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W Check for updates

Coronavirus disease 2019 (COVID-19) and influenza are respiratory

ilinesses caused by the severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) and influenza viruses, respectively. Both diseases share
symptoms and clinical risk factors', but the extent to which these conditions

have acommon genetic etiology is unknown. This is partly because host
geneticrisk factors are well characterized for COVID-19 but not for influenza,
with the largest published genome-wide association studies for these
conditions including >2 million individuals® and about 1,000 individuals®®,
respectively. Shared genetic risk factors could point to targets to prevent or
treat both infections. Through a genetic study of 18,334 cases with a positive
test for influenza and 276,295 controls, we show that published COVID-19
risk variants are not associated with influenza. Furthermore, we discovered
and replicated an association between influenza infection and noncoding
variantsin B3GALTS5 and ST6GALI, neither of which was associated with
COVID-19.Invitro smallinterfering RNA knockdown of ST6GAL1—-an enzyme
that addssialic acid to the cell surface, whichis used for viral entry—reduced
influenzainfectivity by 57%. These results mirror the observation that
variants that downregulate ACE2, the SARS-CoV-2 receptor, protect against
COVID-19 (ref. 7). Collectively, these findings highlight downregulation of
key cell surface receptors used for viral entry as treatment opportunities to
prevent COVID-19 and influenza.

Tounderstand the extent to which the same host genetic factorsinflu-
ence therisk of coronavirus disease 2019 (COVID-19) and influenza, we
first performed a genome-wide association study (GWAS) of influenza
infection based on survey data from 296,313 participants of the Ances-
tryDNA COVID-19 study who consented to the research®. Although the
focus of that study was on risk factors for COVID-19, participants also
indicated if they were tested for influenza in either the 2019-2020 or
2020-2021fluseasons (Methods). Overall, 18,448 (6.2%) participants
reported a positive test for influenza, and thus were considered cases
for our analysis, while the remaining 277,865 participants (including
23,985 with a negative test) were considered population-level controls.
We refer to this phenotype as ‘reported influenzainfection’,but recog-
nize thatitdoes not represent true susceptibility to infection because
the control group includes an undetermined number of individuals
not exposed to influenza in either season or who were infected but
nottested (forexample, asymptomatic). As such, this phenotype may

capture symptomatic influenza infection that required seeking (or
being prescribed) a viral test.

Using these data from AncestryDNA, we tested the association
between reportedinfluenzainfection and 10 million common (frequency
>1%) imputed variants using REGENIE’, separately in three ancestral
groups (with >100 influenza cases) defined based on genetic similar-
ity to three superpopulations studied by the 1000 Genomes Project™
(Methods): from Europe (EUR; n=254,750,86.0%), Africa (AFR; n=12,951,
4.4%) andthe Americas (AMR; n=26,928,9.1%), totaling 18,334 cases and
276,295 controls (Supplementary Table 1). Results were meta-analyzed
across ancestries using aninverse-variance, fixed-effects meta-analysis
(Extended DataFig.1),identifying twolociassociated with reportedinflu-
enzainfection at P<5x 1078 (near ST6GALI and B3GALTS, respectively
onchromosomes 21q22.2 and 3q27.3; Table 1). We describe these lociin
detail later, including sensitivity and replication analyses in independ-
entcohortsthat demonstrate the reproducibility of these associations.
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Table 1| Two loci identified in a multiancestry meta-analysis of reported influenza infection performed in the AncestryDNA
cohort® and validated in an independent meta-analysis consisting of seven biobanks with electronic medical records®

Variant (effect allele) Analysis OR (95% CI) P Effect allele frequency in cases/ Homozygote OR (95% Cl)
controls

Chromosome 3q27.3, nearest gene ST6GAL1

Discovery 0.864 (0.826-0.903) 1.4x107™° 0.064/0.074 0.627 (0.489-0.804)
rs16861415 (C)

Replication 0.901 (0.872-0.930) 3.3x10™° 0.094/0.097 0.802 (0.717-0.894)
Chromosome 21922.2, nearest gene B3GALT5

Discovery 0.901 (0.882-0.922) 1.3x107° 0.460/0.485 0.824 (0.789-0.860)
rs2837112 (A)

Replication 0.936 (0.917-0.954) 41x10™ 0.432/0.461 0.877 (0.843-0.913)

18,334 cases versus 276,295 controls in the discovery analysis. UK Biobank (UKB), GHS, PMBB, CCPM, Mayo Clinic, UCLA and FinnGen consisting of 22,022 cases and 1,131,269 controls in the
replication analysis. Unadjusted P values were derived using Firth regression (two-sided test) as implemented in REGENIE®.

Results fromthe AncestryDNA GWAS of reported influenzainfec-
tionwere then used to determineif severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) and influenza infections have a shared
genetic etiology. To address this question, we initially focused on 24
variants associated with COVID-19 identified by the Host Genetics
Initiative (HGI)? (freeze 6; Supplementary Table 2). Of these, only one
was associated withreportedinfluenzainfection (P < 0.05/24 = 0.002),
despite adequate power for most (Supplementary Table 3): rs505922
in ABO (odds ratio (OR) =1.05 for the T allele, 95% confidence inter-
val (Cl) =1.02-1.07, P=2.2 x10*; heterogeneity test P= 0.13; Fig. 1).
Thisvariantincreased therisk of reported influenzainfection, while it
decreased the risk of COVID-19 (OR = 0.92; 95% Cl = 0.92-0.93, based
onthe HGIGWAS of reported infection?), inline with previous reports".
We explorethe ABOlocusin greater detailinthe Supplementary Note,
concludingthatitsassociation withinfluenzais (1) only partially attenu-
ated after accounting for COVID-19 status and (2) probably tags an
underlying causal variant shared with other diseases (for example,
childhood ear infections, allergic disease) but not COVID-19. Overall,
only 10 (42%) of 24 variants had a consistent direction of effect on both
influenza and COVID-19 (Fig.1).

The lack of significant and directionally consistent associations
betweenreported influenzainfection and COVID-19 loci suggests that
the two diseases share few—if any—geneticrisk factors. Consistent with
these findings, the tworisk variants for reported influenzaidentified in
the AncestryDNA GWAS (inor near B3GALTS and ST6GALI) did not have
adirectionally consistent association with COVID-19 in the HGl analysis
(Supplementary Table 4). Furthermore, the genetic correlation (r,)"
between reported influenzainfection and both SARS-CoV-2infection
(r;=0.30,P=0.009) and COVID-19 hospitalization (r,= 0.34, P= 0.007)
was modest (Supplementary Table 5). Collectively, these results sug-
gestsome sharing, but substantial divergence, inthe genetic etiology
underpinning influenza infection and COVID-19.

The AncestryDNA GWAS of reported influenza infection identified
two associated loci (Table1), with lead variants rs16861415in ST6GALI
(3927.3; OR=0.86 for C allele, 95% Cl = 0.83-0.90, P=1.4 x107'°) and
rs2837112 in B3GALTS (21g22.2; OR = 0.90 for A allele, 95% Cl = 0.88-
0.92, P=1.3 x107). The effect allele ranged in frequency between 3%
(AFR) and 8% (EUR) for rs16861415, and between 39% (AFR) and 49%
(EUR) forrs2837112, with no evidence for heterogeneity of effect sizes
across ancestries or cohorts (Supplementary Table 6). The reduction
ininfluenzarisk observed inhomozygous carriers was 37% for ST6GAL1
and 20% for B3GALTS (Table 1), with no evidence for epistasis between
the two loci (Supplementary Note).

Next, we performed sensitivity and replication analyses to deter-
mine if the two influenza associations were robust to phenotype
definition and reproducible. In the AncestryDNA cohort, excluding
253,880 individuals without influenza test results from the control
group (resulting in 18,448 positive test cases versus 23,985 negative

test controls) did not impact the effect size estimate for either locus:
OR=0.86 (versus 0.86) and P=5.2 x 107 for ST6GAL1, and OR = 0.89
(versus 0.90) and P=4.9 x 102for B3GALTS (Fig. 2). In contrast, defin-
ing influenza infection more loosely based on whether a participant
reported having flu-like symptomsin the 2019-2020 or 2020-2021 flu
seasons (43,956 cases versus 250,673 controls) led to attenuated effect
sizes butstill highly significant associations: OR=0.93and P=1.7 x 107
for ST6GALI, and OR = 0.95 and P=4.0 x 10 for B3GALTS (Fig. 2).

To determineifthe associations were reproducible, we used data
from medical records to define lifetime influenza infection status
across 1,153,291 individuals from seven biobanks and five ancestral
groups (Methods). Based on the presence of International Statistical
Classification of Diseases and Related Health Problems, 10th Revision
(ICD-10) codes J09,J10 or J11 in hospital admissions, general practi-
tioner records or death registries, we identified 22,022 (2%) individuals
with (cases) and 1,131,269 without (controls) alifetime medical record
ofinfluenza (Supplementary Table1). As with the AncestryDNA GWAS,
the control group in this replication analysis probably includes both
individuals not exposed toinfluenza and individuals who had influenza
but not anassociated medical record. Inamultiancestry meta-analysis
of medical record influenza (Extended DataFig. 2), we observed direc-
tionally consistent and genome-wide significant associations with
both rs16861415 in ST6GALI (OR=0.90, P=3.0 x107°) and rs2837112
in B3GALTS (OR=0.93,P=2.5%x10"; Table 1). Two measures of recent
influenzainfection also supported both associations. First, we found
consistent and significant associations with a positive culture for
influenza A (Methods), an indicator of current infection available in
82,348 individuals from the Geisinger Health Study (GHS) biobank:
OR=0.82and P=0.005 for ST6GALI, OR = 0.86 and P=3.02 x 107> for
B3GALTS (Fig. 2). Second, both variants lowered the risk of a positive
seropositive test forinfluenza Ain a published study of 1,000 individu-
als®, significantly so for B3GALTS (OR=0.70, P= 0.001; Fig. 2). Lastly,
the B3GALTS variant significantly lowered the risk of flu-related hos-
pitalization among influenza cases (1,696 hospitalized cases versus
8,239 nonhospitalized cases, OR = 0.88, P= 0.005), with asimilar, albeit
nonsignificant, protective effect for the ST6GALI variant (OR=0.89,
P=0.17; Fig.2). Collectively, these findings establish both loci as repro-
duciblegeneticrisk factors forinfluenzaandindicate that the B3GALTS
variant also reduces disease severity.

We did not find any additional associated lociin the meta-analysis
of discovery (AncestryDNA) and replication (biobank) cohorts (40,356
cases versus 1,407,564 controls; Extended Data Fig. 3). As observed in
the AncestryDNA GWAS, aside from ABO, published COVID-19 risk vari-
ants were not associated withinfluenzain this larger analysis (Extended
DataFig.4).

Next, to help understand how each influenza locus contributes
to disease pathophysiology, we identified the likely effector genes
of the GWAS signal, concentrating on the lead variant at the 3q27.3
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Fig.1|Associationbetween reported influenza infection in the AncestryDNA
cohort and 24 variants previously reported to be associated with COVID-19
outcomes by the HGI. Of the 24 COVID-19 risk variants, 16 were discoveredina
GWAS of COVID-19 hospitalization (comparing 25,027 cases hospitalized with
COVID-19 against 2,836,272 individuals with no record of SARS-CoV-2 infection),
while eight were discovered in a GWAS of reported SARS-CoV-2 infection
(comparing 125,415 individuals with a record of SARS-CoV-2 infection against

2,575,157 individuals with no record of SARS-CoV-2 infection). Of the 24 variants,
only one (rs505922,9:133273813:C:T, in ABO), was associated with reported
influenza (18,334 cases versus 276,295 controls) after Bonferroni correction for
24 tests (P=0.002, obtained using Firth regression, two-sided test); however, the
direction of effect for influenza (blue circles) was the opposite of that reported
for COVID-19 (red diamonds). The error bars represent the 95% Cl for the OR
estimate.

and 21g22.2 loci in the meta-analysis of the discovery and replication
cohorts, thatis, rs13322149 and rs2837113, respectively (Extended Data
Fig. 3). Based on high linkage disequilibrium (LD, r* > 0.80) between
eachvariant, and sentinel expression quantitative trait loci (eQTLs) and
enhancer-overlapping variants (Supplementary Tables 7 and 8), four
genes were prioritized: ST6GALI and ADIPOQ at the 3q27.3 locus; and
B3GALTSand IGSF5 atthe 21g22.2locus. Analysis of rare loss-of-function
(LOF) and missense variants assayed via exome sequencing of 14,189
caseswithinfluenzaand 811,714 controls did notidentify any significant
genome-wide associations (Extended Data Fig. 5); however, when we
focused on the four genes highlighted above, we found a missense
variantin /GSF5 (frequency 0.01%) associated with a9.2-fold higher risk
of medical record influenza, which was significant after correcting for
631 rare variant tests performed across the four genes (P=2.3 x1075;
Supplementary Table 9). This observation provides additional support
for IGSF5 as one of the likely effector genes underlying the common
variant association with flu at the 21q22.2 locus.

Of the four likely effector genes of the influenza loci, ST6GALI
and B3GALTS are strong biological candidates (ADIPOQ and IGSF5
are discussed in the Supplementary Note). ST6GALI codes for the
enzyme B-galactoside a-2,6-sialyltransferase 1, which catalyzes the
addition of sialic acid to galactose by an &-2,6 linkage"; it is most highly
expressedintheliverandin Epstein—-Barr virus-transformed B cellsin
humans (Extended Data Fig. 6a)™. Critically, influenza virus infection
is initiated when the viral hemagglutinin glycoprotein binds to an
«-2,6-linked sialicacid found on human host cell surface glycoproteins
and glycolipids in the upper respiratory tract, which are used by the
virus as attachment factors that facilitate the subsequent engage-
ment with a functional receptor required to enter the target cell*™.
The lead variant at this locus (rs13322149) colocalized with a sentinel
eQTL (rs73187789:A, r* = 0.95) that is associated with lower expression
of ST6GALI in thyroid tissue from the Genotype-Tissue Expression
(GTEx) project™ (P=3.4 x10™%; Supplementary Table 7), with consistent
directional effectsin other tissues, including the lung (Extended Data
Fig. 6b). B3GALTS codes for 3-1,3-galactosyltransferase 5 and is most
highly expressed in the small intestine and salivary gland (Extended
Data Fig. 6¢)". This enzyme catalyzes the addition of galactose in the
-1,3 conformation to an N-acetylglucosamine (GIcNAc) saccharide

during the synthesis of glycan core structures'®. As noted above,
ST6GALI adds sialic acid to a galactose. The lead variant at this locus
(rs2837113) is a sentinel eQTL for B3GALTS in skin and salivary gland
tissue, with the rs2837113:A influenza-protective allele associating
with higher gene expression (Supplementary Table 7).

Lastly, we performed in vitro experiments to study the impact
of gene expression knockdown on influenza virus HIN1 (Puerto Rico
8 strain) infectivity. For these experiments, we focused on two likely
effector genes ofinfluenza-associated variants—ST6 GAL1 and B3GALTS—
because of their potential roleinacritical step of influenzavirus infectiv-
ity, thatis, modulation of a-2,6-linked sialic acid abundance at the cell
surface. We tested two smallinterfering RNAs (siRNAs) per genein the
A549 and Calu-3 cell lines, respectively, performing two independent
experiments per siRNA. siRNAs against ST6GALI achieved approxi-
mately 90% expression knockdown and resulted in approximately 80%
reductioninsialicacid abundance at the cell surface and approximately
50% reduction in influenza infectivity (Extended Data Figs. 7 and 8),
whichis consistent with previous findings'. These results support the
notion that lower ST6GALI1 enzymatic activity reduces the ability of
influenzavirustoinfect host cells,amechanism that probably explains
the association between variants at the 3q27.3 locus and lower risk of
influenzainfection. In contrast, knockdown of B3GALTS expression was
notassociated with a consistent effect oninfluenzainfectivity (Extended
Data Fig. 9). As such, despite being a good biological candidate, it is
unclear if B3GALTS underlies the association at the 21q22.2 locus.

Thereare severalimportant limitations that should be considered
wheninterpreting the results from this study (discussed in detail in the
Supplementary Note), including (1) phenotype misclassification, (2)
potential confounding effects of unmeasured risk factors for influ-
enza infection, (3) the use of self-reported influenza information in
the AncestryDNA cohort; and (4) an undetermined influenza strain
infecting GWAS participants.

In conclusion, we demonstrated that the genetic architectures
of COVID-19 and influenza are mostly distinct, with few shared
common genetic risk factors. We identified and replicated the first
genome-wide-significant loci for influenza and demonstrated that
inhibition of ST6GALI reduces viral infectivity in vitro. Host genetic
studies of infectious diseases commonly identify protective variants
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Fig.2|Association between ST6GALI and B3GALTS variants and ten
influenza-related phenotypes. Variants in ST6GALI (rs16861415) and B3GALTS
(rs2837112) were associated with lower risk of reporting a positive test for
influenzain the AncestryDNA cohort (discovery GWAS, total n = 294,629).

The association between both variants and influenza infection was confirmed
when analyzing medical record-based influenza status in anindependent
analysis 0f 1,153,291 individuals from seven biobank cohorts (replication GWAS;
the cohorts arelisted in Supplementary Table 1). Sensitivity analyses based
oneight additional phenotypes showed that (1) in the AncestryDNA cohort,
effect sizes for both variants were comparable after excluding controls with no
available influenza test results, while they were weaker when testing alooser

0.8 0.9 1.0 0.9 0.8 07 0.6

OR

phenotype that considered only flu-like symptoms; (2) in two biobank cohorts
with available hospitalization data (UKB, GHS), restricting the case group to
individuals withinfluenza-related hospitalization resulted in stronger effect
sizes for both variants, with the B3GALTS variant significantly reducing the risk
of hospitalization among infected cases; and (3) consistent and often stronger
(by effect size) associations were observed with phenotypes that captured
recentinfluenzainfection, such as a positive cell culture or serology test for
influenza A. Further details on these associations are provided in Supplementary
Table 6. Unadjusted Pvalues were derived using Firth regression (two-sided
test) implemented in REGENIE’. The error bars represent the 95% Cl for the OR
estimate.

that putatively downregulate (or ablate) proteins required for viralentry
(CCRSin HIV*®, ACE2in SARS-CoV-2 (ref. 7) and FUT2 in noroviruses™).
Our findings provide the latest vignette to this evolving narrative.
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Methods

Ethics statement

UKB study. Ethical approval for the UKB study was obtained fromthe
North West Centre for Research Ethics Committee (no. 11/NW/0382).
The work described in this article was approved by the UKB (under
application no.26041).

GHS study. The GHS institutional review board (IRB) (no.2006-0258)
approved the DiscovEHR analyses.

AncestryDNA study. All data for this research project was from par-
ticipants who provided previous informed consent to participate in
AncestryDNA’s Human Diversity Project, as reviewed and approved
by their external IRB, Advarra.

Penn Medicine BioBank study. Informed consent was obtained from
each participant regarding the storage of biological specimens, genetic
sequencing and genotyping, and access to all available electronic
health record (EHR) data. This study was approved by the University
of Pennsylvania IRB and complied with the principles set out in the
Declaration of Helsinki (2013).

Mayo Clinic. Ethical approval and consent was reviewed and approved
by the Mayo Clinic IRB (no.09-007763).

Mayo-Regeneron Genetics Center project. All participants provided
informed consent for use of specimens and datain geneticand health
researchand ethical approval for project generation was provided by
the Mayo Clinic IRB (no. 09-007763).

Colorado Center for Personalized Medicine biobank. Ethical
approval and consent was reviewed and approved by the Colorado
Multiple IRB (no.15-0461).

University of California Los Angeles. Patient recruitment and sample
collection for precision health activities at University of California
Los Angeles (UCLA) was approved by the UCLA IRB (no. 17-001013).
Informed consent was obtained for all study participants.

Phenotype definitions, array genotyping and imputation
AncestryDNA COVID-19 research study. US-based AncestryDNA
customers over the age of 18 who had consented to theresearch, were
invited to complete five surveys assessing COVID-19 outcomes, as
well as providing other demographicinformation and comorbidities,
as described previously®. Surveys were released to customers on the
following dates: April 2020, June 2020, July 2020, December 2020
and February 2021. About 900,000 customers completed at least one
survey (66.4% female, median age 57). Regeneron selected a subset
0f 300,000 respondents based primarily on COVID-19 and influenza
status for inclusion in the GWAS. The specific criteria used to select par-
ticipants forinclusion and to determine their COVID-19 and influenza
status are described in Supplementary Table 10. Briefly, we selected
participants who reported: (1) having a positive swab or serology test
for SARS-CoV-2; (2) being a first-degree relative of an individual with
COVID-19; (3) having a negative swab test for SARS-CoV-2; (4) having
a positive flu test in the 2019-2020 or 2020-2021 flu seasons; and
(5) survey respondents with no test results for SARS-CoV-2 matched
1:2 or 1:1 to individuals from group (1) based on age, sex, ethnicity
and the array type used for genotyping. This ascertainment strategy
maximized the number of cases with COVID-19 and matched controls
available for analysis.

Wesselected two survey questions to determine the influenza case
status in AncestryDNA: (1) “The 2019-2020 flu season spans from fall
2019 to late spring 2020. Have you had a flu test in the 2019-2020 flu
season?’and (2) ‘The 2020-2021fluseason spans from fall2020 to late

spring2021. Have you had a flu test in the 2020-2021 flu season?’ Indi-
viduals who responded with ‘Yes, and I tested positive’ were included
as cases in our analysis (Supplementary Table 10). Individuals who
responded with ‘Yes, and I tested negative’ were included as controls
for allinfluenza analyses (initial discovery and the sensitivity analysis,
restricting solely to individuals who self-reported an influenza test).
Individuals who responded with ‘No’ were also included as controls for
the maindiscovery influenza analysis.

DNA samples for the 300,000 respondents were genotyped onan
llluminaarray containing 730,000 SNPs. We removed individuals with
discordant sex (based on reported and genetically determined sex) and
those with<98% sample call rate®. We removed array variants with allele
frequency differences greater than 0.1 between array versions, as well
asvariantswith a call rate lower than 98%. Variants were thenimputed
with the Haplotype Reference Consortium reference panel (v.1.1).
We determined best-guess haplotypes with Eagle (v.2.4.1) and per-
formed imputation with Minimac4 (v.1.0.1). From 11,117,080 variants,
we retained 8,049,082 imputed variants (~*> 0.3) in the final dataset.

GHS DiscovEHR study. The GHS MyCode Community Health Initia-
tive is a health system-based cohort from Pennsylvania with ongoing
recruitment since 2006. Participants were genotyped on either the
Illumina OmniExpress Exome (OMNI) or Global Screening Array (GSA)
and imputed to the TOPMed reference panel (stratified according to
array) using the TOPMed Imputation Server. Before imputation, we
retained variants with a minor allele frequency (MAF) > 0.1%, miss-
ingness <1% and Hardy-Weinberg (HWE) P> 107", After imputation,
data from the OMNI and GSA datasets were merged for subsequent
association analyses, which included an OMNI and GSA batch covari-
ate,inaddition to the other covariates described below. ICD-10-based
influenza case status was defined using acombination of the following
three two-digit ICD-10 codes and their nested three-digit and four-digit
codes: 09 (influenza due to certain identified influenza viruses), J10
(influenzadueto otheridentified influenza viruses) andJ11 (influenza
duetounidentified influenza viruses) (Supplementary Table 11). Using
these ICD-10 codes, we defined as influenza cases individuals with (1)
one or more inpatient record of influenza or (2) two or more outpatient
records of influenza. Influenza controls were all other individuals with
available genotype data, except for 722 individuals not identified as
cases but who had a positive cell culture assay for influenza A or B, as
described below; these individuals were excluded from the analysis.

A subset of 82,348 individuals had viral cell culture assays that
included influenza A and B. Of these, 1,694 and 235 individuals had
a positive assay for influenza A and B, respectively. Lastly, we used
inpatient hospital records to identify 528 individuals with influenza
listed as the primary cause of hospitalization, using the ICD-10 codes
listed above (Supplemental Table 11).

UKB study. The UKB study includes approximately 500,000 adults
aged 40-69 at recruitment between 2006 and 2010. DNA samples
were genotyped using the Applied Biosystems UK BiLEVE Axiom
array (n=49,950) or the Applied Biosystems UK Biobank Axiom array
(n=438,427). Genotype data for variants not included in the arrays
wereinferred using the TOPMed reference panel, as described above.
Influenza case status was defined in the same way as with all the other
ICD-10-based biobanks (see Supplementary Table 11 for a full list of
ICD-10 codes and case sample sizes). As with the GHS, we used inpatient
hospital records toidentify 1,168 individuals withinfluenzalisted asthe
primary cause of hospitalization, using the ICD-10 codes listed above
(Supplemental Table 11).

Penn Medicine BioBank study, Colorado Center for Personalized
Medicine biobank, Mayo Clinic biobank and University of California
Los Angeles ATLAS Precision Health Biobank. The Penn Medicine
BioBank (PMBB) contains approximately 70,000 study participants,
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all recruited through the University of Pennsylvania Health System.
Participants donate blood or tissue and allow access to EHR infor-
mation. The Colorado Center for Personalized Medicine (CCPM)
biobank at the University of Colorado Anschutz Medical Campus in
Auroraencompasses approximately 45,000 individuals (aged 30-92).
De-identified phenotype data were collected by Health Data Compass
and include an individual’s entire medical record from the University
of Colorado’s EHR. Project generation included 116,277 individuals
from the Mayo Clinic biobank (ongoing enrollment from2009) and 30
disease-specificregistries. Structured datain the EHR were extracted
using the Observational Medical Outcomes Partnership common data
model (https://www.ohdsi.org/data-standardization/). The ATLAS
Precision Health Biobank at UCLA comprises approximately 32,000
individuals. De-identified phenotype data include all hospital visits
beginningin2013 and converted to ICD-10 codes. Influenza case status
for these biobanks was defined in the same way as described above
(see Supplementary Table 11 for a full list of ICD-10 codes and case
samplesizes).

Exome sequencing

Sample preparation and sequencing. Exome capture was completed
atthe Regeneron Genetics Center. Briefly, samples were pooled before
exome capture, with either (1) a slightly modified version of the xGen
probe library (Integrated DNA Technologies (IDT); UKB, PMBB and
81,620 samples of the DiscovEHR), (2) NimbleGen VCRome (58,856
samples of DiscovEHR) or (3) the TWIST human compressive exome
panel for CCPM, Mayo Clinicand UCLA. The multiplexed samples were
sequenced using: (1) for the UKB samples—75-bp paired-end reads
with two 10-bp index reads on the lllumina NovaSeq 6000 platform
using S2 or S4 flow cells; (2) for the DiscovEHR samples captured with
VCRome—75-bp paired-end reads with two 8-bp index reads on the
lllumina HiSeq 2500 platform; (3) for the DiscovEHR captured with the
IDT system—two 8-bpindex reads on the lllumina HiSeq 2500 platform
ortwo10-bpindexreads onthe llluminaNovaSeq 6000 platform on S4
flow cells; or (4) for the PMBB, CCPM, Mayo Clinicand UCLA—two 10-bp
index reads on the Illumina NovaSeq 6000 platform on S4 flow cells.

Variant calling and quality control. Sample read mapping, variant
calling, aggregation and quality control were performed using Deep-
Variant. Briefly, NovaSeq whole-exome sequencing reads were mapped
withthe Burrows-Wheeler Aligner MEM to the hg38 reference genome.
DeepVariantidentified small variants and reported them as per-sample
genomic variant call format (VCF); they were aggregated into ajointly
genotyped, multisample VCF. After aggregation of genotypes, we
trained a support vector machine model on several summary-level
per-site metrics to distinguish poor from higher-quality variants.

Gene burden tests. Briefly, for each gene region as defined by
Ensembl®, genotype information from multiple rare coding variants
was collapsed into asingle burden genotype, such thatindividuals who
were: (1) homozygous reference for all variants inthat gene were consid-
ered homozygous reference; (2) heterozygous for at least one variant
in that gene were considered heterozygous; and (3) only individuals
that carried two copies of the alternative allele of the same variant
were considered homozygous for the alternative allele. We did this
separately for seven classes of variants: (1) predicted LOF (frameshift,
splice acceptorand donor, and stop gained variants); (2) predicted LOF
or missense; (3) predicted LOF or missense variants predicted to be
deleterious by atleast1of 5algorithms; (4) predicted LOF or missense
variants predicted to be deleterious by 5 of 5algorithms; (5) missense;
(6) missense variants predicted to be deleterious by 1 of 5algorithms;
(7) missense variants predicted to be deleterious by 5 of 5algorithms.
Variants were annotated using VEP and the canonical transcript. The
five missense deleterious algorithms used were SIFT?, PolyPhen-2
(HDIV), PolyPhen-2 (HVAR)*, LRT* and MutationTaster®. For each

gene, and for each of these seven groups, we considered five separate
burden masks based onthe alternative allele frequency of the variants
collapsedinto theburdengenotype: <1%,<0.1%,<0.01%, <0.001% and
singletons only. Each burden mask was tested for association with the
same approach used for the individual variants.

Genetic association analyses

Association analyses were performed using the REGENIE® genome-wide
Firthlogisticregression test. Weincludedinstep10of REGENIE (that s,
prediction of individual trait values based on the genetic data) directly
genotyped (imputed for the GHS) variants with an MAF > 1%, <10%
missingness, HWE P>107" and LD pruned (1,000 variant windows,
100 variant slidingwindows and r* < 0.9). The association model used
instep 2 of REGENIE included the covariates of age, age?, sex, age x sex,
age’ x sex and the first ten principal components (PCs) derived from
the analysis of a stricter set of LD-pruned (1,000 variant windows, 50
variant step sizeand r* < 0.9) common variants from the array (imputed
forthe GHS) data. For both individual rare variants and burden masks,
we used the same covariates as in the GWAS but added 20 PCs from
rarevariants” >’ and (when appropriate) sequencing batch covariates.

Within each study, association analyses were performed sepa-
rately for five ancestral groups defined based on genetic similarity
with samples from the five superpopulations studied by the 1000
Genomes Project: from Africa (AFR), the Americas (AMR), East Asia
(EAS), Europe (EUR) and South Asia (SAS). As such, these five subgroups
can be thought of as 1000 Genomes-like ancestral superpopulations.
Genetic similarity was defined by projecting each sample onto refer-
ence PCs calculated from the HapMap3 reference panel. Briefly, we
merged our samples with HapMap3 samples and kept only SNPsin com-
mon between the two datasets. We excluded SNPs with an MAF <10%,
genotype missingness greater than 5% or HWE P <107, We calculated
PCs for the HapMap3 samples and projected each sample onto those
PCs. To assign a group to each non-HapMap3 sample, we trained a
kernel density estimator using the HapMap3 PCs and used the kernel
density estimators to calculate the likelihood of a given sample belong-
ingtoeach of thefive groups. Whenthelikelihood for agiven group was
greater than 0.3, we assigned the sample to that group. Whenasample
had two group likelihoods greater than 0.3, we arbitrarily assigned
1000 Genomes-like AFR over 1000 Genomes-like EUR (11ceseryona = 0;
Neepm = 0; Ngps = 365 Myayo ciinic = 05 Nycia = 0; Nyp = 56; Mpyips = 7), 1000
Genomes-like AMR over 1000 Genomes-like EUR (Mzncestryona = 1,953;
Neepm = 489; Nops = 4555 Nyayo clinic = 3585 Nycia = 497; Ny = 436;
Npmes = 138), 1000 Genomes-like AMR over 1000 Genomes-like EAS
(Pancestrypna = 05 Recem = 05 Mgus = 25 Myayo ciinic = 05 Mucia = 05 Nygs = 2;
Npyes = 1),1000 Genomes-like SAS over 1000 Genomes-like EUR (11,ces.
trypNa = 6175 Necpm = 245 Nops = 325 Nvayo ciinic = 345 Nucia = 895 Nuke = 592;
Npyes = 36) and 1000 Genomes-like AMR over 1000 Genomes-like AFR
(nAncestryDNA =5; Neepm = 3; Nons = 1925 Nyayo ciinic = 05 Mucia =45 Nuke = 51
Npyes = 77). We excluded samples from the analysis if no genetic ances-
try likelihoods were greater than 0.3, or if more than three genetic
ancestry likelihoods were >0.3 (Rpncestryona = 2,947, Neepm = 774; Ngys = 821;
Myayociinic = 3915 Nucia = 837; Ny = 1,205; Ny = 384).

Weperformed aninverse-variance-weighted meta-analysis tocom-
bine associationresults across genetic ancestries and studies and used
Cochran’s Q to assess the heterogeneity of effect sizes between con-
tributing studies and genetic ancestries. Within the text, we reported P
values fromthe Cochran’s Qtest as unadjusted heterogeneity Pvalues.

LD score regression

LD score regression'? was used to estimate genetic correlations
between influenza and summary statistics of two COVID-19 pheno-
types from the HGI?, that is, SARS-CoV-2 infection (C2) and COVID-19
hospitalization (B2). As LD score regression depends on matching
the LD structure of the analysis sample to a reference panel, we used
the phenotypes and corresponding summary statistics available in
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Europeans by the HGI?, which is why severe COVID-19 (A2) was not
used. We conducted analyses using the standard program settings
for variant filtering (removal of non-HapMap3 SNPs, non-autosomal,
chi-squared > 30, MAF < 1% or allele mismatch with reference). Dif-
ferences between the observed genetic correlations were compared
using z-scores.

Impact of ST6GALI and B3GALT5 knockdown on influenza
infectivity invitro

Cell culture. A549 and Calu-3 cells were purchased from ATCC and
maintained in F-12 medium supplemented with 10% heat-inactivated
FCS, and MEM containing Earle’s Balanced Salts, L-glutamine nones-
sential amino acids, sodium pyruvate and 10% FCS, respectively. Cells
were tested periodically for mycobacterial contamination.

siRNA knockdown. Lipofectamine RNAiMAX and four Silencer Select
siRNAs at afinal concentration of 10 uM were used for the knockdown
experiments according to the manufacturer’s protocol. siRNA1 no.
s12841 and siRNA2 no. s12843 were used to knock down ST6GAL1,
while siRNA1 no. s20171 and siRNA2 no. s20172 were used to knock
down B3GALTS. A nontargeting Cy3-conjugated siRNA (control no.
1) was used as the negative control and to optimize the transfection
conditions. siRNA targeting GAPDH (cat.no.4390849, Thermo Fisher
Scientific) was used to control the specificity of the effect. On the day
ofthe experiments, cells were seeded in12-well microplates and trans-
fectedintriplicate for each siRNA and control. Forty-eight hours after
transfection cells were detached with TrypLE, wells were combined;
cells were counted for seeding and plated at 20,000 cells per well in
black, clear-bottom 96-well plates, with at least eight replicates for
each siRNA condition, and incubated at 37 °C overnight for the infec-
tion experiment. The other cells werethenseededinawell of a12-well
microplate and incubated at 37 °C overnight to test for knockdown
efficiency.

In vitro influenza infection. Seventy-two hours after transfection,
HINI1 influenza virus A (Puerto Rico/8/34) expressing green fluores-
cent protein (GFP) (PR8-GFP) was thawed onice. Ininfection medium
(DMEM containing 3% FCS and 10% penicillin-streptomycin glutamine),
PR8-GFP was diluted to aconcentration representing a multiplicity of
infection (MOI) of 10. The virus was then serially diluted 1:3 to a final
MOI of 0.01. Knockdown cells were then removed from the incubator
and the medium was removed from the cells. Then, 100 pl of diluted
virus or medium alone was added to the wells; then cells were fur-
ther incubated at 37 °C for 18-24 h. After that time, virus-containing
medium was removed from the cells and each well was overlayed with
100 pl1x PBS. Plates were imaged on a SpectraMax i3 with MiniMax to
measure infection by quantifying GFP* cells. Percentage infection was
then calculated and normalized to the negative control cells at each
MOl as100%. Datawere graphed using Prism v.9.3 (GraphPad Software).

RNA extraction and quantitative PCR. Seventy-two hours after trans-
fection, RNA was extracted using RNeasy PLUS Mini kit. Complemen-
tary DNAwas synthetized using the SuperScript IV VILO Master Mix and
the knockdown levels were evaluated using QuantStudio 6 PCR system
with specific TagMan probes (ST6GALI assay ID Hs00949382_m1;
ACTBassay ID Hs01060665_g1; GAPDH assay ID Hs02786624 _g1; assay
ID B3GALTS5 Hs00707757_s1). Data were analyzed with the Analysis
Software v.2.6 for QuantStudio 6. Plots and statistics were generated
with Prismv.9.3.

Membrane sialic acid staining. siRNA-transfected cells and controls
were dissociated 72 hafter transfection using TrypLE and incubated for
15 min at room temperature in the dark with fluorescein-conjugated
Sambucus Nigra Lectin at a final concentration of 2 pg ml™. After two
washes with PBS, membrane fluorescence was evaluated using the

CytoFLEXLX cytometer. Raw cytofluorimeter data were analyzed using
FlowJov.10.8.0; graphs, representing the meanintensity of three wells,
were generated using Prism v.9.3.

Immunoblot. Total lysate from siRNA-treated A549 cells was extracted
using radioimmunoprecipitation assay buffer (cat. no. 89900) and
quantified using the Bio-Rad Laboratories DC protein assay (cat. no.
5000111). For each sample, 25 pg of total lysate were loaded on a well
of 4-12% NuPAGE Bis-Tris gel (cat.no. NP0323BOX) and run using MES
running buffer (cat. no. NP0O002). After blotting, membranes were
blocked in blocking buffer (5% milk plus 3% BSAin tris-buffered saline
with Tween 20) for 1 h at room temperature and goat anti-ST6GAL1
antibody (cat. no. AF5924, R&D Systems) diluted 1:200 in blocking
buffer at 4 °C overnight. Secondary chicken anti-goat horseradish
peroxidase (HRP)-conjugated antibody was used for blotting (cat. no.
HAFO019, R&D Systems) diluted 1:1,000 in blocking buffer. -Actin HRP
(diluted 1:10,000, 30 min, cat. no. 5123, Cell Signaling Technology)
or GAPDH HRP (1:10,000, 30 min, cat. no. HRP-60004, Proteintech)
were used as the loading control. The chemiluminescence signal was
detected using a ChemiDocimager (Bio-Rad Laboratories).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Summary statistics are available via the GWAS Catalog (accession no.
GCST90432107). Individual-level exome sequencing, genotype and
phenotype data are available to approved researchers via the UKB at
https://www.ukbiobank.ac.uk/enable-your-research. The FinnGen
release 8 influenza GWAS summary statistics are available toapproved
researchersat https://www.finngen.fi/en/access_results. Theinfluenza
A seropositivity GWAS summary statistics were downloaded from
the GWAS Catalog (accession no. GCST006339). Precalculated LD
scores fromthe 1000 Genomes'® European reference population were
obtained from https://data.broadinstitute.org/alkesgroup/LDSCORE/.
GTEx datacanbeaccessed at https://gtexportal.org/. Source dataare
provided with this paper.

Code availability

Genetic dataarerepresented inthe PLINK format (v.1.90b6.21), which
is available at https://www.cog-genomics.org/plink2/, and were ana-
lyzed using REGENIE (v.3.1.3), which is available at https://github.
com/rgcgithub/regenie. Meta-analyses were performed using METAL
(v.2020-05-05), which is available at https://github.com/statgen/
METAL. Imputation was done with Minimac4 (v.1.01), which is avail-
able at https://github.com/statgen/Minimac4. Read alignment was
performed using the Burrows-Wheeler Aligner (v.0.7.17) available at
http://bio-bwa.sourceforge.net. Picard (v.1.141) was used for duplicate
marking and is available at https://broadinstitute.github.io/picard/.
SAM, BAM and CRAM file generation and manipulation was performed
using Samtools (v.1.7), whichis available at http://www.htslib.org. Vari-
ant calling was performed using weCall (v.1.1.2), which is available at
https://github.com/Genomicsplc/wecall. VCF file manipulation and
index generation was performed using BCFtools (v.1.7), whichis avail-
ableat http://www.htslib.org. All other data analyses were performed
using Python (v.3.8), R (v.4.0.4), Prism v.9.3.0 and QuantStudio 6 (v.2.6).
R packages used include ggplot2 (v.3.4.2) and patchwork (v.1.1.3).
Python packages used include pandas (v.2.0.3) and numpy (v.1.25.2).
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Extended Data Fig. 1| Results from the discovery GWAS of reported influenza
infection in the AncestryDNA cohort. We tested 10 million common (alternate
allele frequency [AAF]>1%) variants, derived from array genotyping followed by
HRCimputation, comparing 18,334 individuals who reported a positive test for
influenza (cases) against 276,295 individuals who did not report a positive test
forinfluenza (controls). a, Quantile-quantile plot showing observed P-values for
individual variants (y-axis) against P-values expected by chance given multiple
testing (x-axis). The genomicinflation factor (Agc) of this analysis was 1.05,

whereas the intercept from LD-score regression was 1.04. b, Manhattan plot
showing association (-log,, P-value) withimputed variants. The dotted grey line
demarcates the genome-wide significance threshold of P=5x107%. ¢,d, Genetic
ancestry-specific results for the 3q27.3/ST6GAL1 (c) and the 21q22.2/B3GALTS
(d) variants. Unadjusted P-values derived from Firth-regression (two-sided test)
implemented in REGENIE’. Error bars represent the 95% confidence interval
around the odds ratio (data point).
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Extended Data Fig. 2| Summary of results from the replication GWAS of
lifetime medical record-based influenza infection performed across seven
biobanks. We tested 11 million common (AAF >1%) variants derived fromarray
genotyping followed by TOPMed imputation (except FinnGen, which used an
imputation reference panel comprising samples from Finland), comparing
22,022 individuals with (cases) against 1,131,269 individuals without (controls) an
ICD-10 code for influenza (controls). a, Quantile-quantile plot showing observed
P-values for individual variants (y-axis) against P-values expected by chance given

OR (95% CI)
multiple testing (x-axis). The genomic inflation factor (Asc) of this analysis was
1.04, whereas the intercept from LD-score regression was 1.01. b, Manhattan plot
showing association (-log,, P-value) withimputed variants. The dotted grey line
demarcates the genome-wide significance threshold of P=5 x1078, ¢,d, Cohort-
specific results for the 3q27.3/ST6GAL1 (c) and the 21q22.2/B3GALTS (d) variants.
Unadjusted P-values derived from Firth-regression (two-sided test) implemented
in REGENIE’. Error bars represent the 95% confidence interval around the odds
ratio (data point).
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Extended Data Fig. 3| Meta-analysis of the discovery (reported positive
testin AncestryDNA) and replication (lifetime medical record across seven
biobanks) GWAS of influenza. a, Quantile-quantile plot showing observed
P-values for individual variants (y-axis) against P-values expected by chance
given multiple testing (x-axis). The genomic inflation factor (As) of this analysis
was 1.06, whereas the intercept from LD-score regression was 1.02. b, Manhattan
plot showing association ( - log,, P-value) with imputed variants. The dotted
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Extended Data Fig. 4 | Association between COVID-19 risk variants and
influenzainfection in AncestryDNA (18,334 cases vs. 276,295 controls),
biobank cohorts (22,022 cases vs. 1,131,269 controls) or overall meta-analysis
(40,356 cases vs. 1,407,564 controls). Of the 24 COVID-19 risk variants, 16

were discovered in a GWAS of COVID-19 hospitalization (comparing COVID-19
hospitalized cases against individuals with no record of SARS-CoV-2 infection),
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and 8 were discovered ina GWAS of reported SARS-CoV-2 infection (comparing
allindividuals with arecord of SARS-CoV-2 infection against individuals with

no record of SARS-CoV-2 infection). The association observed between the 24
variants and influenza infection was comparable between AncestryDNA, biobank
cohorts and overall meta-analysis GWAS. Error bars represent the 95% confidence
interval around the odds ratio (data point).
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Extended Data Fig. 5| Summary of association results between lifetime
medical record-based influenza and rare coding variants from exome
sequencing in six biobanks (Colorado, DiscovEHR, Mayo-Clinic, UCLA, UKB,
UPENN-PMBB). We tested 23 million rare (AAF <1%) variants derived from exome
sequencing, comparing 14,189 individuals with (cases) against 811,714 individuals
without (controls) an ICD10 code for influenza. a,b, Manhattan plots of (a)
individual coding variants (each point represents a single variant) and (b) coding
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variants tested on aggregate through gene burden tests (each point represents
aburdentest for agene, with up to 40 different burden tests performed per
gene; Methods). The dotted grey line demarcates P=2.1x107° (corresponding
to aBonferronicorrection for the number of individual variant and gene-based
burden tests performed). Unadjusted P-values derived from Firth-regression
(two-sided test) implemented in REGENIE’.
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Extended Data Fig. 6 | Expression of ST6GAL1 and B3GALTS across human was aleadindependent eQTL for ST6GALI in thyroid tissue and was in high LD
tissues measured by the GTEx consortium. a, Expression levels expressed as (?=0.95) with the lead variant associated with risk of influenza in ST6GALI. Error
transcripts per million (TPM) per tissue in GTEx for ST6GALI. Box plots show bars represent the 95% confidence interval around the normalized effect size
theinterquartile range (ICR) and the median. Sample sizes for each tissue can (NES) from linear regression. ¢, Expression levels expressed as TPM per tissue in
be found on the GTEx website (see Data Availability). b, Association between GTEx for B3GALTS. Box plots show the ICR and the median. Sample sizes for each

rs73187789:A and expression levels of ST6GALI across tissues. Variantrs73187789  tissue can be found on the GTEx website (see Data Availability).
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Extended Data Fig. 7 | Impact of siRNA knockdown of ST6GAL1in A549
cells oninfluenzainfectivity. In each plot, bars represent the averages across
replicates from each experiment (n = 2), points represent the values from the
individual replicates (n = 4 for experiment 1; n = 3 for experiment 2), and lines
show the width of the distribution of the data points. The first column shows
mRNA levels of ST6GALI relative to ACTB transcript in cells treated with four
different siRNAs: two targeting ST6GALI (siRNAland siRNA2) and two negative
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controls (one targeting GAPDH [experiment 2 only] and a scrambled siRNA). The
second and third columns show results from infection assay with PR8-GFP (HINI,
multiplicity of infection [MOI] of 0.4 to 10), with the latter column showing
infectivity relative to the scrambled siRNA control. The GAPDH siRNA (but not the
two siRNAs against ST6GALI) significantly reduced GAPDH expression relative

to the scrambled siRNA (- 80% reduction). P-values derived from a two-sided
Wilcoxon Rank Sum Test and asterisks (*) mark those experiments with P < 0.05.
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Effect of STEGAL1 and control siRNAs on:
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Extended Data Fig. 8 | Impact of ST6GAL1siRNA knockdown onsialic acid
abundance. a, Flow cytometry histograms (geometric mean across three
replicates) of siRNA-transfected cells stained with FITC-conjugated S. Nigra (SNA)
Lectin 72 hours post-transfection to measure membrane-level sialic acid. A small
proportion of cells treated with ST6GALI siRNAs displayed high fluorescence
levels, consistent with incomplete transfection. b, Bar graph showing mean
fluorescence intensity at the maximum from histogram in a. Bars represent

the average across replicates from three experiments, points represent values
from the individual replicates, and lines show the width of the distribution of
individual experiments. In comparison to the negative control, membrane-level

ST6GAL1 AND GAPDH PROTEIN LEVELS
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sialicacid dropped by 79-92% after ST6GALI knockdown. ¢,d, Representative
images of ST6GAL1and GAPDH protein levels measured in A549 cells 72 hours
after treatment with siRNAs at concentration 5to 40 uM (c) and at the final
selected concentration of 10 uM (d). e, Quantification of ST6GAL1and GAPDH
protein levelsin A549 cells treated with 10 uM of ST6GAL1siRNA, based on three
individual replicates. Protein levels are normalized to beta-actin and shown
relative to the negative control siRNA. Uncropped gels are provided as Source
Data. P-values derived from a two-sided Wilcoxon Rank Sum Test and asterisks (*)
mark those experiments with P< 0.05.
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Effect of B3GALT5 and control siRNAs on:
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Extended Data Fig. 9 | Impact of B3GALT5 siRNA knockdown oninfluenza
infectivity in Calu-3 cells. In each plot, bars represent the averages across
replicates from each experiment (n = 2), points represent the values from the
individual replicates (n = 3), and lines show the width of the distribution of the
data points. The first column shows mRNA levels of B3GALTS relative to ACTB
transcriptin cells treated with four different siRNAs: two targeting B3GALTS
(siRNA1and siRNA2) and two negative controls (one targeting GAPDH and a
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scrambled siRNA). The second and third columns show results frominfection
assay with PR8-GFP (HIN1, multiplicity of infection [MOI] of 0.4 to 10), with the
latter column showing infectivity relative to the scrambled siRNA control. The
GAPDH siRNA (but not the two siRNAs against B3GALTS) significantly reduced
GAPDH expression relative to the scrambled siRNA (-90% reduction). P-values
derived from a two-sided Wilcoxon Rank Sum Test and asterisks (*) mark those
experiments with P< 0.05.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O OO0 000F%

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Individual-level exome sequencing, genotype and phenotype data is available to approved researchers via UKB at: https://
www.ukbiobank.ac.uk/enable-your-research. Influenza GWAS summary statistics from FinnGen Release 8 are available to approved
individuals after accepting the terms and licenses of the data. Influenza A seropositivity from Scepanovic et al., were downloaded from the
GWAS catalogue (accession #GCST006339).

Single-sample processing, all in DNAnexus

-Conversion of sequencing data in BCL format to FASTQ format and the assignments of paired-end sequence reads to samples based on
10-base barcodes; bcl2fastq v2.19.0 https://support.illumina.com/sequencing/sequencing_software/bcl2fastg-conversion-software.html
-Read alignment; bwa 0.7.17 http://bio-bwa.sourceforge.net

-Duplicate marking, stats gathering; picard v1.141 https://broadinstitute.github.io/picard/

-SAM/BAM/CRAM file generation and manipulation; samtools v1.7 http://www.htslib.org

-Variant calling; WeCall v1.1.2 https://github.com/Genomicsplc/wecall

-Sequence Quality Control; FastQC 0.11.8 http://www.bioinformatics/babraham.ac.uk/projects/fastqc/

-VCF file manipulation and index generation; bcftools v1.7 http://www.htslib.org, bgzip/tabix v1.7 http://www.htslib.org

-haplotyping (Ancestry.com); Eagle v2.4.1 https://github.com/poruloh/Eagle

-imputation (Ancestry.com): Minimac4 v1.01 https://github.com/statgen/Minimac4

Generation of “freeze” data
-Joint genotyping to generate project-level VCF (pVCF) files; GLnexus v1.4.5 https://github.com/dnanexus-rnd/GLnexus
-Generation of variant representations in PLINK format; PLINK v1.90b6.21 https://www.cog-genomics.org/plink2/
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-Ancestry predictions, IBD (Identity-by-descent) estimate, and pedigree reconstruction; PLINK v1.90b6.21 https://www.coggenomics.org/
plink2/

Data analysis - association testing: REGENIE v3.1.3 https://github.com/rgcgithub/regenie.
- meta-analysis: METAL (2020-05-05) https://github.com/statgen/METAL.
- various: python v3.8 https://www.python.org/downloads/; R v4.0.4 https://cran.r-project.org, R packages include ggplot2 (v3.4.2) and
patchwork (v1.1.3). Python packages include pandas (v2.0.3) and numpy (v1.25.2).
- Plots for in vitro experiments: GraphPad Prism 9.3.0
- gPCR analysis: QuantStudio 6 (v2.6)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Summary statistics from our GWAS will be made publicly available. Individual-level exome sequencing, genotype and phenotype data is available to approved
researchers via UKB at: https://www.ukbiobank.ac.uk/enable-your-research. FinnGen Release 8 influenza GWAS summary statistics are available after accepting the
terms and licenses. Influenza A seropositivity from Scepanovic et al., were downloaded from the GWAS catalogue (accession #GCST006339). Pre-calculated LD
scores from the 1000 Genomes9 European reference population were obtained from https://data.broadinstitute.org/alkesgroup/LDSCORE/.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Neither sex nor gender were considered in the study design. Analyses were not stratified by sex, although genetically
determined sex was used as a covariate in the GWAS.

Population characteristics Population characteristics (e.g., age, ancestry) can be found in Tables S1-2.

Recruitment UK Biobank recruited approximately 500,000 individuals 40-69 years of age in 2006 to 2010 by mailers to people in the UK
medical system (54.3% female). Informed consent was obtained for all participants. AncestryDNA customers over age 18,
living in the United States, and who had consented to research, were invited to complete a survey assessing COVID-19
outcomes and other demographic information including SARS-CoV-2 swab and antibody test results, COVID-19 symptoms
and severity, brief medical history, household and occupational exposure to SARS-CoV-2, and influenza infections (median
age 57; 66.4% female). Geisinger Health System (GHS). The GHS MyCode Community Health Initiative is a health system-
based cohort from central and eastern Pennsylvania (USA) with ongoing recruitment since 2006 (ages 19-94; 61.1% female).
Penn Medicine BioBank (PMBB) study participants are recruited through the University of Pennsylvania Health System, which
enrolls participants during hospital or clinic visits (ages 19-90; 50.7% female). Project Generation included 116,277 subjects
from the Mayo Clinic Biobank (enrolled beginning in 2009) and 30 disease-specific registries (ages 19-98; 55.7% female). The
ATLAS Precision Health Biobank at UCLA comprises ~32,000 individuals (ages 18-91; 55.7% female). De-identified phenotype
data comprises all hospital visits beginning in 2013 and converted to ICD-10 codes. The CCPM biobank at the University of
Colorado Anschutz Medical CampusBlin Aurora encompasses ~45,000 individuals (ages 30-92; 61.1% female). De-identified
phenotype data was collected by Health Data Compass and comprises an individual’s entire medical record from the
University of Colorado’s EHR.

Ethics oversight Ethical approval for the UK Biobank was previously obtained from the North West Centre for Research Ethics Committee (11/
NW/0382). The work described herein was approved by UK Biobank under application number 26041. GHS study: approval
for DiscovEHR analyses was provided by the Geisinger Health System Institutional Review Board (#2006-0258). AncestryDNA
study: all data for this research project was from subjects who provided prior informed consent to participate in
AncestryDNA’s Human Diversity Project, as reviewed and approved by our external IRB (Pro00034516), Advarra. All data was
de-identified prior to use. PMBB study: appropriate consent was obtained from each participant regarding storage of
biological specimens, genetic sequencing and genotyping, and access to all available EHR data. This study was approved by
the Institutional Review Board of the University of Pennsylvania and complied with the principles set out in the Declaration of
Helsinki. Mayo-RGC Project Generation: all subjects provided informed consent for use of specimens and data in genetic and
health research and ethical approval for Project Generation was provided by the Mayo-Clinic IRB (#09-007763). CCPM
Biobank: ethical approval and consent was reviewed and approved by the Colorado Multiple Institutional Review Board
(#15-0461). UCLA: patient recruitment and sample collection for Precision Health Activities at UCLA is an approved study by
the UCLA IRB (#17-001013). Informed consent was obtained for all study participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were all those available in the individual cohorts as described in the text. No power calculations were performed or required in
advance.
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Data exclusions  Prior to any analysis, we established the following data exclusions: We excluded individuals that were not predicted to belong to 5 continental
ancestry groups (AFR, EAS, EUR, HLA, SAS) and furthermore did not analyze sets of individuals with fewer than 100 cases and 100 controls.

Replication Of the 2 GWAS loci discovered in AncestryDNA, we successfully replicated both in a separate meta-analysis including FinnGen, UKB, UPENN-
PMBB, GHS, Mayo Clinic, UCLA and Colorado. In vitro infection assays were successfully repeated at least twice.

Randomization  We performed a GWAS, which was an observational study, and as such no process of randomization was performed or applicable here
because there was no allocation of samples into experimental groups.

Blinding We performed a GWAS, which was an observational study, using coded de-identified data. As such, no process of blinding to group allocation
was performed or applicable here.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
|:| Palaeontology and archaeology |:| MRI-based neuroimaging

|:| Animals and other organisms

|:| Clinical data

XXX X[ s

|:| Dual use research of concern

Antibodies

Antibodies used anti-ST6GAL1 antibody (goat, #AF5924, R&D system)
Chicken anti-goat HRP-conjugated antibody (#HAF019, R&D system)
Beta-actin HRP (#5123, Cell Signaling)
GAPDH HRP (#HRP-60004, Proteintech)

Validation anti-ST6GAL1 antibody detects human ST6 Gal Sialyltransferase 1/ST6GAL1 in direct ELISAs and Western blots and has been cited in
23 publications. Both we and the vendor report reduction of the signal following siRNA-mediated knockdown. Chicken anti-goat HRP-
conjugated antibody Detects goat IgG heavy and light chains in direct ELISAs and Western blots. In Western blots, less than 5%
cross-reactivity with mouse 1gG, rabbit IgG and human IgG is observed. It has been used in 23 publications. Both Beta-actin HRP and
GAPDH HRP are common loading controls antibodies and they have been used in hundreds of publications.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) A549 (CCL-185) and Calu-3 (HTB-55) cells were purchased from ATCC.

Authentication Authentication via STR analysis was provided by the vendor (ATCC).




Mycoplasma contamination Cultured cells were tested monthly for mycoplasma contamination using the Lonza MycoAlert Kit and tested negative.

Commonly misidentified lines No commonly misidentified cells were used in this study.
(See ICLAC register)
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