Skip to main content
. 2024 Aug 12;22:756. doi: 10.1186/s12967-024-05567-z

Table 3.

Multi-classification performance of functional phenotypic datasets using fine-turned models

Model Accuracy F1 Loss Precision Recall Auroc_weighted Pr_auc MCC Time(h)
Dataset_HERV A 0.8880 ± 0.0125 0.8895 ± 0.0077 0.3352 ± 0.0177 0.8989 ± 0.0045 0.8880 ± 0.0125 0.90625 ± 0.0047 0.8455 ± 0.0063 0.7967 ± 0.0197 14.6616 ± 0.4380
B 0.8954 ± 0.0024 0.8956 ± 0.0017 0.3061 ± 0.0087 0.8985 ± 0.0012 0.8954 ± 0.0024 0.9122 ± 0.0010 0.8515 ± 0.0014 0.8078 ± 0.0040 18.8373 ± 1.7596
Dataset_Immuno A 0.8096 ± 0.0029 0.8091 ± 0.0033 0.3432 ± 0.0025 0.8164 ± 0.0033 0.8096 ± 0.0029 0.8197 ± 0.0020 0.7487 ± 0.0017 0.6549 ± 0.0023 0.6727 ± 0.0035
B 0.8057 ± 0.0022 0.8049 ± 0.0029 0.3396 ± 0.0040 0.8180 ± 0.0063 0.8057 ± 0.0022 0.8180 ± 0.0012 0.7471 ± 0.0017 0.6534 ± 0.0056 1.9903 ± 0.0047
Dataset_Regulatory A 0.5937 ± 0.0033 0.6055 ± 0.0029 0.9905 ± 0.0073 0.6491 ± 0.0028 0.5937 ± 0.0033 0.7366 ± 0.0017 0.5107 ± 0.0024 0.4634 ± 0.0038 22.4265 ± 1.1836
B 0.6263 ± 0.012 0.6355 ± 0.0099 0.9275 ± 0.0309 0.6662 ± 0.0008 0.6263 ± 0.0128 0.7536 ± 0.0038 0.5324 ± 0.0047 0.4966 ± 0.0098 31.2417 ± 2.6290
Dataset_Diseases_GWAS A 0.7563 ± 0.0062 0.7579 ± 0.0044 0.5693 ± 0.0049 0.7698 ± 0.0029 0.7563 ± 0.0062 0.8193 ± 0.0005 0.6599 ± 0.0018 0.6355 ± 0.0049 7.7064 ± 0.2058
B 0.7511 ± 0.0015 0.7585 ± 0.0012 0.5747 ± 0.0036 0.7761 ± 0.0006 0.7511 ± 0.0015 0.8293 ± 0.0003 0.6683 ± 0.0006 0.6376 ± 0.0011 22.5575 ± 0.6066
Dataset_Highly_Specifically_Gene A 0.6002 ± 0.0048 0.6014 ± 0.0034 0.8146 ± 0.0092 0.6029 ± 0.0031 0.6002 ± 0.0048 0.6312 ± 0.0029 0.5498 ± 0.0024 0.2551 ± 0.0059 0.2179 ± 0.0122
B 0.5652 ± 0.0091 0.5673 ± 0.0129 0.8564 ± 0.0164 0.5725 ± 0.0166 0.5652 ± 0.0091 0.6003 ± 0.0152 0.5270 ± 0.0107 0.1947 ± 0.0274 0.1933 ± 0.0159
Dataset_Random A 0.2864 ± 0.012 0.2793 ± 0.0025 1.3934 ± 0.0011 0.2881 ± 0.0053 0.2864 ± 0.0126 0.4943 ± 0.0038 0.2935 ± 0.0014 -0.0109 ± 0.0074 0.7665 ± 0.0030
B 0.3321 ± 0.0095 0.2984 ± 0.0071 1.3955 ± 0.0029 0.2992 ± 0.0018 0.3321 ± 0.0095 0.5026 ± 0.0009 0.2969 ± 0.0004 0.0052 ± 0.0018 2.4553 ± 0.0020

Note The A and B represent the DNA_bert_6 model and the human_gpt2-v1 model, respectively