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ABSTRACT
Immunologic treatment options are uncommon in low-grade gliomas, although such therapies might be 
beneficial for inoperable and aggressive cases. Knowledge of the immune and stromal cells in low-grade 
gliomas is highly relevant for such approaches but still needs to be improved. Published gene-expression 
data from 400 low-grade gliomas and 193 high-grade gliomas were gathered to quantify 10 microenvir
onment cell populations with a deconvolution method designed explicitly for brain tumors. First, we 
investigated general differences in the microenvironment of low- and high-grade gliomas. Lower-grade 
and high-grade tumors cluster together, respectively, and show a general similarity within and distinct 
differences between these groups, the main difference being a higher infiltration of fibroblasts and T cells 
in high-grade gliomas. Among the analyzed entities, gangliogliomas and pleomorphic xanthoastrocyto
mas presented the highest overall immune cell infiltration. Further analyses of the low-grade gliomas 
presented three distinct microenvironmental signatures of immune cell infiltration, which can be divided 
into T-cell/dendritic/natural killer cell-, neutrophilic/B lineage/natural killer cell-, and monocytic/vascular/ 
stromal-cell-dominated immune clusters. These clusters correlated with tumor location, age, and histolo
gical diagnosis but not with sex or progression-free survival. A survival analysis showed that the prognosis 
can be predicted from gene expression, clinical data, and a combination of both with a support vector 
machine and revealed the negative prognostic relevance of vascular markers. Overall, our work shows that 
low- and high-grade gliomas can be characterized and differentiated by their immune cell infiltration. 
Low-grade gliomas cluster into three distinct immunologic tumor microenvironments, which may be of 
further interest for upcoming immunotherapeutic research.
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Introduction

Tumors of the central nervous system (CNS) are the second 
most common malignancy in children after leukemia. Gliomas 
constitute approximately half of all pediatric CNS tumors, of 
which roughly three-quarters are low-grade.1,2 Pediatric 
(pLGG) and adult low-grade gliomas (aLGG) differ clinically 
as well as molecularly. These findings were recently incorpo
rated into the latest WHO Classification of CNS tumors with 
the prefix “pediatric-type” for diffuse low-grade gliomas and 
should also be considered in future research.3

While pLGGs, mainly when located superficially, have 
a comparatively good prognosis if gross total resection is 
achieved, pLGGs in locations such as the hypothalamus, the 
optic pathways, or the brain stem have a substantially worse 
prognosis as often only subtotal resection is feasible.2,4 This is 
problematic, especially in the context of concomitant adverse 
effects with other treatment modalities, such as chemotherapy 
and craniospinal irradiation therapy, the latter of which often 
causes long-term toxicities.5 Though modern radiotherapeutic 

techniques like proton beam therapy appear to show fewer 
toxicities, they still seem to cause reduced neurocognitive out
comes in young children.6,7 New complementary therapeutic 
approaches are needed to mitigate long-term effects and 
improve prognosis, especially in recurrent and irresectable 
cases.

Immune therapies have proven useful treatment modalities 
in several malignancies, but they are still uncommon in LGG.8 

In a recent phase I clinical trial in H3K27M-mutated diffuse 
midline gliomas of children and young adults, CAR-T-cell 
therapy showed a clinical benefit in three of the four 
patients.9 Nonetheless, established immunotherapeutic 
approaches in low-grade gliomas are still generally missing. 
This is at least partially explicable by the incomplete knowledge 
of their tumor microenvironment (TME) and the significance 
of its composition for tumor prognosis.

The TME is essential as it not only influences a tumor’s 
response to conventional treatment but the TME itself is also 
influenced and altered by conventional treatment and 
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immunotherapeutic approaches.10,11 Even microbial peptides 
seem to influence immune responses as recently shown in 
glioblastoma.12 All the while, stromal cells can affect tumor 
progression and metastasis positively and negatively.13 The 
microenvironment’s significance as a regulator of tumor pro
gression is also true for CNS tumors.14 For instance, immune- 
related genes can be used to establish a prognostic model that 
correlates with the infiltration of specific immune cells, as Guo 
and colleagues demonstrated in medulloblastoma.15 

Grabovska and colleagues were able to group pediatric CNS 
tumors into three broad immune clusters and found LGGs to 
be most associated with the one dominated by monocytes and 
with low CD8-T-cell infiltration.16 Wang and colleagues, who 
examined pediatric gliomas (PG) only, found that macro
phages followed by T cells were the most common immune 
infiltrating cells and classified the PGs into three immune 
subtypes “immune hot”, “immune altered” and “immune 
cold”, of which the “immune hot” subtype showed the most 
favorable and “immune cold” the worst prognosis.17 In adult 
diffuse lower-grade gliomas (grade 2 and 3) Wu and colleagues 
identified three immune subtypes associated with distinct 
somatic alterations and prognoses.18

Our group previously elucidated the immunologic land
scape in large-scale datasets of medulloblastoma and high- 
grade gliomas.19,20 Such large-scale approaches were made 
possible by the availability of transcriptomic data from sev
eral hundred cancer samples in various public databases. 
These data can be used by deconvolution methods to 
robustly quantify immune cell infiltration in large sample 
sizes retrospectively, but they are still missing for large-scale 
analyses specifically dedicated to pediatric low-grade 
glioma.19–23

Here, we gathered transcriptomic data from 10 pediatric 
CNS tumor datasets generally considered low-grade24 to ana
lyze their tumor microenvironment. First, we compared these 
samples to high-grade gliomas, showing differences between 
the two subgroups. Next, we identified three immunologic 
clusters in LGGs, which we examined regarding their cell 
composition and metadata. Lastly, we analyzed the dataset for 
prognostically relevant genes and enriched pathways and used 
machine learning to predict survival.

Materials and methods

All data analyses were performed using the statistical program
ming language R, including the packages BiocManager, 
GEOquery, affy, org.HS.eg.db, AnnotationDbi, Complex 
Heatmap, circlize, DESeq2, biomaRt, hgu133plus2hsentrezgcdf, 
hgu133ahsentrezgcdf, dendextend, factoextra, Rtsne, survival, 
plotrix, amap, fgsea, caret.

Datasets

Six series of microarray gene-expression data were downloaded 
from Gene Expression Omnibus (GEO).25–32 Further, two ser
ies of RNA-Seq gene-expression data were downloaded from 
the European Genome-phenome Archive (EGA).33,34 A list of 
all 10 datasets with additional information is provided in the 
supplement (Supplemental Table S1).

Data curation

Initially, 302 high-grade samples from two of the 10 datasets 
(GSE50161 and GSE16011) were included for the comparative 
analysis of low-grade with high-grade gliomas. Since genetic 
mutation data were available for these samples (Supplemental 
Table S2–3), we used these data to curate the samples accord
ing to the revised WHO 2021 classification that has since been 
published. The entirety of all the data yielded a dataset of 400 
low-grade gliomas composed of 344 pilocytic astrocytomas, 36 
gangliogliomas, 14 dysembryoplastic neuroepithelial tumors, 
and six pleomorphic xanthoastrocytomas as well as 193 addi
tional high-grade gliomas composed of 127 glioblastomas, 22 
IDH-oligodendrogliomas and 44 IDH-astrocytomas 
(Supplemental Table S4).

Preprocessing and batch-effect removal

The various data types required different preprocessing pipe
lines, which had to consider batch-correction to allow for 
a combined analysis of this heterogeneous data collection.

Raw microarray gene-expression data (.CEL-files) were nor
malized using mas5 normalization as implemented in the 
R-package affy. The microarray gene-expression data of one 
series was provided as a table already being normalized with 
the cubic spline algorithm implemented in the GenePattern 
Illumina normalizer module.25

The RNA-Seq gene-expression data were mapped with 
STAR using the last version of the hg19 reference genome 
and counted with featureCounts. The use of hg19 instead of 
hg38 for all RNA-Seq series was dictated by one series already 
having been hg19-preprocessed (.bam).34

All data were log-transformed, and data originating from 
the same center/study were linearly transformed for each gene 
such that the median of all pilocytic astrocytoma cases of the 
respective center/study was zero. The statistical dispersion was 
aligned using the same approach employing the median abso
lute deviation as the measure of statistical dispersion.

Sex-associated genes were removed. Analyses involving data 
from all platforms were restricted to 4923 available common 
genes between the datasets (Supplemental Table S5).

After batch-effect removal, clustering of the data for low- 
grade gliomas based on the 1,000 most variable genes revealed 
concordance of similar tumors from different datasets with 
respect to diagnosis and location (Supplemental Figure S1a). 
Further, a t-SNE based on the calculated immune cell infiltra
tion showed no apparent batch effects (Supplemental 
Figure S1b).

Computation of immune and stromal signatures and 
purity

To infer the immune cell infiltration from gene-expression 
data we used published gene signatures of mRNA markers 
for 10 cell populations optimized by Bockmayr et al. for use 
in glioma20 based on published marker signatures proposed by 
Becht et al.21 and Danaher et al.22 (Supplemental Table S6). 
Infiltration scores of immune and stromal cell signatures were 
calculated as the average values of the corresponding marker 
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genes available across all platforms (Supplemental Table S7). 
Datasets were then merged and scaled based on the mean and 
standard deviation for each cell signature separately. Tumor 
purity was quantified using PUREE35 (Supplemental Table S8).

Visualization, SVM, survival- and geneset-enrichment- 
analysis (GSEA)

Prior to heatmap analysis, data were trimmed at z-scores ±3. 
Heatmaps were then generated using the ward.D2-linkage 
method (ComplexHeatmap) and Spearman correlation as 
similarity measure. The significance of differential expression 
in the boxplot analysis was evaluated using the Kruskal-Wallis 
test and corrected for multiple testing for different metadata by 
applying the Benjamini-Hochberg (BH) method. The signifi
cance of the difference in the distribution of metadata between 
the clusters for the bar plots was evaluated using Fisher’s exact 
test. Survival analysis was performed using the log-rank test.

The prognostic relevance of single genes was analyzed using 
the proportional hazards model as implemented by the coxph 
function from the R-package survival. Multiple testing correc
tions were performed using the BH method where indicated. 
The regression coefficients were used for visualization and 
gene set enrichment analysis using the R-package fgsea and 
Gene Ontology sets with 100–400 genes from msigdb.36 

Overlapping pathways were removed with the function 
collapsePathways, resulting in 12 significantly enriched path
ways with a BH-corrected p-value < 0.01. Machine learning- 
based survival prediction were performed with a linear support 
vector machine (SVM) with default parameters using the 
packages caret, mltools, and e1071. The binary 5-year progres
sion-free survival was used as the output variable. We trained 
one model based on all available clinical data (age, location, 
sex, histology, and resection status) and one model based on 
the molecular data (4923 genes). Clinical variables were one- 
hot encoded. The encoding of the histological diagnosis DNT 
was removed from the training data, as there was only a single 
case with available survival data. The performance was evalu
ated using 10-times repeated 10-fold cross-validation, such that 
every case was predicted 10 times to increase robustness. A case 
was assigned to the poor prognosis group if progression was 
predicted in at least 5/10 cross-validation runs. As parameter 
optimization was not performed, nested cross-validation was 
not required. An integrated prediction model was defined by 
combining the predictions from the clinical and the molecular 
SVM. Cases were assigned to the high-risk (HR) group if both 
models predicted tumor progression, to the intermediate-risk 
(IR) group if the predictions were discordant, and to the low- 
risk (LR) group if both models predicted no evidence of 
disease.

Results

Low-grade gliomas and high-grade gliomas differ in the 
expression of microenvironment signatures

Based on a deconvolution approach relying on reference sig
natures optimized for brain tumors,20 10 microenvironment 
signatures, eight immune and two stromal cell populations, 

were computed for a dataset of 593 bulk transcriptomic pro
files. The dataset was compiled from 10 datasets available on 
GEO and EGA. Since it comprised five different platforms and 
two different data types, data was corrected for batch effects 
prior to analysis (Supplemental Figure S1). In total, 344 pilo
cytic astrocytomas (PA), 36 gangliogliomas (GG), 14 dysem
bryoplastic neuroepithelial tumors (DNT), six pleomorphic 
xanthoastrocytomas (PXA), 127 glioblastomas (GBM), 22 
IDH-oligodendrogliomas (IDH-OD) and 44 IDH- 
astrocytomas (IDH-A) were included in the analysis and 
tumor entities were subdivided by grades.

Hierarchical clustering based on the median expression 
scores of all cell populations yielded a pronounced division of 
entities generally considered to be low grade, i.e., GG, PXA, 
PA, DNT, or high grade, i.e., GBM, IDH-OD, IDH-A (Figure 1 
(a)). Hierarchical clustering without grade subdivision yielded 
similar results and a similar pattern was also discernible in 
a t-SNE analysis based on the calculated immune cell infiltra
tion scores (Supplemental Figure S2a,b). The most characteriz
ing difference between the low-grade and high-grade clusters 
can be attributed to higher expression levels of fibroblasts and 
T cells in the high-grade cluster. The expression levels of 
myeloid dendritic cells seemed to follow a similar pattern but 
deviated in the case of gangliogliomas and glioblastomas 
(Figure 1(a,b), Supplemental Figure S2a,c).

Also, high expression of the fibroblast signature was only 
found in high-grade gliomas (GBM and IDH-A grade 4, IDH- 
OD grade 3), and only higher-grade IDH-mutated entities 
(IDH-A grade 3/4, IDH-OD grade 3) showed a high expression 
of myeloid dendritic cells (Figure 1(a,b)). Overall, ganglioglio
mas had the highest general expression levels of all the entities.

In addition to those general patterns, other observations 
were made, such as an elevated expression of cytotoxic lym
phocytes and natural killer (NK) cells in gangliogliomas, 
a decreased expression of the monocytic lineage and neutro
phils in IDH-OD as well as a decreased expression of natural 
killer cells in IDH-A (Figure 1(a,b), Supplemental Figure S2a, 
c). Overall, the observed dispersion of expression levels was 
large, and the distributions of immune and stromal signatures 
partially overlapped between the different groups. However, 
expression scores for all signatures, except for endothelial cells, 
were significantly different between entities or entity-grade 
pairings (all p < 0.0061, Figure 1(b), Supplemental Figure 
S2c). A correlation analysis revealed a negative association 
between tumor purity and immune cell signatures and high
lights that the differences between immune clusters are tran
scriptomic variations and not solely explained by the overall 
immune cell abundance (Supplemental Figure S5).

Division of low-grade gliomas into immunologic clusters 
by microenvironment expression scores

Next, we analyzed the expression of the microenviron
mental signatures for the low-grade gliomas only. 
Unsupervised hierarchical clustering resulted in three 
clusters with distinct microenvironmental expression pat
terns for the 400 analyzed samples. The dominant cell 
populations were T cells, dendritic and natural killer 
cells in Cluster 1, neutrophilic, B lineage and natural killer 

ONCOIMMUNOLOGY 3



cells in Cluster 2, and monocytic, vascular, and stromal 
cells in Cluster 3 (Figure 2(a,b), Supplemental Figure S3a). 
The described cluster characteristics were strongest for 
Cluster 1, with the expression of T-cell population signa
tures, followed by Cluster 3, with the expression of the 
monocytic lineage and endothelial cells. In general, 
Cluster 1 showed the highest overall microenvironmental 
expression.

We further analyzed the differences in the expression of the 
individual immune cell signatures in relationship to different 
metadata such as age, location, sex, entity, tumor progression, 
the extent of surgery, and the newly introduced clusters. 

Immune-cell-specific gene expression did not significantly differ 
for age, sex, or tumor progression (Supplemental Figure S3a). 
Concerning tumor location, supratentorial cases had 
a significantly higher expression of cytotoxic lymphocytes 
(p = 0.003), T cells (p = 0.003), and natural killer cells 
(p = 0.029) (Figure 2(c)). The remaining cell populations showed 
no significant difference for tumor location. Expression scores 
between the different low-grade entities were significant for all 
immune cell signatures except for endothelial cells and neutro
phils. The differences in gene expression between the immune 
clusters were highly significant for all 10 cell populations 
(all p < 2e-06) (Supplemental Figure S3a).

Figure 1. Comparison of expression scores for 10 microenvironment cell populations in seven brain tumor entities subdivided by grade. (a): Heatmap based on the 
median expression score of every cell population for every entity. Entities generally considered low-grade and high-grade cluster together, respectively, and show 
distinct expression profiles. (b): Corresponding boxplots. Boxes indicate the lower and upper quartiles, with the black band indicating the median. Whiskers extend to 
1.5*IQR, outliers beyond that are not shown. P-values are calculated by the Kruskal-Wallis test. Low- and high-grade entities show differences for some cell populations, 
but overall dispersion is large.
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Figure 2. Immunologic clusters and immune cell signatures analyzed by age, location, and entity. (a): Heatmap based on the gene expression of 10 microenvironment 
cell populations using unsupervised hierarchical clustering. Three distinct immune clusters can be identified. (b): Visual representation of medians of each cluster for 
every cell population of Figure 2a. (c): Boxplots illustrating gene expression of individual immune cell signatures for different types of metadata. Data is presented 
analogously to Figure 1b. (d-f): Analysis of the difference in the distribution of different metadata between the clusters using Fisher’s exact test. INF, infratentorial; SUP, 
supratentorial; NA, not available.
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Patient age groups, tumor location, and entity signifi
cantly differed between the defined immune cell clusters 
(Figure 2(d-f), all p < 0.04). Cluster 2 was enriched for 
older patients as well as DNTs. Cluster 1 was associated 
with comparatively more supratentorial samples and GGs 
(Figure 2(e,f)). Distributional differences between immune 
clusters were not significant for sex, tumor progression, 
and type of surgery (Supplemental Figure S3b-d).

Furthermore, we performed a survival analysis for pro
gression-free survival, which did not significantly differ 
between the clusters (p = 0.1, Supplemental Figure S3e). 
Survival analysis for age, location, sex, and entity was not 
significant, solely the type of surgery showed a highly 
significant (p = 0.00016) difference in progression-free sur
vival in favor of tumors treated with a gross total resection 
(GTR) compared to a subtotal resection (STR) 
(Supplemental Figure S3f-j). Data for progression-free sur
vival were available for 43.8% of the low-grade glioma 
samples (Supplemental Figure S4).

Gene expression-based survival analysis

To get a more detailed insight into the prognostic relevance of 
the available gene expression data (5-year progression-free 
survival), we analyzed each of the 4923 genes included in all 
10 compiled datasets separately using Cox proportional 
hazards modeling. From these genes, 163 were associated 
with worse survival, and 130 were associated with better survi
val (all p < 0.05, Figure 3(a)). However, only the endothelial 
marker VE-cadherin (CDH5) was significantly associated with 
poor outcomes after correction for multiple testing (p-BH =  
0.027).

Next, gene set enrichment analysis was performed to iden
tify functional sets associated with survival. Overall, after filter
ing and removal of overlapping categories (see Methods), 12 
gene sets were significantly associated with the outcome (all 
p-BH < 0.006, Figure 3(b)). Interestingly, the GO categories 
“chromosome organization”, “DNA repair”, and “mitotic cell 
cycle” were associated with better outcomes (Figure 3(b)). 
Further, the immune and stromal/endothelial categories “reg
ulation of defense response”, “cytokine mediated signaling 
pathway”, “regulation of immune effector process”, and “vas
cular development” were associated with worse outcome. Six of 
the 12 enriched categories were linked to cell replication and 
DNA repair, while four were associated with the tumor 
microenvironment.

As the previously defined immune clusters showed no 
clear prognostic relevance, we finally investigated if 5-year 
progression-free survival could instead be directly predicted 
from gene expression and clinical data using machine learn
ing. To this end, a linear support vector machine (SVM) was 
used and evaluated using 10-fold cross-validation. The SVM 
trained on expression data was able to divide the cohort into 
two groups (low-risk = LR and high-risk = HR) with signifi
cantly differing PFS (p = 0.0071, Figure 3(c)). Similarly, 
training an SVM on clinical data identified two groups 
with significantly differing PFS (p = 0.0013, Figure 3(d)). 
Finally, a combined model based on molecular and clinical 
data allowed to further improve predictions into three 

prognostic groups (p = 0.00011, Figure 3(e)), highlighting 
the relevance of both molecular and clinical data for the 
prognostic stratification of pLGG.

Discussion

Pediatric low-grade gliomas have a relatively good prognosis if 
the tumor is resected in its entirety. Still, the patient’s prognosis 
drastically declines if this is not achieved or not possible 
because of tumor location.2,4 Other used treatment modalities, 
such as craniospinal radiation therapy, are concomitant with 
adverse effects and long-term toxicities.5–7 In the last decade, 
immunotherapies have been successfully implemented in the 
treatment of various malignancies8,9 but are generally absent in 
low-grade gliomas. Knowledge of the TME is pivotal for the 
development, implementation, and improvement of the effec
tiveness of immune therapies. Previous studies on pediatric 
CNS tumors, pediatric gliomas, and adult LGGs showed great 
inter- and intratumor heterogeneity in immune cell 
infiltration,16–18 so it can be hypothesized that this also applies 
to pediatric low-grade gliomas.

Our study analyzes a cohort compiled from 10 published 
datasets analyzed on five platforms. Although this resulted in 
a reduced set of 4923 genes and different steps of data prepro
cessing as well as batch correction were necessary, we opted for 
this approach to get a comprehensive overview of the immuno- 
stromal landscape in pediatric low-grade glioma (pLGG) in 
a large cohort. The analysis includes 400 pLGG samples, which 
adequately addresses intertumoral heterogeneity. It is currently 
the most extensive analysis addressing the immune microenvir
onment in pLGG. The deconvolution approach relies on tran
scriptomic data, which are available for large sample sizes while 
at the same time offering a sufficient resolution for a precise 
characterization of the tumor microenvironment.

Higher resolution techniques like single-cell RNA-Seq spa
tial transcriptomics, or flow cytometry using fresh material can 
better characterize the immune microenvironment for selected 
tumors.37 Our approach results in a less detailed characteriza
tion of the TME, but it can be applied to much larger cohorts, 
and it complements further analyses relying on high-resolution 
methods.

Besides transcriptomic data, bulk DNA methylation data, 
which are also available for large cohorts of pLGG, can also be 
used to characterize the tumor microenvironment using 
deconvolution methods.16,38 However, although widely avail
able, this data type is less suitable for deconvolution analyses in 
samples with a relatively low number of tumor-infiltrating 
immune cells like pediatric glioma.38 Tumor-infiltrating 
immune cells can, in principle, also be detected from standard 
histopathological images using machine-learning techniques.39 

However, this approach is only of limited utility in pediatric 
brain tumors as morphological characterization and differen
tiation of small numbers of infiltrating immune cells is very 
challenging on H&E-stained slides and as no large series of 
immunohistological data are available.

The deconvolution analysis relied on a method specifically 
developed for use with brain tumors, which reduces the risk of 
nonspecific signatures.19,20 These signatures were optimized 
based on marker signatures proposed by Becht et al.21 and 
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Figure 3. Prognostic relevance of gene expression and immuno-stromal markers in low-grade glioma. (a): Volcano plot showing log hazard ratios and p-values from 
Cox-regression for 5-year progression-free survival (PFS) based on the 4923 genes present in all datasets. Three significantly enriched gene expression signatures are 
color-coded. A rhombus indicates significance after multiple testing correction (FDR 5%). (b): results of gene set enrichment analysis of prognostically relevant genes 
(5-year PFS). (c-e): Kaplan-Meier curves showing results of SVM-based prediction of 5-year PFS based on 4923 genes (c) clinical data (age, location, sex, histology, and 
resection status, (d) and a combined model (e) in 79 patients.
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Danaher et al.22 In contrast to methods based on support 
vector regression like CIBERSORT,40 this methodologically 
more straightforward approach is more stable in cases with 
overall low immune infiltration.38,41

Our analysis of the immune and stromal microenvironment 
of pediatric low-grade gliomas revealed three different clusters 
of immune cell infiltration that can be described as T-cell/ 
dendritic/natural killer cell- (Cl. 1), neutrophilic/B lineage/ 
natural killer cell- (Cl. 2), and monocytic/vascular/stromal- 
cell-dominated (Cl. 3). Overall, microenvironmental expres
sion was highest and most pronounced in Cl. 1 and the immu
nologic clusters correlated with location, age, and histological 
diagnosis. Our data also showed that HGGs and pediatric 
LGGs differ in their immune and stromal microenvironment, 
especially with T cells and fibroblasts being more present in 
HGGs. A relatively high presence of fibroblasts correlated with 
higher tumor grades (grade 3 and 4), which is in concordance 
with the findings by Chen et al.42 Differences in progression- 
free survival were not significant between the defined immune 
clusters, but we showed that 5-year PFS can be predicted from 
the molecular and clinical data with machine learning. While 
this underlines the prognostic relevance of the studied data, 
large datasets analyzed with high-resolution molecular profil
ing techniques are likely necessary to identify the specific role 
of the different immune cell populations. More specifically, we 
show that the vascular marker VE-Cadherin (CDH5) was asso
ciated with poor prognosis in our cohort. The expression of 
CDH5 was previously correlated with tumor grade in glioma, 
and an association with neovasculogenesis has been 
postulated.43 This could indicate that overexpression of 
CDH5 is associated with higher aggressiveness, which is usually 
present in higher-grade glioma.

Previously published work on immune infiltration in smal
ler series of pLGG reported mixed results. Using multicolor 
FACS and gene expression analysis (including some samples 
re-analyzed here), Griesinger et al. found a higher immune cell 
infiltration, especially for myeloid cells, in PA than in GBM, 
which we could not fully replicate.28 While some cell lines of 
myeloid lineage tended to be slightly more prevalent in PA 
than in GBM on average (monocytic lineage and neutrophils), 
others did not (myeloid dendritic cells). Robinson et al. exam
ined T-cell infiltration in a small sample size of pediatric 
glioma, implementing multiplex immunofluorescence immu
nohistochemistry, machine learning, and single-cell mass cyto
metry. They found T-cell infiltration higher in LGGs than 
HGGs.44 In our analysis, T-cell infiltration was higher in 
HGGs than in LGGs, except for GG, although the distribution 
partially overlapped. Using immunohistochemical markers, 
Yang and colleagues found the (CD8) T-cell infiltration higher 
in GBM than in PA.45 Among LGGs, in concordance with 
Robinson et al. T cells, CD8 T cells, and cytotoxic lymphocytes 
were indeed more prevalent in GGs and PXAs in our study 
than in PAs and, in our case, DNTs.44 Taken together, these 
results underline the great heterogeneity of immune infiltra
tion in pLGG, which is also suggested by a recent pan-cancer 
analysis of immunogenomics in pediatric brain tumors.46

In summary, our analysis emphasizes the heterogeneity of the 
immune and stromal microenvironment in pLGG and identifies 
three main immuno-stromal patterns. Vascular markers were 

associated with worse overall survival. The differences in 
immune cell infiltration in pediatric low-grade gliomas should 
be considered in upcoming immunotherapeutic research.
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