Skip to main content
. 2024 Aug 12;22:756. doi: 10.1186/s12967-024-05567-z

Table 2.

Binary classification performance of functional phenotypic datasets using fine-turned models

Model Accuracy F1 Loss Precision Recall Auroc_macro Pr_auc MCC Time(h)
Dataset_HERV A 0.9354 ± 0.0025 0.9386 ± 0.0025 0.1748 ± 0.0026 0.9544 ± 0.0027 0.9234 ± 0.0051 0.9851 ± 0.0007 0.9883 ± 0.0006 0.8710 ± 0.0048 13.2393 ± 0.3802
B 0.9363 ± 0.0010 0.9395 ± 0.0010 0.1554 ± 0.0012 0.9566 ± 0.0035 0.9230 ± 0.0040 0.9859 ± 0.0003 0.9888 ± 0.0003 0.8731 ± 0.0019 17.7381 ± 1.2064
Dataset_Immuno A 0.8122 ± 0.0002 0.8051 ± 0.0037 0.3211 ± 0.0013 0.8414 ± 0.0132 0.7729 ± 0.0182 0.9238 ± 0.0007 0.9298 ± 0.0007 0.6274 ± 0.0017 0.7026 ± 0.0165
B 0.8129 ± 0.0008 0.8128 ± 0.0039 0.3198 ± 0.0021 0.8182 ± 0.0167 0.8095 ± 0.0244 0.9238 ± 0.0013 0.9300 ± 0.0011 0.6274 ± 0.0018 1.9810 ± 0.0044
Dataset_Regulatory A 0.7438 ± 0.0003 0.7764 ± 0.0028 0.5016 ± 0.0013 0.7540 ± 0.0060 0.8005 ± 0.0127 0.8270 ± 0.0005 0.8602 ± 0.0004 0.4787 ± 0.0009 18.4481 ± 0.0137
B 0.7614 ± 0.0012 0.7911 ± 0.0020 0.4744 ± 0.0015 0.7704 ± 0.0061 0.8134 ± 0.0104 0.8462 ± 0.0014 0.8763 ± 0.0012 0.5147 ± 0.0027 27.2533 ± 1.6940
Dataset_Diseases_GWAS A 0.8380 ± 0.0007 0.8537 ± 0.0021 0.3023 ± 0.0023 0.8642 ± 0.0095 0.8442 ± 0.0130 0.9368 ± 0.0008 0.9541 ± 0.0006 0.6731 ± 0.0022 7.2913 ± 0.0123
B 0.8443 ± 0.0010 0.8609 ± 0.0014 0.2976 ± 0.0019 0.8622 ± 0.0048 0.8597 ± 0.0070 0.9393 ± 0.0008 0.9555 ± 0.0006 0.6843 ± 0.0018 21.3534 ± 0.0286
Dataset_Highly_Specifically_Gene A 0.6346 ± 0.0044 0.6081 ± 0.0180 0.6075 ± 0.0029 0.6688 ± 0.0081 0.5604 ± 0.0352 0.7076 ± 0.0034 0.7372 ± 0.0043 0.2758 ± 0.0054 0.2051 ± 0.0003
B 0.6237 ± 0.0056 0.5861 ± 0.0147 0.6349 ± 0.0040 0.6668 ± 0.0189 0.5264 ± 0.0332 0.6894 ± 0.0011 0.7261 ± 0.0011 0.2572 ± 0.0144 0.1858 ± 0.0098
Dataset_Random A 0.5205 ± 0.0031 0.6503 ± 0.0118 0.6953 ± 0.0008 0.5299 ± 0.0006 0.8436 ± 0.0384 0.4983 ± 0.0021 0.5296 ± 0.0006 -0.0003 ± 0.0026 0.7690 ± 0.0038
B 0.5134 ± 0.0059 0.5895 ± 0.0242 0.7010 ± 0.0014 0.5327 ± 0.0019 0.6656 ± 0.0606 0.4997 ± 0.0012 0.5290 ± 0.0014 0.0085 ± 0.0067 2.4468 ± 0.0038

Note The A and B represent the DNA_bert_6 model and the human_gpt2-v1 model, respectively