.

41. Pébay PP, Thompson DC, Shepherd JF. et al. New applications of
the verdict library for standardized mesh veri cation pre, post,
and end-to-end processing. In: Proceedings of the 16th international
meshing roundtable. Springer, Berlin Heidelberg, p. 535–52. 2008.
https://doi.org/10.1007/978-3-540-75103-8_30.

42. Fang C, Nguyen V-D, Wassermann D. et al. Usion MRI sim-
ulation of realistic neurons with SpinDoctor and the neuron
module. Neuroimage 2020;222:117198. https://doi.org/10.1016/j.
neuroimage.2020.117198.

43. Blender. Blender: An Open Source 3D Modelling and Rendering Pack-
age. Amsterdam: The Blender Foundation, Blender Institute,
2024.

https://doi.org/10.1523/JNEUROSCI.2055-07.2007
https://doi.org/10.1523/JNEUROSCI.2055-07.2007
https://doi.org/10.1523/JNEUROSCI.2055-07.2007
https://doi.org/10.1523/JNEUROSCI.2055-07.2007
https://doi.org/10.1006/jsbi.1997.3920
https://doi.org/10.1006/jsbi.1997.3920
https://doi.org/10.1006/jsbi.1997.3920
https://doi.org/10.1006/jsbi.1997.3920
https://doi.org/10.1016/j.brainresrev.2010.11.003
https://doi.org/10.1016/j.brainresrev.2010.11.003
https://doi.org/10.1016/j.brainresrev.2010.11.003
https://doi.org/10.1016/j.brainresrev.2010.11.003
https://doi.org/10.1016/j.brainresrev.2010.11.003
https://doi.org/10.1016/j.neuron.2007.03.025
https://doi.org/10.1016/j.neuron.2007.03.025
https://doi.org/10.1016/j.neuron.2007.03.025
https://doi.org/10.1016/j.neuron.2007.03.025
https://doi.org/10.1016/j.neuron.2007.03.025
https://doi.org/10.1093/cercor/bhy339
https://doi.org/10.1093/cercor/bhy339
https://doi.org/10.1093/cercor/bhy339
https://doi.org/10.1093/cercor/bhy339
https://doi.org/10.1093/cercor/bhy339
https://doi.org/10.2312/EGPGV/EGPGV12/109-117
https://doi.org/10.2312/EGPGV/EGPGV12/109-117
https://doi.org/10.2312/EGPGV/EGPGV12/109-117
https://doi.org/10.2312/EGPGV/EGPGV12/109-117
https://doi.org/10.2312/EGPGV/EGPGV12/109-117
https://doi.org/10.1109/TVCG.2011.55
https://doi.org/10.1109/TVCG.2011.55
https://doi.org/10.1109/TVCG.2011.55
https://doi.org/10.1109/TVCG.2011.55
https://doi.org/10.2312/cgvc.20191257
https://doi.org/10.2312/cgvc.20191257
https://doi.org/10.2312/cgvc.20191257
https://doi.org/10.2312/cgvc.20191257
https://doi.org/10.2312/EGPGV/EGPGV13/049-056
https://doi.org/10.1109/TVCG.2008.104
https://doi.org/10.1109/TVCG.2008.104
https://doi.org/10.1109/TVCG.2008.104
https://doi.org/10.1109/TVCG.2008.104
https://doi.org/10.3389/fnana.2013.00015
https://doi.org/10.3389/fnana.2013.00015
https://doi.org/10.3389/fnana.2013.00015
https://doi.org/10.3389/fnana.2013.00015
https://doi.org/10.3389/fninf.2017.00038
https://doi.org/10.3389/fninf.2017.00038
https://doi.org/10.3389/fninf.2017.00038
https://doi.org/10.3389/fninf.2017.00038
https://doi.org/10.1186/s12859-017-1788-4
https://doi.org/10.1186/s12859-017-1788-4
https://doi.org/10.1186/s12859-017-1788-4
https://doi.org/10.1186/s12859-017-1788-4
https://doi.org/10.1093/bioinformatics/bty231
https://doi.org/10.1093/bioinformatics/bty231
https://doi.org/10.1093/bioinformatics/bty231
https://doi.org/10.1093/bioinformatics/bty231
https://doi.org/10.1093/bioinformatics/bty231
https://github.com/BlueBrain/NeuroMorphoVis
https://github.com/BlueBrain/NeuroMorphoVis
https://github.com/BlueBrain/NeuroMorphoVis
https://github.com/BlueBrain/NeuroMorphoVis
https://github.com/BlueBrain/NeuroMorphoVis
https://doi.org/10.1016/0895-6111(90)90105-K
https://doi.org/10.2312/cgvc.20221168
https://doi.org/10.2312/cgvc.20221168
https://doi.org/10.2312/cgvc.20221168
https://doi.org/10.2312/cgvc.20221168
https://doi.org/10.3389/fnana.2020.585793
https://doi.org/10.3389/fnana.2020.585793
https://doi.org/10.3389/fnana.2020.585793
https://doi.org/10.3389/fnana.2020.585793
https://doi.org/10.1016/j.jneumeth.2013.09.011
https://doi.org/10.1016/j.jneumeth.2013.09.011
https://doi.org/10.1016/j.jneumeth.2013.09.011
https://doi.org/10.1016/j.jneumeth.2013.09.011
https://doi.org/10.1016/j.jneumeth.2013.09.011
https://doi.org/10.1007/s12021-017-9329-x
https://doi.org/10.1007/s12021-017-9329-x
https://doi.org/10.1007/s12021-017-9329-x
https://doi.org/10.1007/s12021-017-9329-x
https://doi.org/10.1007/s12021-017-9329-x
https://doi.org/10.1093/cercor/bhab254
https://doi.org/10.1093/cercor/bhab254
https://doi.org/10.1093/cercor/bhab254
https://doi.org/10.1093/cercor/bhab254
https://doi.org/10.1093/cercor/bhab254
https://doi.org/10.1093/bioinformatics/btab280
https://doi.org/10.1093/bioinformatics/btab280
https://doi.org/10.1093/bioinformatics/btab280
https://doi.org/10.1093/bioinformatics/btab280
https://doi.org/10.1093/bioinformatics/btab280
https://doi.org/10.1111/gbb.12324
https://doi.org/10.1111/gbb.12324
https://doi.org/10.1111/gbb.12324
https://doi.org/10.1111/gbb.12324
https://doi.org/10.1111/j.1365-2818.2010.03427.x
https://doi.org/10.1111/j.1365-2818.2010.03427.x
https://doi.org/10.1111/j.1365-2818.2010.03427.x
https://doi.org/10.1111/j.1365-2818.2010.03427.x
https://doi.org/10.1111/j.1365-2818.2010.03427.x
https://doi.org/10.1007/s12021-016-9321-x
https://doi.org/10.1007/s12021-016-9321-x
https://doi.org/10.1007/s12021-016-9321-x
https://doi.org/10.1007/s12021-016-9321-x
https://doi.org/10.1007/s12021-016-9321-x
https://doi.org/10.1007/s00371-010-0416-3
https://doi.org/10.1007/s00371-010-0416-3
https://doi.org/10.1007/s00371-010-0416-3
https://doi.org/10.1007/s00371-010-0416-3
https://doi.org/10.3389/fncir.2015.00044
https://doi.org/10.3389/fncir.2015.00044
https://doi.org/10.3389/fncir.2015.00044
https://doi.org/10.3389/fncir.2015.00044
https://doi.org/10.1007/978-3-540-75103-8_30
https://doi.org/10.1007/978-3-540-75103-8_30
https://doi.org/10.1007/978-3-540-75103-8_30
https://doi.org/10.1016/j.neuroimage.2020.117198
https://doi.org/10.1016/j.neuroimage.2020.117198
https://doi.org/10.1016/j.neuroimage.2020.117198
https://doi.org/10.1016/j.neuroimage.2020.117198
https://doi.org/10.1016/j.neuroimage.2020.117198

	 Synthesis of geometrically realistic and watertight neuronal ultrastructure manifolds for in silico modeling
	Introduction
	Contributions
	Methods
	Results and discussion
	Conclusion
	Key Points
	Data sources
	Software availability
	Acknowledgments
	Supplementary data
	Funding
	Authors' contributions

