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The early life exposome and autism risk: a role for the maternal microbiome?
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ABSTRACT
Autism spectrum disorders (ASD) are highly heritable, heterogeneous neurodevelopmental dis-
orders characterized by clinical presentation of atypical social, communicative, and repetitive 
behaviors. Over the past 25 years, hundreds of ASD risk genes have been identified. Many converge 
on key molecular pathways, from translational control to those regulating synaptic structure and 
function. Despite these advances, therapeutic approaches remain elusive. Emerging data unearth-
ing the relationship between genetics, microbes, and immunity in ASD suggest an integrative 
physiology approach could be paramount to delivering therapeutic breakthroughs. Indeed, the 
advent of large-scale multi-OMIC data acquisition, analysis, and interpretation is yielding an 
increasingly mechanistic understanding of ASD and underlying risk factors, revealing how genetic 
susceptibility interacts with microbial genetics, metabolism, epigenetic (re)programming, and 
immunity to influence neurodevelopment and behavioral outcomes. It is now possible to foresee 
exciting advancements in the treatment of some forms of ASD that could markedly improve quality 
of life and productivity for autistic individuals. Here, we highlight recent work revealing how gene 
X maternal exposome interactions influence risk for ASD, with emphasis on the intrauterine 
environment and fetal neurodevelopment, host–microbe interactions, and the evolving therapeu-
tic landscape for ASD.
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Introduction

Autism spectrum disorders (ASD) are character-
ized by heterogeneous presentation of social, com-
munication, behavioral, and cognitive deficits. In 
2023, the Autism and Developmental Disabilities 
Monitoring (ADDM) Network estimated that 1 in 
25 boys and 1 in 100 girls eight years of age (or 1 in 
36 children) in the United States is autistic,1 a 
marked increase from its most recent estimate of 
1 in 44 children.2 Despite its prevalence and iden-
tification of molecular-to-neural circuit-level 
mechanisms contributing to syndromic and other 
genetically defined ASD populations,3,4 risk pro-
files for ASD remain poorly defined, most cases 
are of unknown etiology, and effective preventative 
and therapeutic measures remain limited.

The genetic landscape of ASD is heterogenous 
and multifaceted, encompassing (1) syndromic 
forms, such as that associated with Fragile X 
Syndrome,5 (2) single nucleotide polymorphisms 
like mutations in the gene encoding voltage gated 
sodium channel 1.2 (Nav1.2), SCN2A,6 and (3) 

copy number variants (CNVs), such as 
15q11.2q13 deletions or duplications.7 This genetic 
complexity is reflected in the wide range of fea-
tures, symptoms, and severity which characterize 
ASD (the ‘spectrum’). Despite these relatively well- 
characterized disorders, the underlying cause of 
most cases remains completely unknown. Given 
the high heritability of ASD, most studies have 
rationally focused on understanding how genetic 
variants contribute to disease risk and the under-
lying pathology. However, it is increasingly evident 
that environmental factors can modify ASD risk.8,9 

The concept that early-life environmental expo-
sures that modify gene expression through epige-
netic reprogramming could result in a phenotype 
indistinguishable from that of genomic variants is 
gaining traction, as the burgeoning field of expo-
somics attempts to capture how the full array of 
environmental exposures experienced from fetal 
development onward contribute to disease risk 
and outcomes, even across generations.
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The “exposome,” a term coined by cancer biol-
ogist Christopher P. Wild in 2005,10 encompasses 
the myriad environmental factors to which an indi-
vidual is exposed throughout life. Notably, a grow-
ing body of evidence highlights the role of the early 
life exposome in setting the stage for disease risk 
later in life. Beyond cancer, the interplay between 
genetics and the exposome appears to be particu-
larly relevant to neurodevelopmental disorders, 
which typically emerge during early childhood.11 

Detrimental events, such as in utero exposure to 
valproic acid (VPA),12 occurring during develop-
mental critical periods can disrupt highly orche-
strated changes in gene expression and thereby 
affect the formation of behaviorally relevant neural 
circuits. While investigation into the relationship 
between the exposome and neurodevelopmental 
health is in its infancy, exposure science is on the 
radar of major biomedical funding agencies, 
including the National Institute of Environmental 
Health Science (NIEHS).

Most environmental exposures that influence 
early life neurodevelopment likewise act on the 
maternal and offspring gut microbiome, as well as 
the host immune system.13–15 Microbiota-immune 
interactions occur both in utero and during early- 
postnatal life, underscoring the importance of the 
maternal exposome in offspring risk for neurode-
velopmental disorders. Maternal diet, infections, 
and medications can significantly alter the micro-
biome and the maternal inflammatory response. 
Each has been linked to risk for neurodevelopmen-
tal disorders in both preclinical and clinical 
studies.16

Multi-OMICs-based studies are beginning to 
unravel the complex relationship between the 
microbiome and its associated metabolome with 
the host immunome, epigenome, and, ultimately, 
the tissue-specific transcriptome. Intriguingly, 
some preclinical studies exploit a key feature of 
environmentally driven epigenetic alterations: 
their reversibility.17,18 Alongside host genome-tar-
geted approaches,19 modulation of the gut micro-
biome and the immune system during early 
development are being explored as innovative stra-
tegies for ASD. Here, we review recent evidence for 
complex genome–metagenome interactions in 
ASD and how early life environmental exposures, 
particularly those that affect the maternal and 

intrauterine environments, contribute to risk for 
ASD by influencing development of the brain and 
the immune system, and their interactions.

Autism spectrum disorder: a complex condition 
with increasing prevalence

Autism spectrum disorder (ASD) is characterized 
by presentation of persistent deficits in communi-
cation and social interaction as well as restricted 
and repetitive pattern of interests or activities 
which lead to significant impairment in social and 
occupational functioning.20 The core features of 
ASD often emerge in early development, but the 
age of diagnosis varies. ‘Spectrum’ reflects the het-
erogeneous clinical manifestation of ASD, which 
can differ according to severity of the disorder as 
well as the developmental stage, biological sex, and 
age of the subject. While early detection and inter-
vention, ideally in infancy, is associated with better 
outcomes,21 most cases are diagnosed after age 
three.

The prevalence and demographics of children 
diagnosed with ASD in the United States are 
changing.22 Biological sex is a well-established 
risk factor for ASD, with the DSM-V reporting 
that “[ASD] is diagnosed four times more often in 
males than in females.” Consistent with much of 
the human literature, our group23 and others have 
reported increased severity of autism-like pheno-
types among male animals in preclinical models for 
ASD. However, in a 2009 meta-review of 43 studies 
on the prevalence of ASD published since 1966,24 

the CDC concluded that this gap is narrowing, as 
the ratio between boys and girls has decreased in 
the autism and developmental disabilities monitor-
ing (ADDM) network overall. Girls affected by 
ASD are more likely to be misdiagnosed25 or late- 
identified26 given that female autism phenotypes 
diverge from the classically established diagnostic 
criteria for ASD.27,28 More recent studies imple-
menting improved diagnostic assessments of social 
communication and restricted and repetitive beha-
viors that adjust for bias in sex-related measure-
ments and account for sex-specific symptom 
trajectories identify a more equivalent ASD preva-
lence among boys and girls.29 Similarly, classical 
behavioral analyses in preclinical models for ASD 
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were designed to assess male-dominant behavioral 
traits;30 thus, there is a historical gap assessing and 
reporting on female-specific behaviors, like mater-
nal behavior and alloparenting,31 in the preclinical 
literature. Nonetheless, biological factors such as 
sex hormones and sex-based genetic risk, areas of 
active investigation, might be responsible for the 
apparent increase in vulnerability to ASD among 
males.32–34

The etiology of non-syndromic ASD, like other 
neurodevelopmental and neuropsychiatric disor-
ders, is now thought to be multifactorial, involving 
complex interactions between risk genes and envir-
onmental insults35,36 incurred in early develop-
ment. ASD etiology has been under intense 
investigation for decades. In the 1960s, a popular, 
but errant, theory that lack of parental warmth as a 
determinant of ASD37 emerged in opposition to 
competing theories focused on biological factors 
like brain development.38 In the following decades, 
epidemiologic, genetic, cytogenetic, and neuroima-
ging studies39,40 provided causal links between 
ASD and altered brain development. The resulting 
data definitively characterized autism as a disorder 
of biological origin. This ushered in a new era of 
investigation into ASD anchored by the concept 
that gene mutations were the primary driver of 
autistic phenotypes, leading to the classification of 
ASD into syndromic and non-syndromic forms.41 

Syndromic autism occurs in subjects with other 
neurological conditions, such tuberous sclerosis 
complex (TSC),42 Rett syndrome (RTT),43 fragile 
X syndrome (FXS),44 and phosphatase and tensin 
homologue (PTEN) macrocephaly syndrome.45 It 
is determined by a mutation in a specific gene or 
group of genes. Non-syndromic autism, which 
accounts for most cases, is not linked to other 
defined conditions and cannot be traced to muta-
tions in a single gene or specific chromosomic 
aberrations. Nonetheless, investigation of syndro-
mic ASD can aid in understanding non-syndromic 
autism.46

Several nongenetic – or, environmental – factors 
can interfere with fetal brain development in ways 
that converge onto the molecular and cellular path-
ways implicated in syndromic autism and are, 
thereby, proposed to contribute to either risk for 
or the severity of autistic phenotypes.47,48 While 
there is a significant amount of evidence to support 

that the early life exposome is relevant to ASD 
pathology, the causal relationship between envir-
onmental exposures and ASD remains an area of 
intense investigation and equally intense debate in 
the field.

Pregnancy and the periconceptional period have 
been identified as developmental critical periods 
during which environmental exposures can influ-
ence child health outcomes by longitudinal popu-
lation-based birth cohort studies, such as the 
Human Early Life Exposome (HELIX) study.49 

The environmental factors – chemical or physical 
agents, nutrition, psychological and social condi-
tions, and infectious disease, among others – to 
which we are exposed throughout life constitute 
the ‘exposome.50,51 The idea that the pregnancy 
exposome exerts a considerable impact on fetal 
development originates from David Barker’s 
“Fetal Programming Hypothesis”52 that chronic 
disorders manifesting in postnatal/adult life may, 
in part, result from environmental insults in utero. 
This influential theory is also known as the “devel-
opmental origins of health and disease (DOHaD)” 
hypothesis.

In 2003, the CHARGE (Childhood Autism Risks 
from Genetics and the Environment) study was 
launched to comprehensively assess the contribu-
tion of environmental factors to ASD.53 CHARGE 
identified increased risk for ASD associated with 
maternal occupational exposure to solvents and 
postulated that other chemicals might have a 
similar effect on neurodevelopment.54 Human 
epidemiological55 and animal studies suggest that 
other maternal factors, such as infection and diet/ 
metabolic status during pregnancy can likewise con-
tribute to ASD risk in offspring. The underlying 
mechanisms by which discrete environmental expo-
sures increase risk for ASD, among other non-com-
municable chronic disorders, are an area of active 
investigation. One unifying theory is that they induce 
epigenetic reprogramming of various systems (e.g., 
the immune and/or nervous systems) during devel-
opmental critical periods, which depend on tempo-
rally strict and spatially precise regulation of gene 
expression. The hypothesis that environmentally 
induced reprogramming of the fetal epigenome can 
trigger fetal programming of disease risk has gained 
ground in the scientific and medical communities, 
setting the stage for large-scale epigenomic studies 
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which have the potential to greatly expand upon 
current screening and therapeutic approaches for 
ASD, among other diseases.56,57

Reimagining ASD as a disease at the crossroad 
between genes and the environment, in which 
environmental exposures can serve as a “tipping 
point” toward disease manifestation in genetically 
susceptible individuals has facilitated the develop-
ment of new and innovative theories and investiga-
tion into the determinants of ASD. In this context, 
a growing body of evidence suggests that gut 
microbiome-immune interactions play a critical 
role in mediating the effects of early life environ-
mental exposures on long-term neurodevelopmen-
tal health outcomes.

Host and microbial genetics in ASD

In recent decades, rodent and non-human primate 
models for ASD have been developed to facilitate 
mechanistic understanding of ASD pathology and 
spur the discovery of novel therapeutics. These 
models target human risk variants, obtained by 
genetic engineering,58,59 and include models for 
single-gene mutations associated with syndromic 
ASD or non-syndromic ASD and models of copy 
number variations (CNVs).

Mecp2 mutant mice60 and macaques,61 for 
instance, reproduce genetic mutations associated 
with Rett syndrome (RTT), a neurodevelopmental 
disorder caused by mutation of the gene encoding 
X-linked methyl-CpG binding protein 2 (MECP2), 
which regulates transcription62 and RNA splicing.63 

Similarly, Tsc1/Tsc2 mutant mice model Tuberous 
sclerosis complex (TSC), an autosomal dominant 
neurodevelopmental syndrome resulting from 
mutation in TSC1 or TSC2, which encode proteins 
hamartin (Tsc1) and tuberin (Tsc2), respectively, 
inhibitors of the mTORC1 translational control 
pathway.64 About 50% of TSC individuals are also 
diagnosed with ASD, and TSC genetic alterations 
account for about 1–4% of ASD cases.65 Tsc1 het-
erozygous mice show increased anxiety-like beha-
vior, impaired learning and memory, and reduced 
social interaction, which is rescued by rapamycin 
administration.66,67

Mouse models of single-gene mutations asso-
ciated with non-syndromic ASD, like those encod-
ing neurexins (NRXN), neuroligins (NLGN), and 

SHANK proteins, have uncovered a significant and 
valuable portion of ASD biology.68 However, mod-
eling the contribution of a single gene in an animal 
model, particularly when using Cre-drivers to 
investigate cell type-specific roles of the gene, 
does not yield full insight into the role of that 
gene in the pathophysiology of the disease in 
genetically heterogeneous human patient popula-
tions. To overcome these limitations, functional 
studies have been developed to identify and manip-
ulate one or more cellular and molecular pathways 
on which common and rare variants associated 
with ASD converge.69,70

Most human ASD risk genes belong to at least 
two main clusters: (1) regulation of mRNA transla-
tion and protein synthesis71 and (2) regulation of 
synaptic structure and function.72 Investigation of 
syndromic ASD strongly supports a mechanistic 
link between synaptic dysfunction and dysregu-
lated translational control. An intriguing hypoth-
esis is that non-syndromic ASD is driven by a 
similar convergence.46 We propose that this could 
also true of some cases associated with specific 
environmental exposures, particularly those that 
affect the intrauterine environment.

Epigenetic modifications in ASD

Despite its multifactorial etiology, ASD aggre-
gates in families and is highly heritable.73 

However, the concordance rate for ASD in MZ 
twin pairs ranges from 36% to 96%,74,75 impli-
cating nongenetic disease liability.76,77 The 
emerging hypothesis that epigenetic mechanisms 
can causally contribute to ASD risk78,79 provides 
a rational explanation for disease-discordant MZ 
twin pairs. Epigenetic modifications, such as 
DNA methylation, histone modification and 
regulation, and transcriptional gene silencing 
by means of long non-coding RNAs (lncRNAs) 
and small non-coding RNAs (sncRNAs), influ-
ence chromatin architecture and conformation, 
the accessibility of genes to transcriptional com-
plexes, and gene expression.80 Epigenetic pro-
gramming is complex. It can be the result of 
primary stochastic phenomena, environmental 
factors, or DNA mutations.81 Given that precise 
spatial and temporal regulation of gene expres-
sion is crucial for the establishment of proper 
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excitatory and inhibitory synaptic connections, 
activity-dependent responses, and neuronal spe-
cification, epigenetic reprogramming driven by 
environmental exposures has significant ramifi-
cations for brain development, function, and 
disease risk.

Mutations in genes encoding chromatin 
remodeling enzymes are implicated in ASD 
and other neurodevelopmental disorders.82–84 

Significant epigenetic variability has been 
reported between MZ twins.85,86 Consistently, 
considerable differences in DNA methylation 
have been found in MZ twins discordant for 
phenotypically complex disorders, like schizo-
phrenia and bipolar 
disorder.87 Analysis of lymphoblastoid cell lines 
derived from ASD-discordant MZ twin pairs’ per-
ipheral blood lymphocytes revealed many ASD- 
relevant loci with differential methylation profiles.-
88 Moreover, a genome-wide analysis revealed that 
DNA methylation at specific CpG sites varied 
significantly within ASD-discordant MZ twin 
pairs.89 Further studies90–92 identified differential 
DNA methylation patterns in autistic versus non- 
affected individuals. Some autistic individuals 
carry mutations in genes encoding proteins 
involved in epigenetic modification. Indeed, a de 
novo mutation in the HIST1H1E gene, which 
encodes for the linker histone H, was reported to 
disrupt chromatin organization and downregulate 
protein expression in ASD patients.93 Intriguingly, 
in the same study, a review of SFARI GENE 
(https://gene.sfari.org/),94 a curated database of 
candidate ASD risk genes, determined that almost 
20% of risk genes encode proteins involved in 
epigenetic regulation and chromatin remodeling. 
For instance, SETD5, a member of the SET- 
domain family encoding for histone methyltrans-
ferase (HMT) which regulates gene expression 
during early development and is implicated in 
both synaptic plasticity and cell fate determina-
tion, is linked to both ASD and ID.95–97

Beyond non-coding RNAs, DNA methylation, 
and chromatin remodeling, short stretches of 
RNA known to regulate mRNA translation and 
degradation, microRNAs (miRNA), are implicated 
in ASD pathology. The contributions of miRNAs 
to ASD pathoetiology have been recently well 
reviewed elsewhere.98

The gut microbiome in ASD

Large-scale studies aimed at characterizing the 
human microbiome (i.e., the NIH-funded Human 
Microbiome Project (HMP)99 and the European 
Metagenomics of the Human Intestinal Tract 
(MetaHIT))100 contributed to technological and 
computational advances that dramatically 
increased accessibility to the field and, together, 
drove a consequent boom in the number of pub-
lications on the gut microbiome in human physiol-
ogy and pathology. It is now well established that 
the gut microbiome plays key roles in both health 
and disease, from cancer to autoimmune disorders 
and neuropsychiatric disorders.101

The gut microbiome is a dynamic ecological 
system that varies between individuals and within 
the same individual across the lifespan. 
Community dynamism occurs over even shorter 
timescales, as the relative abundance of certain 
taxa can ebb and flow according to circadian 
rhythms.102 Host factors, including diet, drugs, 
toxins, pathogens, the immune system, and physi-
cal and psychological conditions together drive a 
constant reshaping of gut microbiome composition 
(Figure 1), which can evolve into a detrimental 
state – here referred to as, “dysbiosis.”103 

Powerful stressors can trigger a cascade of events 
that ultimately lead to a decrease in microbial 
diversity while simultaneously creating a permis-
sive environment for the growth of opportunistic 
pathogenic taxa.104,105 These events, in turn, alter 
the pool of metabolites produced by the microor-
ganisms, and consequently, interactions between 
the microbiome and host, often with adverse con-
sequences for the host.

Investigations at the intersection of neuroscience 
and microbiology have begun to unravel the con-
tributions of gut resident microorganisms to the 
development and homeostasis of host brain struc-
ture and function. The microbiome-gut-brain axis 
(MGBA) encompasses the mechanisms involved in 
mediating the interplay between the gut and the 
brain, which include anatomical (e.g., the vagus 
nerve), immunological, metabolic, neuronal, and 
chemical pathways.106 Early evidence for the exis-
tence of the MGBA was provided by experiments 
using germ-free (GF) animals,107 fecal microbiota 
transplantation (FMT), and antibiotic-driven 
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changes in the gut microbiome composition108 in 
the context of brain disorders.109–113 These pio-
neering studies identified key contributions of gut 
microbiota to brain function and behavior,114 mak-
ing evident that elucidating the mechanisms by 
host–microbe interactions affect brain develop-
ment, function, and behavior is imperative to 
understanding the physiopathology of many neu-
ropsychiatric conditions and to the development of 
new microbiota-based and -targeted treatments.115

Among the multiple comorbidities associated 
with ASD, gastrointestinal (GI) dysfunction – 
manifesting as diarrhea, constipation, and abdom-
inal pain116 – is one of the most frequently 
reported,117,118 though different studies show vary-
ing prevalence,119 likely due to the genetic and 
epigenetic heterogeneity of ASD. The presence of 
GI symptoms is associated with more severe 

ASD120 and is heavily cited in surveys of parents of 
autistic children.118 Several studies report substan-
tial differences in the composition of the gut micro-
biome of autistic children compared to neurotypical 
controls,121–123 although a direct causal relationship 
remains to be demonstrated. Furthermore, the 
directionality of a relationship – whether ASD 
pathology alters the gut microbiome or changes 
in the gut microbiome could causally contribute 
to ASD – is an area of debate, with limited inves-
tigations demonstrating that divergent and limited 
dietary preferences in autistic individuals may be 
the driver of any microbiome changes observed in 
autistic populations when compared to neurotypi-
cal controls124 (but see,125 with which we side). 
Despite limited reproducibility of taxa-specific 
signatures across studies of gut microbiome com-
position among children with ASD, recent 

Figure 1. As a key intermediary between the exposome and genetic susceptibility, the gut microbiome is poised to influence risk for 
neurodevelopmental disorders. Classically, mutations in one or more genes involved in regulating brain development and function 
were thought to be the exclusive drivers of neurodevelopmental disorders; however, a growing body of preclinical and clinical 
research is revealing a critical role for gene X environment interactions in determining predisposition to and the severity of 
neurodevelopmental disorders. Environmental exposures – from infection to diet to air quality – that influence the functional 
composition of the maternal and early life infant gut microbiome can alter the diverse pool of microbially associated metabolites 
available to the host, which can then affect maturation and function of the immune system and drive cell type-specific epigenetic 
reprogramming that influences neurobehavioral outcomes. Notably, environmental exposures incurred across multiple generations 
can affect early life neurodevelopment and disease risk through inherited patterns of microbiome alterations and epigenetic 
modifications. Given its strategic position between the host and its environment, the gut microbiome presents an intriguing duality 
as both a potential contributor to and a therapeutic target for reducing risk for neurodevelopmental disorders in children.
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investigations coupling intestinal metagenomics 
with metabolomic analyses have identified meta-
bolic signatures reflecting functional alterations in 
gut microbial ecology of affected individuals.126–128 

In an effort to reconcile the notorious inconsistency 
comparing microbiome composition among an 
autistic population versus controls, Morton et al.127 

applied a Bayesian differential ranking algorithm to 
identify commonalities among 10 cross-sectional 
microbiome datasets and 15 others. The authors 
identified distinct patterns between children with 
ASD and age- and sex-matched counterparts when 
accounting for microbiome (16S rRNA and whole- 
genome shotgun metagenomic sequencing) and the 
human transcriptome (RNA-seq). They also 
revealed positive correlations between pro-inflam-
matory cytokines, read immune dysregulation, and 
the global microbial log fold changes between ASD 
and control pairs – interestingly, canonical pro- 
inflammatory cytokine IL-6 was only linked to a 
few taxa, whereas TGF-β levels were linked to 
many taxa. Moreover, a recent study129 comparing 
microbiome composition between children and 
adolescents diagnosed with ASD, attention deficit 
hyperactivity disorder (ADHD), and comorbid 
ASD/ADHD,130,131 was the first to show the pre-
sence of shared microbiome signature in children 
with ASD and ADHD which are distinct from non- 
related controls as well as similarities in altered 
immune markers and an increase in gut permeabil-
ity indicators. Here, the authors report lower bacter-
ial richness among youth with both disorders 
compared to non-related controls, including a spe-
cific decrease in the relative abundance of 
Coprobacter and Howardella; in contrast, 
Eggerthella – a taxa previously associated with devel-
opmental delays in children132 – Hungatelle, and 
Ruminococcus gnavus group were found to be 
enriched in both the ASD and ADHD groups. 
While greater microbial variability was reported 
between children with ASD, as compared to 
ADHD, and controls, relatively few variations were 
observed between the gut microbiota of youth with 
ASD and ADHD. Together, these findings suggest a 
common, microbiome-mediated mechanism might 
contribute to the overlapping clinical features of 
ASD and ADHD.

Gut microbiota produce metabolites that can 
have a strong impact on behavior and the 

underlying neural correlates via the gut-brain- 
axis.133–135 Consequently, modulating gut micro-
biome composition represents a novel and innova-
tive strategy for treating ASD. An open-label study 
of Microbiota Transfer Therapy (MTT)136 was 
among the first to investigate the effects of fecal 
microbiota transplant (FMT) in children with ASD 
and chronic gastrointestinal disturbances. A two- 
year follow-up study137 aimed at assessing the 
long-term results of MTT showed significant 
improvements not only gastrointestinal symptoms 
but also in core autism symptoms for all 18 sub-
jects. MTT specifically increased microbial diver-
sity and restored microbial metabolic capability to 
a similar level to the typically developing (TD) 
children.138 These promising results prompted the 
FDA to grant fast track status to MTT for autistic 
children in 2019. More recently, oral delivery of 
AB-2004, a small-molecule sequestrant targeting 
microbially derived metabolites, was shown to sig-
nificantly reduce irritability in children with 
ASD.139 Additionally, a double-blind randomized 
placebo-controlled trial of precision treatment with 
a microbe shown to reverse social dysfunction in 
multiple mouse models for ASD133,140,141 was 
found to specifically enhance social behavior in 
children with ASD, consistent with its behavior- 
specific effects in the preclinical experiments.142

Microbial communities can serve as a source of 
epigenetic modifiers influencing gene expression.143 

Microbially derived metabolites have been shown to 
both directly and indirectly impact the activity of 
enzymes involved in regulating epigenetic pathways, 
including those orchestrating DNA methylation and 
histone modification.144 Microbial regulation of 
host chromatin modification states and associated 
transcriptional responses is strictly dependent on 
host dietary patterns, in particular fiber content. 
Microbial anaerobic fermentation of insoluble diet-
ary fiber produces short-chain fatty acids 
(SCFAs),145 organic monocarboxylic acids that can 
cross the intestinal barrier through monocarboxy-
late transporters (MCTs), travel through systemic 
circulation, and reach distal organs.146 Here, they 
can be metabolized as an energy source via the 
Krebs cycle but also play multiple signaling roles 
as SCFAs bind to the G protein-coupled receptors 
(GPCR) GPR43 and GPR41, later renamed free fatty 
acid receptor 2 (FFAR2) and 3 (FFAR3).147 SCFAs 
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promote intestinal barrier integrity,148 counteract 
intestinal inflammation,149 and modulate gastroin-
testinal motility, adipogenesis, and glucose 
homeostasis.150 They have been shown to modu-
lated intestinal mucosal immunity151 and are 
thought to also affect the peripheral immune 
system. CD4+ regulatory T cells, in particular 
Th17 cells,152 are regulated by SCFAs and their 
differentiation is impaired in GF mice.153 Similarly, 
SCFAs are required for CD8+ cytotoxic T cell tran-
sition in memory cells.154 SCFA oral administration 
promoted peripheral regulatory T cell differentia-
tion in mice,155 and FFAR agonists have been 
shown to modulate the human monocyte inflam-
matory pathway by decreasing the release of pro- 
inflammatory cytokines.156 Such regulation of per-
ipheral immunity might be key to their impact on 
brain function.

SCFAs facilitate MGBA communication and 
affect brain physiology through multiple mechan-
isms, as reviewed in Dalile et al. (2019).157 SCFA 
receptors are expressed by neurons in both the 
peripheral and central nervous systems.158 Recent 
work showed an association between SCFA pro-
duction in the gut and regulation of feeding beha-
vior via direct hypothalamic regulation.159 

Additionally, SCFAs maintain blood–brain barrier 
(BBB) integrity.160 Propionate-induced FFAR3 
activation of vagal fibers has been shown to 
increase the activity of the dorsal vagal complex, 
parabrachial nuclei, and hypothalamus,161 thus 
suggesting that SCFAs can directly influence brain 
activity through vagal signaling. Another mechan-
ism by which SCFAs influence brain activity is via 
enteroendocrine signaling. FFAR activation in gut 
enteroendocrine L cells determines the production 
of hormones released in response to food, GLP-1 
and PYY, into circulation162,163 to regulate appetite 
and nutrient intake.164,165 Animal studies have 
shown GLP-1 can further promote learning and 
memory166 and improve neuroplasticity while 
reducing microglial activation in the 
hippocampus.167 Furthermore, microbially derived 
SCFAs influence hippocampal neurogenesis by act-
ing on monocytes.168 SCFAs are also implicated in 
the modulation of anxiety- and depressive-like 
behavior following psychosocial stress, which is 
associated with alterations in the gut 
microbiome.169

SCFAs can directly modulate the activity of his-
tone deacetylase enzymes (HDACs), which regu-
late chromatin accessibility and gene expression. 
Acetate, butyrate, and propionate exert an inhibi-
tory effect on HDACs,170 dysregulation of which is 
linked to neurodegenerative and neuropsychiatric 
disorders, including schizophrenia.171 They are 
proposed to mediate hippocampal long-term 
potentiation by enhancing histone acetylation, a 
process required for long-term memory 
formation.172 Additionally, SCFAs modulate epige-
netic modifications in neuro-, peripheral, and 
enteric immune systems.173,174 Acetate was 
recently shown to regulate microglial metabolism 
and function through modifying histone methyla-
tion on genes related to microglial proliferation, 
morphology, and activation.175 Finally, SCFAs, 
particularly propionate, decrease IL-17 production 
by human and mouse γδ intraepithelial lympho-
cytes in a HDAC-dependent manner.176

Several recent studies investigated the associa-
tion between altered SCFAs and neurodevelop-
mental disorders in children, including 
ASD;177,178 however, whether SCFAs contribute 
to or relieve ASD pathology and symptom severity 
is controversial. While some studies report elevated 
SCFAs in fecal samples isolated from autistic indi-
viduals compared to controls, others report lower 
levels. Serum SCFA concentration is less com-
monly reported but this could be an important 
data point for teasing out the effects of SCFA con-
centration on host brain function and behavior in 
the context of ASD.179,180 Higher levels of SCFAs 
have been found in a valproic acid mouse model for 
ASD,181 while a beneficial effect of butyrate on 
social dysfunction has been reported in the BTBR 
mouse model for idiopathic ASD.182 Hence, it is 
likely that the impact of SCFAs on host health is 
context-dependent.

Taken together, the studies above demonstrate 
that gut microbiota influence host gene expression 
and can thereby contribute to disease risk and out-
comes. This intricate interplay between host and 
microbial factors could contribute to the huge 
variability characteristic of nonsyndromic ASD. 
Heritability of the gut microbiome, another form 
of genetic inheritance, could furthermore influence 
disease risk across generations, as we have found in 
an animal model for maternal overnutrition.23 
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However, such heritability appears to be responsive 
to environmental forces.183 Further studies with 
large sample sizes and high resolution longitudinal 
multi-OMICs-based assessments are required to 
elucidate the extent to which gut microbiota impact 
health outcomes across multiple generations. 
Nonetheless, increasing evidence suggests that 
antenatal maternal gut microbial communities 
play a particularly pivotal role in offspring neuro-
development, especially during critical develop-
mental stages such fetal and early-post natal life.

Neurodevelopmental disorders and the 
maternal exposome

In recent years, the pregnancy exposome 184 has 
garnered increased attention in the investigation 
of risk factors occurring in early development that 
may permanently affect vulnerability to disease 
later in life. Given that the maternal environment 
is, to an extent, modifiable, it has also become a 
target for the development of therapeutic interven-
tions. Multiple investigations highlight the connec-
tion between the pregnancy exposome and fetal 
programming of disease, particularly metabolic 
impairments and cardiovascular disorders.185–188 

We and others propose that early life programming 
is likely to influence risk for neurodevelopmental 
disorders, including ASD.189–191

Intrauterine brain development involves a pre-
cise succession of events orchestrated by lineage- 
specific gene expression programs.192–194 

Environmental insults can determine cell type-spe-
cific epigenetic programming at different stages of 
neurodevelopment,195,196 including of neurons, 
glia, and immune cells.197 Epigenetic reprogram-
ming is implicated in synaptic formation,198,199 and 
environmental exposures incurred during the third 
trimester of human development can disrupt 
synaptogenesis, a key process dysregulated in 
ASD. Multiple nongenetic factors, such as maternal 
infection during pregnancy, maternal diet/meta-
bolic status, and maternal chemical exposure, 
incurred at various pregnancy stages have been 
proposed to interfere with the developing human 
brain and, thereby, contribute to autistic 
phenotypes.47,48 Below, we consider the relation-
ship between environmental exposures, the mater-
nal gut microbiome, and offspring outcomes.

Maternal infection

In utero exposure to maternal viral infections, par-
ticularly those requiring hospitalization, is asso-
ciated with increased risk for ASD. In the 1970s, 
an American child psychiatrist, Stella Chess, diag-
nosed symptoms of ASD in a group of pediatric 
patients with congenital rubella syndrome, result-
ing from the 1963–1964 rubella epidemic in New 
York. The reported prevalence was 200 times 
higher than that of the general population in the 
US.200,201 Subsequent studies revealed similar 
findings, not only in relation to rubella infection 
but also in response to maternal infection during 
pregnancy with other viruses, such as 
cytomegalovirus202,203 and influenza.204,205 A 
great body of work now demonstrates that damage 
to the developing brain results from maternal 
immune activation (MIA) and related inflamma-
tory responses independent of the specific class of 
pathogen (e.g., viral versus bacterial).206–208 

Relatedly, multiple studies identify an association 
between ASD and dysregulation of the inflamma-
tory response: increased activation of microglia 
and astroglia,209 upregulation of markers of 
inflammation,210 and alterations in genes involved 
in immune function211 have been identified in 
autistic patient populations. Consequently, cyto-
kine profiles have been proposed as biomarkers of 
immune dysfunction in autistic individuals.212 

Indeed, human studies have identified a significant 
increase in the levels of pro-inflammatory 
cytokines, including IL-6,210 TNFα,213 IFN-γ,214 

IL-17,215 in the brain and in biological fluids, includ-
ing serum and cerebrospinal fluid, of autistic indivi-
duals compared to controls. In contrast, levels of 
anti-inflammatory, regulatory cytokines such as 
IL-23216 and TGF-β217 have been found to be down-
regulated in autistic individuals. Similarly, analyses 
of serum218,219 and amniotic fluid206,220 from 
mothers who gave birth to autistic children reveal 
an increase in proinflammatory cytokine and che-
mokine levels, when compared to control subjects.

The causal relationship between gestational MIA 
and ASD and the biological mechanisms by which 
MIA interferes with fetal neurodevelopment has 
been investigated using preclinical animal models221 

including: (1) maternal exposure to pathogens 
during pregnancy, such as influenza virus,205,222,223 
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(2) exposure to agents which stimulate the innate 
immune system, such as the bacterial endotoxin 
lipopolysaccharide (LPS), polyinosinic-polycytidylic 
acid (poly(I:C)),224 a synthetic analog of double- 
stranded RNA (dsRNA), or the soluble tachyzoite 
antigen of the protozoan Toxoplasma gondii 225 

(3) stimulation of the immune system by pro- 
inflammatory cytokines, such as IL-6,226 and (4) 
administration of immunological factors linked 
with the pathogenesis of the disorder,227 as in the 
case of ASD-associated maternal autoantibodies.228

The effects of MIA on fetal neurodevelopment 
differ according to pregnancy stage at the time of 
exposure. Studies in LPS/Poly(I:C)-stimulated 
models have shown that the development of the 
dopaminergic (DA) system, a neuronal network 
strongly implicated in ASD,229 is selectively 
impaired when MIA is triggered during early 
gestation.230 In LPS/Poly(I:C) models, stimulants 
do not reach the fetus directly; instead, their effects 
on neurodevelopment are mediated by maternal 
cytokines released in the circulation and trans-
mitted to the fetus through the placenta.231 

Cytokines modulate neurodevelopment,232,233 

however an imbalance in maternal pro- and anti- 
inflammatory cytokines can have detrimental 
effects on the fetal brain. The relationship between 
maternal cytokine imbalance and disruption of 
neurodevelopment has also been investigated in 
the context of ASD.234 Offspring of mice stimu-
lated with Poly(I:C) or LPS during gestation display 
core ASD-like behavioral impairments:235 repeti-
tive self-grooming and stereotypies, restricted 
interests/cognitive inflexibility, and decreased 
sociability.134,236–240 In this context, IL-6,241 IL- 
17a,240 and IL-1β242 have been implicated in MIA 
phenotypes. However, the precise mechanisms by 
which pro-inflammatory cytokines impact fetal 
brain development, brain function, and behavior 
remain mostly unknown.

Another mechanism linking immune and brain 
function (or dysfunction, in the case of MIA) con-
verges on mammalian target of rapamycin (mTOR) 
complexes one and two (mTORC1, mTORC2), 
powerful regulators of mRNA translation and actin 
(and, thereby, synaptic) remodeling, respectively.243 

mTORC1 and mTORC2 are involved in the differ-
entiation of Th1 and T helper 17 (Th17) and Th2 

cells, respectively.244 mTOR complex inhibition 
drives T cells to differentiate into Treg cells.245 

Thus, an interesting hypothesis suggests that 
mTOR hyperactivity along the gut-brain-immune 
axis, one of the pathological mechanisms involved 
in ASD, might lead to a decrease in Treg cel-
l-associated anti-inflammatory cytokines, 
including IL-10 and TGF-β.246

Multiple studies highlight a role for the gut 
microbiome in the interplay between the immune 
system and neurodevelopment in the context of 
MIA.247 A seminal study in the field demonstrated 
that supplementation of MIA offspring with a pro-
biotic species shown to contribute to host immune 
maturation and protect against Helicobacter hepa-
ticus-driven colitis in mice,248 Bacteroides fragilis, 
could rescue many ASD-like behaviors including 
aberrant communication, stereotypy, anxiety-like, 
and hyperactivity, but notably did not rescue social 
dysfunction.134 While the gut microbiome influ-
ences the development of both the adaptive and 
innate immune systems both locally and systemi-
cally, the immune system finely tunes the symbiotic 
host–microbe relationship to avoid microorganism 
overgrowth while simultaneously allowing 
tolerance.249,250 For instance, a MIA-associated 
spike in IL-17a in maternal circulation is a conse-
quence of Th17 cell expansion in the gut and 
depends on segmented filamentous bacteria 
(SFB). Mice devoid of SFB are protected from the 
pathogenic release of IL-17a and do not display the 
associated phenotypical aberrations typical of the 
MIA model.135,240 Immunotherapy-mediated 
blockade of pathological IL-17a pathway activation 
likewise prevented ASD-like symptoms in the poly 
(I:C) MIA model.240

Maternal infections during gestation could 
directly affect fetal microglia, which could contri-
bute to behavioral dysfunction observed in MIA 
offspring.251 Microglia are innate sentinel immune 
cells which regulate inflammatory processes in the 
brain by the release of pro- and anti-inflammatory 
cytokines and chemokines. In addition to immune 
surveillance, CNS microglia also regulate CNS 
maturation and synaptic plasticity. Microglial 
abnormalities have been reported in postmortem 
analysis of brains of autistic individuals.209 

Microglial maturation and differentiation of 
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microglia are partially regulated by gut microbes.-
174,252 The maternal microbiome in particular influ-
ences the activity of microglia during prenatal life, as 
microglial homeostasis was shown to be disrupted in 
mice born to germ-free dams.253 Microglia also 
mobilize monocytes from the periphery to enter 
the brain, a process mediated by systemic TNF-α 
signaling, which leads to microglial activation and 
subsequent recruitment of activated monocytes.-
254,255 Interestingly, the trafficking of monocytes 
from the spleen might be modulated by micro-
biota-produced SCFAs, which bind to free fatty 
acid receptor type 2 (FFAR2) expressed on per-
ipheral lymphocytes.256

Recent work highlighted the effect of SCFA sup-
plementation, via high-fiber diet, on the inhibition 
of inflammatory microglia by downregulation of 
HDAC activity, NF-κB activity, and inflammation 
caused by LPS stimulation.257 Inhibition of HDACs, 
which leads to transcriptional repression, has been 
proposed as a primary downstream action of SCFAs 
toward prevention of neuroinflammation.258 A 
recent study conducted in the BTBR mouse model 
for idiopathic autism, which is characterized by 
systemic immune dysregulation and comorbid gut 
dysbiosis, traced the immune abnormalities back to 
the embryonic stages of the yolk sac where macro-
phages (microglia) and peripheral immune cells 
differentiate.259 The underlying mechanism 
involved transcriptional regulation by HDAC1. 
The epigenetic abnormalities, associated with 
increased proinflammatory cytokines and microglia 
activation, were successfully reversed upon admin-
istration of sodium butyrate, which inhibits HDAC1 
activity. This study reveals a key role for epigenetic 
reprogramming of immune function as common 
etiology between environmental risk factors for 
ASD and highlights the potential for correcting 
postnatal immune dysregulation at the embryonic 
stage through maternal microbiome-targeted 
therapies.

Maternal diet

Maternal nutrition and metabolism exert a 
major impact on offspring fetal and early-post-
natal development, including on gamete matura-
tion and placental growth.260 Furthermore, 
maternal intake of micro- and macronutrients- 

alike has been shown to be crucial for successful 
development of offspring organs and systems, 
including the nervous and immune systems, 
which has significant implications for neurode-
velopment and risk for neurodevelopmental 
disorders.47,261

Recent epigenome-wide studies of low-income 
populations262,263 suggest that epigenetic altera-
tions contribute to the detrimental consequences 
of micronutrient deficiency on neurodevelopment. 
Vitamin D and folate deficiency have been exten-
sively investigated in the context of ASD and other 
NDDs.264 Vitamin D plays a crucial role in many 
biological processes,265 with numerous studies 
highlighting its importance in pregnancy and fetal 
growth and development.266 Suboptimal levels of 
circulating vitamin D in pregnant women267 are 
associated with increased pregnancy complica-
tions, such as miscarriage,268 hypertensive 
disorders,269 and gestational diabetes.270 Notably, 
low maternal vitamin D also increases risk for 
developmental deficits, including ASD, in 
offspring.271–273 To this end, vitamin D supple-
mentation is indicated when vitamin D deficiency 
is identified during pregnancy.274 Interestingly, it 
has been reported that maternal depletion of vita-
min D is associated with alterations of the epige-
netic landscape, specifically in DNA methylation, 
across multiple generations.275 Recent studies in 
human populations276 have reported significant 
associations between vitamin D and changes 
microbiome composition in the context of autoim-
mune disorders. These findings suggest a link 
between maternal vitamin D, microbiome compo-
sition, and immune function with potential effects 
on fetal epigenetic programming. However, further 
studies are required to test this hypothesis. 
Similarly, folate (vitamin B-9) is a crucial nutrient 
during early pregnancy for reducing risk for birth 
defects, notably neural tube defects (NTDs).277 The 
neuroprotective effect of folate is likely mediated by 
genome-wide modification of methylation patterns 
in neural target genes.278,279 While mammalian 
cells are unable to produce folate, and therefore 
exogenous intake is required, there is substantial 
evidence that colonic bacteria produce a consider-
able amount of folate, as well as other B-vitamins. 
While their production can be enhanced by pre-
biotic supplementation,280 there is no evidence for 
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an essential role for bacterial folate biosynthesis in 
early development.

Beyond micronutrient supplementation, large 
preclinical and clinical studies on the effects of 
macronutrient intake – general dietary habits con-
sidering the ratio of protein to fat to carbohydrates 
consumed – such as Western Pattern Diet 
(WPD),281 also known as the Standard American 
Diet (SAD), Mediterranean Diet (MedDiet),282 and 
ketogenic diet (KD),283 and associated metabolic 
conditions, are beginning to reveal how maternal 
diet could contribute to risk for ASD and other 
NDDs. As introduced above, the developmental 
origins of health and disease (DOHaD) hypothesis 
suggests that maternal diet, in particular maternal 
undernutrition, has a causal role in the incidence of 
various disorders in adulthood. While initial obser-
vations focused on alterations in cardiovascular 
and metabolic function in subsequent generations 
of populations impacted by famine, this theory was 
later extended to include risk for mental 
disorders.284 Increased prevalence of major affec-
tive disorder,285 antisocial personality disorder,286 

schizophrenia spectrum disorder,287 impaired cog-
nitive performances,288 and substance addiction289 

have each been correlated with prenatal exposure 
to extreme caloric restriction in epidemiological 
studies. Notably, further epidemiological data sug-
gests specific correlations between the trimester in 
which mothers are exposed to dietary restrictions 
and the specific disorder induced in the 
offspring,290,291 thus highlighting the relevance of 
timing in developmental programming of future 
disorders, and suggest a critical role for exposure 
during early gestation.

Operating as the interface between the maternal 
and fetal blood circulation and regulating the 
nutrient and oxygen transfer from the mother to 
the fetus, the placenta directly contributes to 
intrauterine fetal programming. It integrates 
maternal and fetal signals and constantly balances 
fetal needs with maternal supply. Perturbations in 
the maternal compartment are sensed by the pla-
centa, which in turn modulates blood flow and 
nutrient supply and adaptively modifies hormonal 
release through epigenetic changes in placental 
cells.260,292 Excessive deprivation (undernourish-
ment) or abnormal increase (overnutrition) in 
maternal nutrient intake at conception and 

throughout pregnancy impact the ability of the 
placenta to properly allocate necessary resources 
for fetal growth.293 Nutrient sensing in the placenta 
occurs by means of multiple mechanisms, includ-
ing one involving the mTORC1 translational con-
trol pathway294 in the syncytiotrophoblast, which is 
regulated by several factors, including maternal 
adipokines,295 IL-6,296 TNF-α,297 leptin,298 

adiponectin.299 Maternal undernourishment 
causes a decrease placental amino acid transport, 
which in turn drives intrauterine growth restriction 
(IUGR).300,301 Maternal obesity and diabetes drive 
excess of nutrient supply to the placenta which 
results in fetal overgrowth302,303 and increased 
risk for the infants to develop obesity and meta-
bolic dysfunction in adulthood.304,305 This evi-
dence suggests a U-shaped relationship between 
maternal nutritional imbalances, either maternal 
malnutrition306,307 or obesity,306–308 with offspring 
risk for metabolic disorders.

Maternal diet and metabolism are also impli-
cated in offspring mental health outcomes. 
Preclinical and human studies suggested a role for 
maternal nutrition in the etiology of 
neuropsychiatric disorders,309–312 neurodevelop-
mental disorders,313,314 and cognitive 
function.315,316 As we recently reviewed in Di 
Gesu et al. (2021),281 maternal obesity, overweight, 
and associated metabolic disorders increase odds 
ratios for neurodevelopmental disorders, including 
ASD and ADHD, in children.317–319 Accumulating 
evidence provided by epidemiological studies sug-
gests a strong correlation between maternal 
obesity320–323 and diabetes323,324 and an increased 
risk for ASD among children exposed to maternal 
obesity and diabetes in utero. Animal models325 of 
diet-induced obesity have been used to investigate 
the mechanisms underlying the detrimental effects 
maternal obesity on offspring neurodevelopment 
in neuropsychiatric disorders. Maternal high-fat 
diet (MHFD) has been shown to impair synaptic 
plasticity,326 social behavior,23,133,327 learning and 
memory328,329 and neurogenesis330,331 in offspring. 
Yet, the precise mechanisms underlying the impact 
of maternal diet on offspring neurodevelopment 
remain to be determined.

A growing body of evidence suggests that dietary 
challenges, as in the case of WPD, and associated 
dysbiosis of the gut microbiome have the potential 
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to reprogram the host epigenome in a tissue-spe-
cific fashion due to alterations in the intestinal 
metabolite pool either produced or transformed by 
microbiome enzymatic activity.145,332 Epigenetic 
alterations are associated with other maternal nutri-
tional conditions, such as maternal starvation333 and 
maternal deficiency of vitamins and cofactors,334,335 

and are associated with ASD and other NDDs.79,336 

Modifications in the fetal epigenome are 
associated with maternal obesity337,338 and mater-
nal diabetes.339–341 For instance, MHFD offspring 
display alterations in histone binding and expres-
sion of the oxytocin receptor (OXT-R) in the 
hippocampus342 which plays an important role 
in social behavior,343 hypermethylation in the 
regulatory regions of hypothalamic POMC 
gene344,345 which is involved in regulation of 
food intake,346 and alteration of histone modifica-
tions and expression in the hippocampal leptin 
receptor (Lepr),347 which is involved in synapto-
genesis and neural circuit maturation.348

Maternal high-fat diet (MHFD)-induced 
changes in both the maternal and offspring 
immune system could, likewise, causally contribute 
to increased risk for NDDs. Interestingly, in peri-
natal MHFD mouse models, changes in the expres-
sion of several epigenetic regulators in the offspring 
developing brains were found in association with 
an anxiety-like phenotype.349 One intriguing pos-
sibility is that, similar to what has been observed in 
MIA offspring, one of the causal mechanisms 
underlying social dysfunction in MHFD offspring 
might depend on maternal microbiota-dependent 
pathological activation of pro-inflammatory path-
ways, such as the IL-17a pathway, given that HFD 
regimen also results in a TH17 bias,350 and MHFD 
drives microbiota-dependent IL-17–producing 
type 3 innate lymphoid cell expansion (ILC3s).351 

Of note, L. reuteri supplementation has been 
shown to promote differentiation of CD4+CD8aa+ 

T precursor cells into immunoregulatory T cells 
(Tregs), as opposed to a TH17 cell fate,352 an effect 
which might be mediated by probiotic-dependent 
increase in SCFA levels.

More recently, birth cohort studies have inves-
tigated the potential beneficial effects of a 
Mediterranean-style diet, rich in fruits, vegeta-
bles, and polyunsaturated fatty acids (PUFAs), 
and low in ultra-processed foods and saturated 

fatty acids, during pregnancy in reducing risk for 
neurodevelopmental disabilities in offspring.-
282,353,354 While adherence to a MedDiet has 
been linked to lower mortality and decreased 
prevalence of obesity, diabetes, low-grade inflam-
mation, cancer, neurodegenerative disorders, and 
depression,355,356 the underlying molecular and 
cellular mechanisms of action are not yet fully 
elucidated. Recently, a link between the MedDiet 
and the gut microbiota in disease risk was 
proposed.357 In randomized controlled studies, a 
MedDiet regimen in obese subjects lowered 
plasma cholesterol and was associated with 
changes in the gut microbiome and systemic 
metabolome independent of caloric intake.358 A 
similar study in elderly populations showed 
that MedDiet increased the abundance of 
microbial taxa associated with SCFA produc-
tion, lowered inflammation, and improved cog-
nitive performance.359

The effects of adherence to Mediterranean diet-
ary patterns during gestation on both maternal and 
offspring health outcomes have been investigated 
in contrast to obesity-associated WPD,360 however 
the relationship between maternal MedDiet and 
offspring neurodevelopment has yet to be fully 
explored. Interestingly, a recent study including 
mother and infant dyads enrolled in the Newborn 
Epigenetics STudy (NEST), showed that MedDiet 
in early gestation was associated with favorable 
neurobehavioral outcomes and sex-dependent 
changes in methylation patterns of imprinted 
genes in offspring.361 As mentioned above, the 
MedDiet is described as rich in polyunsaturated 
fatty acids (PUFAs), which are classified as n-6 
PUFAs and n-3 PUFAs and considered essential 
nutrients given the absence of specific enzymes 
required for their synthesis in mammals.362 

Intriguingly, low levels of n-3 PUFAs (mainly eico-
sapentaenoic acid (EPA) and docosahexaenoic 
(DHA) acids) in the plasma and the brain of autis-
tic individuals have reported in epidemiological 
studies.363,364 Randomized controlled trials 
reported behavioral improvements in ASD chil-
dren treated with n-3 fatty acid dietary 
supplementation.365 Animal studies corroborated 
epidemiological evidence showing that n-3 PUFA 
deficiency to be associated with alterations in 
GABAergic and dopaminergic neurotransmission 
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as well as ASD-like behavioral impairment in 
rodents.366,367

Studies in MIA models report a positive effect of 
n-3 PUFA-enriched diet in reducing ASD-like 
symptoms.368 Given that n-3 PUFAs can regulate 
neuroinflammatory processes and microglial 
activity,369 their protective effects stem from anti- 
inflammatory activity in the developing brain. In 
further support of the beneficial role of these fat 
molecules in preventing ASD-like symptoms in 
animal models, a recent study showed that n-3 
PUFA supplementation prevented the behavioral, 
cellular, and molecular ASD-related disturbances 
in the VPA mouse model for ASD, especially in 
female offspring.370 Interestingly, n-3 PUFAs have 
been shown to modulate the composition of the 
gut microbiome,371 and increase the abundance 
of probiotic taxa, such as Lactobacilli and 
Bifidobacterium, and SCFA-producing species.372 

Conversely, gut microbiota can also affect the 
metabolism and absorption of n-3 PUFAs.373 

While the interplay between gut microbes and 
this class of polyunsaturated fats remains to be 
fully understood, recent research demonstrated 
PUFA supplementation ameliorated autistic phe-
notypes and GI dysfunction in Fmr1 knockout 
(KO) mice, a genetic model for fragile X syndrome 
(FXS), by altering the gut microbiome.374 

Epidemiological studies show that maternal con-
sumption of n-3 PUFAs is associated with lower 
risk of impairments in social development scores 
and motor and communication skills in 
children.375 While preclinical studies showed that 
exposure to a diet rich in n-3 PUFAs during preg-
nancy modulate the gut microbiome of the off-
spring and prevents metabolic alterations induced 
by HFD, further investigation is required to eluci-
date how dietary PUFAs act on maternal microbial 
ecology and contribute to the development of ASD 
in offspring.376 Given the ability of PUFAs to posi-
tively modulate epigenetic modifications in both 
the placenta and the fetal brain,377–379 it is possible 
that maternal gut microbiota mediate the effects of 
PUFAs in offspring via epigenetic programming of 
neurodevelopment. Consistently, the relationship 
between maternal PUFA consumption, associated 
changes in the gut microbiome, and offspring risk 
for neurodevelopmental disorders, including ASD, 
is of great interest in the research community and 

we anticipate increasingly mechanistic work to 
come out on this topic.380

Another dietary pattern which has gained popu-
larity in recent years is the ketogenic diet (KD), 
which is characterized by a high proportion (mod-
eled at 74% kcal from fat) of fats and proteins with 
low intake of carbohydrates. KD enhances the pro-
duction of ketone bodies (KBs), which can substi-
tute for glucose as the primary energy source, 
especially in the brain where KBs are used as sub-
strates for oxidative metabolic processes. KBs are 
considered beneficial in certain neurological con-
ditions given their role in various in multiple brain 
processes, including neuroinflammation, neuro-
plasticity, synaptic transmission, and cellular ener-
getics and metabolism.381 The beneficial effects of 
KD have been proposed to be mediated by changes 
in the gut microbiome. Importantly, despite 
the high intake of fats characterizing the KD, 
these alterations seem to be distinct from those 
induced by HFD regimen, probably due to the 
concomitant production of KBs by the host. KBs 
have been shown to reduce the abundance of 
Bifidobacterium, with a concomitant decrease in 
Th17-mediated immune response,382 a pathway 
implicated in ASD pathogenesis.240,383 Multiple 
studies have demonstrated the ability of a KD to 
mitigate some of the behavioral symptoms dis-
played in animal models of ASD.384,385 Similar 
effects were also observed in autistic children fol-
lowing a KD regimen, including amelioration of 
hyperactivity, social deficits,386 and seizure 
frequency.387 Preclinical evidence suggests that 
the antiseizure effects of KD occurs via increases 
in the relative abundance of Akkermansia and 
Parabacteroides in mice.388 Additionally, studies 
in the BTBR model of ASD showed that micro-
biome remodeling was crucial in the modulation of 
neurobehavioral symptoms.389,390 While these data 
suggest that the KD and associated effects on the 
gut microbiome may be a new therapeutic 
approach in autistic patients, there is a paucity of 
investigations on alterations of the gut microbiota 
in children treated with a KD and caution is war-
ranted when proposing KD in autistic populations. 
KD is an extreme dietary regimen which could be 
difficult to implement in children affected with 
ASD, who often display signs of food aversion 
and might therefore lead to macronutrient and 
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micronutrient deficiencies. Similar considerations 
should be made when contemplating maternal 
nutritional interventions based on KD, given lim-
ited evidence for beneficial effects on offspring 
neurodevelopment. Notably, a recent study inves-
tigating the effects of KD on the course of gestation 
and fetal development in rats showed both meta-
bolic impairments and delays in neurological 
development, particularly in female offspring.391

The studies summarized here highlight the pro-
found effects of maternal nutrition – from the 
periconceptional period throughout gestation and 
lactation – on offspring neurodevelopment and 
provide compelling evidence for a complex inter-
play between maternal nutrition, the gut micro-
biome, and the immune response, with epigenetic 
modifications as a consequential bridge between 
these environmental cues and early life program-
ming of neurodevelopmental disorders.

Maternal chemical exposure

Exposure to even small amounts of toxic chemicals, 
such as lead, methylmercury, polychlorinated 
biphenyls [PCBs], arsenic, and toluene, relatively 
harmless in adult individuals, during pre- and early 
postnatal neurodevelopment392,393 can result in neu-
rodevelopmental toxicity and brain damage.394 The 
placenta is permeable to a large number of environ-
mental toxins,395 therefore the fetus has little-to-no 
protection against these agents, many of which can 
easily cross the blood–brain barrier.396–398 The det-
rimental effects of exposure to toxic substances are 
not limited to the intrauterine period, but instead 
extend across many years.192

PCBs (polychlorinated biphenyls), a class of 
compounds utilized as additives for pesticides, 
insulators, paints, and glues, are internationally 
recognized as hazardous. While industrial expo-
sure to PCBs showed mild toxicity in adult indivi-
duals, severe behavioral impairments, as well as 
hormonal and immune dysfunction were observed 
in children born to exposed mothers.399–401 The 
first evidence for neurotoxicity of PCBs dates 
back to the 1970s, when babies born to women 
who ingested PCB-contaminated cooking oil dur-
ing pregnancy in Japan and Taiwan suffered from 
significantly higher rates and more severe forms of 
cognitive and psychomotor impairments.402 

However, subsequent epidemiological investiga-
tions revealed that maternal exposures to even 
lower, yet environmentally relevant, levels of 
PCBs poised significant risk for neurotoxicity in 
offspring,403 and was associated with higher risk 
of neurodevelopmental disorders, including 
ADHD and ASD.404,405 Mechanisms by which 
PCBs have been proposed to disrupt neurodevelop-
ment include interference with thyroid hormone 
(TH), altered signaling of γ-aminobutyric acid 
(GABA), and disruption of intracellular calcium 
ion (Ca2+) dynamics.406

Pesticides, including insecticides and fungicides, 
are widely used in agriculture and their residues 
can be found in and on fruits, vegetables, and other 
food products,407 with a large number of these 
being specifically designed to produce neurotoxic 
effects in targeted pests.408,409 Prenatal exposure to 
organophosphates, which are the most widely used 
class of pesticides, has been associated with neuro-
developmental deficits, including cognitive dysfunc-
tion and attention deficits.410–413 Interestingly, 
maternal intake of high dose folic acid preceding 
pregnancy has been shown to reduce ASD risk aris-
ing from prenatal exposure to pesticides,414 suggest-
ing a protective role for folic acid against harmful 
chemical exposures.

Fortunately, a growing number of countries, 
including the US, have begun to implement envir-
onmental regulations to limit exposures to known 
toxicants. Among these, the Toxic Substances 
Control Act (TSCA) of 1976 provided the US 
Environmental Protection Agency (EPA) with the 
authority to require rigorous recording and report-
ing of chemical substances and/or mixtures 
released into the environment; however, most 
food, drugs, cosmetics, and pesticides were notably 
excluded from the chemicals covered by this act. 
After these regulatory initiatives, the environmen-
tal concentrations of PCBs in commercial mixtures 
gradually declined. Nevertheless, the persistence of 
legacy PCBs pose a health hazard to humans,415 

with ongoing utilization of old equipment contain-
ing PCBs and their release from aging construction 
components.

Despite well-intended regulation, the enact-
ment, enforcement, and achievement of strict 
environmental quality standards remains a chal-
lenge, given the inevitable lag between the 
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production and broad commercial application of 
new classes of synthetic chemicals and research 
efforts to objectively perform a comprehensive 
assessment of their impacts on short- and long- 
term health outcomes. While PCBs came to the 
forefront of environmental policy when the EPA 
developed regulations under the TSCA, PFAS (Per- 
and Polyfluoroalkyl Substances) were subject to 
relatively less strict regulations, with scientists 
mainly concentrating on offering guidance on 
acceptable levels of PFAS in drinking water and 
groundwater. However, recent studies indicate 
that PFAS are building up in the environment 
and exhibit long-lasting stability, to the point that 
are commonly referred to as “forever” chemicals.-
416 This accumulation of PFAS has increasingly 
adverse effects on both human health and the 
environment. Consequently, PFAS are becoming 
as widely recognized among the public as PCBs. 
PubMed citations including “PFAS” grew from 1 in 
2002 to >1,200 in 2023. They are accompanied by a 
growing number of articles published by popular 
press outlets, including news and lifestyle maga-
zines, highlighting links between PFAS and health 
risks, as well as a nuanced consideration of the 
danger presented by how little is known about 
them and the consequences of cumulative 
exposures.

Epidemiological studies have highlighted asso-
ciations between exposure to specific PFAS, which 
find extensive application in both industrial and 
consumer goods, including coatings applied to fab-
rics, carpets, paper goods, and as nonstick coatings 
on cookware, and multiple health outcomes, 
including alterations in immune function, liver 
and kidney disease, metabolic dysregulation, 
adverse reproductive and developmental effects, 
and cancer.417 As mentioned in previous sections, 
the CHARGE population-based case–control study 
investigated the association between environmen-
tal factors, including prenatal maternal exposure to 
PFAS, and risk for autism and developmental delay 
in 1,800 children and their families. Results from 
this study revealed that modeled prenatal exposure 
to perfluorohexane sulfonate (PFHxS) and per-
fluorooctane sulfonate (PFOS), but not other 
PFAS, was linked to higher odds of a child being 
diagnosed with ASD.418 However, the authors con-
cluded that additional studies in which PFAS 

concentrations are prospectively measured in 
mothers and children at multiple developmental 
stages were required to corroborate these findings. 
Another study suggested that prenatal serum levels 
of Perfluorononanoic acid (PFNA), a type of PFAS, 
might be linked to slight increases in autism- 
related traits in children.419 However, future 
research is warranted to investigate the correlation 
between maternal exposure to both established and 
newly emerging PFAS and various quantitative 
measures of autism-related health outcomes in 
offspring.

Intriguingly, recent evidence suggests that the 
gut microbiome might be a major player in the 
toxicity of environmental pollutants, including pes-
ticides and PFAS.420 Exposure to such toxicants 
might increase risk for psychiatric or neurological 
disorders through perturbations of the micro-
biome-gut-brain axis.421 Maternal exposure to 
environmental pollutants, including metals, PFAS, 
and pesticides, was associated with alterations in 
developmental trajectory of the gut microbiome in 
infants, especially breastfed infants, in a recent 
birth cohort study.422 Additional evidence of 
maternal PFAS exposure on microbiota composi-
tion in mother-infant dyads in Finland revealed 
alterations in the maternal gut microbiome and in 
the levels of certain metabolites, such as bile acid 
glycoursodeoxycholic acid (GUDCA) and cholic 
acid (CA).423 Further studies are required to deter-
mine the full extent of consequences of maternal 
exposures to individual environmental chemicals 
on offspring neurodevelopment, their impact of 
the risk neurodevelopmental disorders, and the 
potential involvement of the gut microbiome in 
mediating neurotoxic effects of such compounds.

Therapeutic targeting of the maternal gut 
microbiome to reduce ASD risk

Pregnancy is characterized by significant remodel-
ing of the maternal gut microbiome, even in the 
absence of environmental insults.424–426 This 
remodeling is driven by changes in hormone levels, 
immunity, and metabolic function required to sup-
port fetal development. In parallel, microbiota are 
poised to modulate immune and metabolic adapta-
tions during pregnancy, as well as gut barrier func-
tion, by means of bioactive microbially derived 
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metabolites. In the third trimester, total bacterial 
load is increased while microbial richness is 
decreased in the maternal gut microbiome. A con-
comitant increase in the proportion of opportunis-
tic pathogens is thought to promote in the 
development of the offspring immune system.427 

A surge in maternal progesterone during the third 
trimester increases the abundance of Bifidobacteria 
abundance,428 which play an important role in the 
developing infant microbiota.429 Human studies 
suggest that pregnancy-specific microbiota rear-
rangements are most pronounced in the third tri-
mester, regardless of maternal pre-pregnancy BMIs 
and gestational diabetes status.424 Intriguingly, 
transplantation of microbial strains from women 
in the third trimester induced greater weight gain 
and inflammation in germ-free recipient female 
mice than those isolated from women in their 
first trimester, which resemble increased adiposity 
and insulin resistance430 as well as low-grade 
inflammation431 observed in the latter stages of 
gestation in healthy women. While such changes 
are typically associated with metabolic disorders in 
non-pregnant individuals, in the context of gesta-
tion they are thought to be beneficial metabolic 
adaptations required ensure proper fetal growth 
and development.432 The precise mechanisms by 
which pregnancy shapes the maternal microbiome, 
how microbiota modulate the maternal environ-
ment, and the consequences of environmental 
exposures that disrupt the maternal gut micro-
biome and its remodeling on offspring develop-
ment have yet to be fully elucidated. Further 
studies incorporating multi-OMIC approaches are 
warranted.433

Earlier, we introduced how maternal environ-
mental factors, such as nutrition, shape both the 
maternal and offspring microbiome, with ramifica-
tions for development and long-term health out-
comes in offspring. High-fat diet (HFD) exposures 
leading up to and throughout gestation increase the 
abundance of taxa involved in the biosynthesis of 
ketone bodies, fatty acid, vitamins, and bile acids.434 

Additionally, HFD reduces the abundance of short- 
chain fatty acids (SCFAs) and SCFA-producing 
bacteria, while increasing pro-inflammatory mar-
kers lipopolysaccharides (LPS) and tumor necrosis 
factor (TNF), and promoting loss of intestinal 
epithelial barrier integrity, and placental hypoxia 

and inflammation.435,436 Intriguingly, human 
studies show that overweight pregnant women 
harbor distinct microbiota compared to those of 
normal weight437 associated with alterations in 
several metabolic hormones and pregnancy 
metabolism.438 Taken together, these studies 
highlight the crucial role of the maternal micro-
biome in pregnancy-associated metabolic adapta-
tions and make the case for more extensive 
investigation into how environmentally induced 
alterations in maternal gut microbial ecology 
influence physiological changes in offspring and 
their consequences for fetal development and pro-
gramming of disease, including neurodevelop-
mental disorders.

We propose that precision targeting the mater-
nal gut microbiome could provide for a healthier in 
utero environment, thus facilitating typical fetal 
development and reducing risk for adverse health 
outcomes. Select probiotics have the potential to 
remedy dysbiosis of the gut microbiome through a 
variety of mechanisms439 and are generally 
regarded as safe (GRAS) to administer during 
pregnancy.440,441 In a recent study, maternal pro-
biotic supplementation during gestation and lacta-
tion was found to promote intestinal barrier 
integrity and reduce inflammation.442 A limited 
number of studies have begun to investigate the 
impacts of daily probiotic administration in obese 
pregnant women or animal models of diet-induced 
obesity443 with some of them showing increased 
gut microbial diversity,444 albeit small effects on 
metabolic parameters.445 Promisingly, a rando-
mized double-blinded Danish study investigating 
the efficacy of a multi-strain probiotic versus pla-
cebo-control to regulate blood glucose, gestational 
weight gain, and reduce risk for gestational dia-
betes mellitus in obese pregnant women demon-
strated >80% adherence to the probiotic regimen 
and an increase in alpha diversity of the gut micro-
biome of group receiving the probiotic interven-
tion over time. In contrast, no increase in alpha 
diversity was observed in the placebo control 
group.

Both single- and multi-strain probiotic treatments 
have been used to target gut-brain-behavior interac-
tions and ameliorate or prevent neuropsychiatric 
outcomes in human and animal studies.446,447 

Clinical trials have reported ameliorations of core 
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and comorbid symptoms in autistic children after 
rebalancing the composition of the gut microbiome 
through probiotic interventions.448,449 However, the 
efficacy of maternal probiotic supplementation to 
counteract the detrimental effects of diet-induced 
dysbiosis of gut microbiome on offspring neurode-
velopment has not yet been explored. A recent study 
in CD-1 IGS mice450 showed that multi-strain pro-
biotic (Bio-Kult Advanced® containing 
Bifidobacterium spp. and Lactobacillus spp.) expo-
sure during the perinatal period reduced anxiety-like 
behaviors associated with maternal obesity, modu-
lated the expression of genes involved in synaptic 
plasticity in the prefrontal cortex of offspring, and 
increased brain lactate and SCFA levels, which are 
known to regulate gene expression.146 Additionally, 
the multi-strain probiotic decreased inflammation, 
as indicated by a reduction in circulating levels of 
pro-inflammatory cytokine interleukin-6 (IL-6) and 
increased SCFA production in obese dams treated 
with probiotics.450 This study also provided evidence 
of a critical role for probiotic species and their meta-
bolites in the regulation of mood and behavior 
through changes in the expression of synaptic plas-
ticity-related genes. In another study in which mouse 
dams were exposed to a pregnancy-specific dietary 
regimen, single-strain probiotic administration 
during the second trimester of pregnancy 
decreased anxiety-like behavior and modified cor-
tical cytoarchitecture, with differential effects on 
male versus female offspring.451 In the context of 
MIA models, a combination of pre- and probiotics 
(Bifidobacteria and Lactobacillus combined with 
fructooligosaccharides and maltodextrin) admi-
nistered to pregnant dams prevented MIA- 
induced depression-like and ASD-like behaviors 
in adult offspring, while also reducing the abun-
dance of proinflammatory cytokines levels in the 
fetal brain.452

The potential for early life probiotic interven-
tions to prevent or treat ASD-associated pheno-
types in nonsyndromic autism is further 
supported by successful intervention in models 
for genetic and idiopathic ASD. In the BTBR 
model, administration of probiotic Lactobacillus 
(L.) rhamnosus rescued social deficits and modu-
lated the composition of the gut microbiome by 
increasing microbial richness and the abundance of 
SCFA-producing taxa. Notably, however, in a 

randomized, placebo-controlled, cross-over study 
in human males, the JB-1 strain of L. rhamnosus 
failed to modulate stress or cognitive performance.-
453 Not long after, treatment with the probiotic 
Limosilactobacillus reuteri ATTC-PTA-6475 in 
the Cntnap2−/− 140 and Shank3B−/− mouse models 
for disorders of social dysfunction was shown to 
rescue ASD-like behavior and underlying deficits 
in synaptic plasticity.141 Excitingly, in a recent dou-
ble-blind, randomized, placebo-controlled clinical 
trial, this same human-derived strain selectively 
reversed social deficits in children with ASD when 
given in combination with its parent strain, 
Limosilactobacillus reuteri DSM-17938.142 Thus, 
the promise of preclinical discoveries that preci-
sion targeting of the gut microbiome can relieve 
some core ASD symptoms is beginning to be 
realized in human patients. Therapeutic targeting 
of the gut microbiome for the prevention and 
treatment of neurodevelopmental disorders is a 
frontier ripe for discovery, innovation, and 
implementation.

Concluding perspective

Investigative teams around the world are begin-
ning to elucidate the relative contribution of 
genetics and the environment, and their interac-
tions, to the etiology of ASD and other neuro-
developmental disorders. Genetics are 
undoubtedly at the core of ASD pathology, and 
promising treatment options are emerging for 
monogenic ASDs, such as anti-sense oligonu-
cleotides (ASOs).19 However, in many cases, 
genetic variants could establish baseline risk for 
ASD, while environmental factors modify the 
phenotypic expression of genetic determinants, 
influencing disease severity and clinical manifes-
tation. Therapeutically, this is very exciting given 
that the environment is modifiable and some 
changes can even be reversible. Environmental 
exposure-related epigenetic reprogramming and 
remodeling of the maternal gut microbiome pro-
vide new perspectives from which to investigate 
the mechanisms underlying some forms of neu-
rodevelopmental disorders and could spur inno-
vation in the development of therapeutic 
approaches. For instance, integrating micro-
biome-targeted (prebiotic, probiotic, and/or 
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symbiotic) treatments for expectant mothers 
and/or infants could influence the maternal 
immune landscape and thereby facilitate healthy 
brain development in children. New tools for 
precision sampling and delivery of gut micro-
biota will likely be key to advancing diagnostics 
and developing breakthrough therapeutic 
approaches in coming years. Multidisciplinary 
investigations exploiting the power of integrated 
multi-OMICs in preclinical animal models for 
ASD and carefully stratified patient populations 
are warranted to advance our mechanistic under-
standing of how early life environmental expo-
sures contribute to risk for ASD and could be 
key to the development of innovative diagnostics 
and interventions for ASD.
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