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Abstract

Scanning x-ray microdiffraction of complex tissues and materials is an emerging method for 

the study of macromolecular structures in situ, providing information on the way molecular 

constituents are arranged and interact with their microenvironment. Acting as a bridge between 

high-resolution images of individual constituents and lower resolution microscopies that generate 

global views of material, scanning microdiffraction provides an approach to study the functioning 

of complex tissues across multiple length scales. Here, we discuss the methodology, summarize 

results from recent studies, and discuss the potential of the technique for future studies coordinated 

with other biophysical techniques.

Introduction

The molecular processes underlying biological development or disease progression involve 

interactions across length scales that span from molecules to whole tissue. High-resolution 

approaches such as cryoEM, X-ray crystallography, and solid-state NMR (ssNMR) are 

capable of determining the structure of macromolecules and molecular assemblies at atomic 

resolution. But the relevance of these structures to biological processes often requires 

placing them in their biological context. Optical microscopy can map the presence of 

molecules within tissue.

But there is a huge gap between the resolution of these two classes of techniques and many 

biologically critical processes take place at these intermediate length scales. X-ray scattering 

is capable of generating structural information at a higher resolution than optical techniques 

but scattering from complex tissues or materials has rarely been attempted because the 

heterogeneous mixture of constituents makes data interpretation difficult. The availability of 

micro- and nano-beams of increased brilliance combined with recent advances in detector 

technology enables measurement of scattering from small volumes which, in favorable 

cases, are populated largely by a single constituent. This makes possible the collection 

of high-resolution data in situ and the generation of information on the organization and 

interactions of molecular constituents within the microenvironment in which they are 
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embedded. Studies of the structure of complex soft materials [1], biomaterials, such as 

plant cell walls [2], bones [3], biological cells [4,5], or pathological protein aggregates [6·], 

have demonstrated the flexibility and power of the technique.

Scanning X-ray microdiffraction (XMD) can be thought of as a multiple resolution 

technique. The cellular-level resolution is defined by the beam diameter and step size as the 

sample is scanned across the beam. For instance, a 5 μ beam scanned over a 5 μ raster results 

in information about the distribution of molecular structures with 5 μ resolution. But at each 

raster point, a full diffraction pattern is collected, and the nature of those diffraction patterns 

defines the molecular-level resolution. For instance, scattering from amyloid fibrils that 

include the prototypical 4.7 Å cross-β reflection may provide structural data to a resolution 

of 4.7 Å or better while simultaneously mapping the distribution of these structures over a 5 

μ grid.

The application of this technique to biomolecular and biomaterial systems is producing 

insights into molecular processes that are largely inaccessible by conventional techniques. 

To take advantage of these opportunities, many synchrotron facilities have established 

beamlines customized for scanning XMD, including BioCAT and GM/CA CAT at the 

Advanced Photon Source (APS), LiX at NSLS–II, ID13 at ESRF, P03, P10 at Petra III, and 

I22 at Diamond. Figure 1 is a diagram of a typical XMD experiment and the form of data 

it generates. Here we review the technological advances enabling this work and describe 

examples of its use to characterize the molecular organization of complex materials and 

tissues.

To make possible production of beam sizes from 10 μ down to 100 nm [7], a number 

of breakthrough x-ray optical technologies were developed. Compound refractive lenses 

can generate μ-sized x-ray beams with simple alignment [8]. Diffractive lenses, based on 

Fresnel zone plate concepts, can focus x-rays to 20 nm [9]. Recently, 10 nm x-ray beams 

have been achieved using ultra–smooth Kirkpatrick–Baez mirrors [10]. To supplement these 

developments, highly efficient detectors with very high data collection rates [11] have been 

developed to enable fast scanning using a range of small-angle and wide-angle (S/WAXS) 

data collection arrangements, customized to the needs of particular projects [7], greatly 

expanding the kinds of structural questions amenable to study by XMD.

Application to macromolecular crystallography

The use of microbeams for studies of biomaterials emerged originally for use in 

macromolecular crystallography [12], driven by the potential for studying macromolecular 

structures using microcrystals or even highly ordered crystalline domains of very limited 

size embedded in larger, less-well-ordered crystals [12]. These advances made possible, for 

instance, the groundbreaking studies of G-protein coupled receptors that could not have been 

achieved at a conventional crystallographic beam line [13].

Hierarchical structure of biomaterials

Scanning XMD is particularly well suited to the study of hierarchical organization in 

biological tissues and materials: detailed mapping of the orientation and density of cellulose 

fibrils within the cell walls of wood from Norwegian spruce trees revealed a helical 
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arrangement responsible for its remarkable mechanical properties [2], providing a basis for 

advanced considerations of wood engineering [14]. Heterogeneity in the skin-core structure 

of spider silk revealed by XMD [15] identified two amorphous, fine silk fibers with distinct 

mesoscale features co-existing in the center of an orb-web. Motivated by an interest in 

developing advanced adhesives, XMD was used to study the nano-scale structure of spider 

feet with a focus on the attachment hairs (setae) responsible for the ability of spiders to walk 

up walls and across ceilings [16· ·]. Figure 2a shows the variation of intensity and orientation 

of scattering as observed using a 250 nm x-ray beam scanned across a hair when it was 

attached or removed from a surface. These measurements were used to calculate gradients 

of the mechanical properties responsible for supporting attachment, stabilizing adhesion, and 

withstanding high stress at detachment.

The cuticle of shrimp has been studied extensively due to its remarkable mechanical 

toughness. The impact of mechanical compression on the intensity of the (002) reflection 

from chitin was used [17·] as a strain sensor to measure the distribution of sub-micron 

deformation of lamella in the exo- and endo-cuticle and demonstrated that the material 

toughness arises from a combination of the α-chitin fiber networks deforming elastically 

while the surrounding matrix deforms plastically prior to systematic failure.

Cardiac cells and tissues

The intricate, hierarchical organization of cardiomyocytes — the fundamental structural unit 

of cardiac muscle — had proven particularly reticent to structural analysis by conventional 

techniques but scanning microdiffraction has proven particularly well suited to its study 

[18, 19••, 20••]. For instance, the diffraction signal of the actomyosin contractile unit was 

recorded from living cardiomyocytes bringing muscle diffraction to the scale of single cells 

as shown in Figure 2b. In coordination with the scanning diffraction studies, coherent optics 

were used to perform holographic imaging and tomography on a single cardiomyocyte [19· 

·]. This allowed the extension of the length scales covered by scanning XMD and made 

possible the reconstruction of the electron density of an entire freeze-dried cardiomyocyte, 

visualizing the three-dimensional arrangement of myofibrils, sarcomeres, and mitochondria 

with a voxel size less than 50 nm.

Pathological structures in Alzheimer’s disease

Aggregation of proteins or peptides into pathological deposits in brain tissue is a hallmark 

of many neurodegenerative diseases, such as Alzheimer’s disease or Parkinson’s disease 

(PD). The formation of amyloid fibrils occurs by the stacking of β-strands that run 

perpendicular to the fibril axis and are stabilized by axial hydrogen bonds, providing 

amyloid cores with great stability. The fibrils are highly polymorphic and may be affected by 

variations in constituents and environmental factors such as pH, temperature, and chemical 

modification [5,21]. High-resolution images of many structural polymorphs of these fibrils 

have been determined by cryo-electron microscopy and solid-state NMR [22· ·]. But, to 

probe the molecular mechanisms underlying the neurotoxicity associated with these fibrils, 

investigators have turned to their study in the context of the tissue where their relevance 

to disease progression can be examined. The locations of structural polymorphs of amyloid 

have been mapped in situ using scanning XMD of histological thin sections of human brain 

Liu and Makowski Page 3

Curr Opin Struct Biol. Author manuscript; available in PMC 2024 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tissue. Changes in scattering intensity in the prototypical 4.7 Å cross-β reflection have been 

used to map variation in fibril structure from core to margin of plaques [23,24] as shown 

in Figure 3. The shape of the 4.7 Å reflection exhibited significant differences between that 

observed in scattering from plaques in a typical AD case and in resilient cases that exhibit 

high plaque burdens in the absence of overt dementia [24], suggesting that variation in fibril 

structure might modulate the progression of disease.

Pathological structures in PD

Amyloid fibrils composed of α-synuclein are a major component of Lewy bodies (LBs), the 

principal pathological hallmark of PD. The structure of LBs has been studied in situ using 

synchrotron Fourier tansform infra red spectroscopy (FTIR) and XMD [6·,25,26]. This work 

was able to distinguish two distinct morphological regions of the LB, with fibril structures 

differentially concentrated in the halo, distinct from a dense protein and lipid core. The 

involvement of metal ions in the in vitro aggregation of α-synuclein fibrils [27] motivated 

the use of X-ray fluorescence microscopy to determine their distribution in situ [28, 29••]. 

The combination of X-ray diffraction and X-ray fluorescence revealed the correlation of the 

presence of heavy metal ions with the accumulation of α-synuclein fibrils within LB.

Three-dimensional studies and multi-modal imaging

Although most studies involve the mapping of structure or structural parameters in two 

dimensions, scanning microdiffraction tensor tomography (TT) has made possible mapping 

of fibrillar-like structures in three dimensions. The three-dimensional arrangement of 

collagen matrix within bone [30,31] and myelin sheath of neuronal cells within brain tissue 

[32· ·] have been characterized in this way. Results on the organization of collagen in bone 

are shown in Figure 4. This work demonstrated that a SAXS computed tomogram can be 

constructed using multiple micro-focused X-ray raster scans taken with the sample oriented 

at different angles relative to the x-ray beam. Using a sample with oriented fiber structure, 

they demonstrated that SAXS TT could be used to reconstruct the distribution of fibrillar 

structures within the sample in three dimensions. Assuming the sample could be separated 

into a series of voxels (each of which has an associated tensor), each scan could be thought 

of as a projection of scattering from voxels in the beam path multiplied by appropriate 

weights. Thus, the voxel size could be smaller than the beam size. Using this approach, the 

organization of collagen fibrils within bone tissue was mapped in three dimensions. These 

studies are continuing, with a demonstration of the structural variation of collagen within 

bone tissue as correlated to the involvement of biomineral and artificial implants [33, 34•, 

35].

SAXS–TT has also been used for the study of the structure of myelin sheath within nerve 

tissue [32••,36] and to quantify myelin structural alterations in demyelinated mouse brain. 

These results demonstrated that SAXS–TT could be a reliable, non–destructive stain-free 

imaging method for the study of the molecular basis of myelin–related diseases [32,36].

Furthermore, scanning XMD can be combined with x-ray spectroscopies such as X-ray 

fluorescence [28, 29••] or phase contrast imaging (holography, etc.) [37], which are feasible 
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with specialized hardware, making possible direct correlation of multiscale structure with 

mapping of element distribution and cell morphology.

Sample preparation

In examination of heterogeneous materials, smaller scattering volumes are desired since they 

have a higher chance of being relatively homogeneous in composition and thereby more 

likely to give rise to interpretable scattering patterns. Nevertheless, obtaining data with an 

adequate signal-to-noise ratio from small scattering volumes may require X-ray exposures 

that result in radiation damage. Some materials are far more resistant to radiation damage 

than others, and preliminary studies are generally required to determine the maximum 

dose tolerable by a sample. Given the experience of macromolecular crystallography, data 

collection at cryogenic temperatures is likely to lower the radiation damage incurred, but no 

systematic evaluation of the benefit of this for XMD has yet been made. de la Mora et al. 

[38] demonstrated data collection at both room temperature and 100 K by sample cooling 

with a gaseous-nitrogen stream at ID13 ESRF. To prevent tissue damage due to water crystal 

formation during freezing, it may be necessary to add cryoprotectants as is now routine 

for macromolecular cryocrystallography [39]. If this can be done effectively, many of the 

methods developed for crystallography should be applicable to the handling of thin, frozen 

sections.

An alternative to freezing of tissue is the use of fixed tissue which usually involves cross-

linking of constituents with formaldehyde and dehydration with ethanol to lock the relative 

positions of materials in place. This treatment preserves most protein secondary structures 

[40] and epitopes [41] but may disrupt the tertiary structure of proteins. Fibrillar structures 

such as neuropathological amyloid fibrils appear to be nearly impervious to these treatments.

For two-dimensional studies of thin-sections, the section thickness should be roughly the 

same as the x-ray beam diameter because the increase in sample thickness leads to the 

mixing of scattering from features at different depths in the section. For studies of fixed, 

histological sections of human brain tissue using a 5 μ X-ray beam, Liu et al. [24] chose 

to use 20 μ thick sections to provide a larger scattering volume resulting in an increase in 

signal-to-noise ratio without increasing the X-ray dose.

For three-dimensional studies, such as those described above on bone [30,31], samples ~ 40 

× 40 × 40 μ3 were used and the cellular-scale resolution was determined by a combination of 

the beam size and the step size of the angular rotation of the sample.

Data processing for scanning XMD

Processing the significant volume of data produced by scanning XMD, often coordinated 

with data from other microscopies, provides continuing challenges. The number of 

diffraction patterns in one scan of a sample has increased from thousands of images 

(diffraction patterns) in step scans with a 10 μ beam to millions of images in fly scans 

utilizing a ~ 10 nm beam. It is impossible to manually examine this number of diffraction 

patterns and automatic data reduction and processing are essential. Current 2D detectors 

widely used for scanning S/WAXS microdiffraction, collect all relevant intensity, symmetry 

and orientation information at high data rates. Most software packages used for solution or 

Liu and Makowski Page 5

Curr Opin Struct Biol. Author manuscript; available in PMC 2024 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fiber diffraction are ill-suited to this data volume. For instance, Fit2D is a commonly used, 

C-based computation GUI for processing 1D plots (azimuthal integration) or 2D patterns 

(a polar transformation) but exhibits severe limits for processing large volumes of data and 

suffers from a lack of compatibility with other analysis programs. ESRF has developed a 

software package called pyFAI, a python–based high-performance software [42,43]. PyFAI 

allows CPU and GPU parallel computation with a single pattern processing time of about 

20 ms. Based on pyFAI, groups at Bessy and Petra synchrotrons developed DPDAK 

for processing and visualizing scanning XMD patterns [44]. py4xs, developed at LiX at 

NSLS-II, is another software package designed for scanning XMD, capable of processing 

data from multiple detectors simultaneously [45]. Other processing tools, such as Xi-CAM 

and blusky, are well-designed software packages for diffraction pattern analysis [46,47]. 

Customized programs have been developed for extracting specific scattering attributes from 

scanning microdiffraction data, such as reciprocal space position, or orientation of fibrillar 

constituents within the tissue [20••,24,48], the recent demonstration of the use of software 

for the automatic extraction of orientation and symmetry information from diffraction data 

[49] and the demonstration of the use of a Gaussian optimization method for extraction of 

structural features from sparsely sampled data sets [50]. Machine learning has been applied 

to disambiguate data from complex mixtures of constituents [51]. These advanced image 

processing and optimization methods have shown high efficiency and reliability in some 

applications and have great potential for automatic processing, analysis, and interpretation of 

scanning XMD data in the future.

Conclusions

There are few available techniques for generating moderate resolution structural information 

about macromolecules in the context of complex materials and tissues. The widespread 

availability of micro- and nanobeams at synchrotron x-ray sources is opening many 

opportunities for studies of this kind. When the scattering volume is reduced, the number 

of constituents contributing to the data is lowered, and in scattering volumes where 

a single constituent dominates, detailed structural information can often be extracted. 

Detailed analysis of this data often relies on the use of high-resolution images of isolated 

molecules or molecular assemblies, which in the absence of in situ information may be of 

uncertain biological relevance. Scanning XMD provides a bridge from these high-resolution 

structures of molecular constituents to lower-resolution optical micrographs that may locate 

constituents but cannot provide information on molecular organization or configuration. 

As such it represents an important link in comprehensive biophysical characterizations of 

complex tissues and materials.
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Figure 1. 
Schematic of scanning X-ray microdiffraction. Monochromatic X-rays are focused at sample 

by X-ray optics. Diffraction pattern is collected by one or more 2D detectors. The diffraction 

patterns are regrouped to their corresponding scan positions to compose scanning X-ray 

microdiffraction image. The images can be computed to show the spatial distribution of 

any attribute of the scattering patterns, making possible the mapping of multiple material 

properties simultaneously [Nicolas J et al., 2019, Progress in Biophysics and Molecular 

Biology].
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Figure 2. 
(a) Physical basis of adhesion by spider attachment hairs. Top view of attachment hair 

freestanding and attached (right) as visualized by WAXS intensities. Side view of attached 

hair (middle) and the distribution of orientations in attachment fibrils as determined 

from SAXS intensity and orientation (Flenner et al., 2020). (b) Structural organization of 

cardiomyocytes (a) Optical micrograph of a freeze-dried cardiomyocyte recorded with the 

beamline on-axis microscope (brightfield). (b) X-ray darkfield image from the integrated 

signal. (c) Diffraction pattern from one scan point. (d) Orientation of constituent actomyosin 

fibrils is determined by the orientation of diffraction. Scale bars for (a), (b), and (d) 50 mm. 

(a-d from Reichardt et al., 2020). (e) X-ray darkfield map of an iPS-derived cardiomyocyte. 
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(f) Orientation of actomyosin fibers obtained by PCA analysis. The anisotropy (g) contrasts 

the highly oriented actomyosin filaments with modulation originating from the striated 

actomyosin filaments (e-g from Nicolas et al., 2019).
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Figure 3. 
Amyloid fibril structure and spatial organization. (a) A diagram of the core cross-β structure 

common to protofilaments of all amyloid fibrils. Fibrils are formed by the longitudinal 

stacking of β sheets with a 4.7 Å repeat distance. Fibrils may contain different numbers of 

protofilaments [22· ·]. (b) Cross section of in vitro assembled Aβ42 peptides as calculated 

from SAXS pattern superimposed on a corresponding electron microscope reconstruction 

(left); as reconstructed from SAXS data (middle); with the corresponding SAXS data (right) 

[23]. (c) Structure of a dense amyloid plaque as visualized by optical microscopy after 

staining with congo red dye (left); as visualized by the intensity of the 4.7 A reflection 

(middle); and a map of fibril orientation as determined from the orientation of the 4.7 A 

reflection (right) [24].
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Figure 4. 
Mapping the 3D orientation of nanostructures in human bone (a) anatomical location of the 

sampling site of the bone cube, its hierarchical structure from laboratory microcomputed 

tomography (microCT) and scanning electron microscopy (SEM). (b) High-resolution 

absorption tomogram (left) with the two-dimensional image (right) of a central section. 

(c) Three-dimensional distribution of orientations reconstructed from the WAXS tensor.
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