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Genetic risk factors for COVID-19 and 
influenza are largely distinct

Coronavirus disease 2019 (COVID-19) and influenza are respiratory 
illnesses caused by the severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) and influenza viruses, respectively. Both diseases share 
symptoms and clinical risk factors1, but the extent to which these conditions 
have a common genetic etiology is unknown. This is partly because host 
genetic risk factors are well characterized for COVID-19 but not for influenza, 
with the largest published genome-wide association studies for these 
conditions including >2 million individuals2 and about 1,000 individuals3–6, 
respectively. Shared genetic risk factors could point to targets to prevent or 
treat both infections. Through a genetic study of 18,334 cases with a positive 
test for influenza and 276,295 controls, we show that published COVID-19 
risk variants are not associated with influenza. Furthermore, we discovered 
and replicated an association between influenza infection and noncoding 
variants in B3GALT5 and ST6GAL1, neither of which was associated with 
COVID-19. In vitro small interfering RNA knockdown of ST6GAL1—an enzyme 
that adds sialic acid to the cell surface, which is used for viral entry—reduced 
influenza infectivity by 57%. These results mirror the observation that 
variants that downregulate ACE2, the SARS-CoV-2 receptor, protect against 
COVID-19 (ref. 7). Collectively, these findings highlight downregulation of 
key cell surface receptors used for viral entry as treatment opportunities to 
prevent COVID-19 and influenza.

To understand the extent to which the same host genetic factors influ-
ence the risk of coronavirus disease 2019 (COVID-19) and influenza, we 
first performed a genome-wide association study (GWAS) of influenza 
infection based on survey data from 296,313 participants of the Ances-
tryDNA COVID-19 study who consented to the research8. Although the 
focus of that study was on risk factors for COVID-19, participants also 
indicated if they were tested for influenza in either the 2019–2020 or 
2020–2021 flu seasons (Methods). Overall, 18,448 (6.2%) participants 
reported a positive test for influenza, and thus were considered cases 
for our analysis, while the remaining 277,865 participants (including 
23,985 with a negative test) were considered population-level controls. 
We refer to this phenotype as ‘reported influenza infection’, but recog-
nize that it does not represent true susceptibility to infection because 
the control group includes an undetermined number of individuals 
not exposed to influenza in either season or who were infected but 
not tested (for example, asymptomatic). As such, this phenotype may 

capture symptomatic influenza infection that required seeking (or 
being prescribed) a viral test.

Using these data from AncestryDNA, we tested the association 
between reported influenza infection and 10 million common (frequency 
>1%) imputed variants using REGENIE9, separately in three ancestral 
groups (with >100 influenza cases) defined based on genetic similar-
ity to three superpopulations studied by the 1000 Genomes Project10 
(Methods): from Europe (EUR; n = 254,750, 86.0%), Africa (AFR; n = 12,951, 
4.4%) and the Americas (AMR; n = 26,928, 9.1%), totaling 18,334 cases and 
276,295 controls (Supplementary Table 1). Results were meta-analyzed 
across ancestries using an inverse-variance, fixed-effects meta-analysis 
(Extended Data Fig. 1), identifying two loci associated with reported influ-
enza infection at P < 5 × 10−8 (near ST6GAL1 and B3GALT5, respectively 
on chromosomes 21q22.2 and 3q27.3; Table 1). We describe these loci in 
detail later, including sensitivity and replication analyses in independ-
ent cohorts that demonstrate the reproducibility of these associations.
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test controls) did not impact the effect size estimate for either locus: 
OR = 0.86 (versus 0.86) and P = 5.2 × 10−6 for ST6GAL1, and OR = 0.89 
(versus 0.90) and P = 4.9 × 10−12 for B3GALT5 (Fig. 2). In contrast, defin-
ing influenza infection more loosely based on whether a participant 
reported having flu-like symptoms in the 2019–2020 or 2020–2021 flu 
seasons (43,956 cases versus 250,673 controls) led to attenuated effect 
sizes but still highly significant associations: OR = 0.93 and P = 1.7 × 10−7 
for ST6GAL1, and OR = 0.95 and P = 4.0 × 10−11 for B3GALT5 (Fig. 2).

To determine if the associations were reproducible, we used data 
from medical records to define lifetime influenza infection status 
across 1,153,291 individuals from seven biobanks and five ancestral 
groups (Methods). Based on the presence of International Statistical 
Classification of Diseases and Related Health Problems, 10th Revision 
(ICD-10) codes J09, J10 or J11 in hospital admissions, general practi-
tioner records or death registries, we identified 22,022 (2%) individuals 
with (cases) and 1,131,269 without (controls) a lifetime medical record 
of influenza (Supplementary Table 1). As with the AncestryDNA GWAS, 
the control group in this replication analysis probably includes both 
individuals not exposed to influenza and individuals who had influenza 
but not an associated medical record. In a multiancestry meta-analysis 
of medical record influenza (Extended Data Fig. 2), we observed direc-
tionally consistent and genome-wide significant associations with 
both rs16861415 in ST6GAL1 (OR = 0.90, P = 3.0 × 10−10) and rs2837112 
in B3GALT5 (OR = 0.93, P = 2.5 × 10−11; Table 1). Two measures of recent 
influenza infection also supported both associations. First, we found 
consistent and significant associations with a positive culture for 
influenza A (Methods), an indicator of current infection available in 
82,348 individuals from the Geisinger Health Study (GHS) biobank: 
OR = 0.82 and P = 0.005 for ST6GAL1, OR = 0.86 and P = 3.02 × 10−5 for 
B3GALT5 (Fig. 2). Second, both variants lowered the risk of a positive 
seropositive test for influenza A in a published study of 1,000 individu-
als6, significantly so for B3GALT5 (OR = 0.70, P = 0.001; Fig. 2). Lastly, 
the B3GALT5 variant significantly lowered the risk of flu-related hos-
pitalization among influenza cases (1,696 hospitalized cases versus 
8,239 nonhospitalized cases, OR = 0.88, P = 0.005), with a similar, albeit 
nonsignificant, protective effect for the ST6GAL1 variant (OR = 0.89, 
P = 0.17; Fig. 2). Collectively, these findings establish both loci as repro-
ducible genetic risk factors for influenza and indicate that the B3GALT5 
variant also reduces disease severity.

We did not find any additional associated loci in the meta-analysis 
of discovery (AncestryDNA) and replication (biobank) cohorts (40,356 
cases versus 1,407,564 controls; Extended Data Fig. 3). As observed in 
the AncestryDNA GWAS, aside from ABO, published COVID-19 risk vari-
ants were not associated with influenza in this larger analysis (Extended 
Data Fig. 4).

Next, to help understand how each influenza locus contributes 
to disease pathophysiology, we identified the likely effector genes 
of the GWAS signal, concentrating on the lead variant at the 3q27.3 

Results from the AncestryDNA GWAS of reported influenza infec-
tion were then used to determine if severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) and influenza infections have a shared 
genetic etiology. To address this question, we initially focused on 24 
variants associated with COVID-19 identified by the Host Genetics 
Initiative (HGI)2 (freeze 6; Supplementary Table 2). Of these, only one 
was associated with reported influenza infection (P < 0.05/24 = 0.002), 
despite adequate power for most (Supplementary Table 3): rs505922 
in ABO (odds ratio (OR) = 1.05 for the T allele, 95% confidence inter-
val (CI) = 1.02–1.07, P = 2.2 × 10−4; heterogeneity test P = 0.13; Fig. 1). 
This variant increased the risk of reported influenza infection, while it 
decreased the risk of COVID-19 (OR = 0.92; 95% CI = 0.92–0.93, based 
on the HGI GWAS of reported infection2), in line with previous reports11. 
We explore the ABO locus in greater detail in the Supplementary Note, 
concluding that its association with influenza is (1) only partially attenu-
ated after accounting for COVID-19 status and (2) probably tags an 
underlying causal variant shared with other diseases (for example, 
childhood ear infections, allergic disease) but not COVID-19. Overall, 
only 10 (42%) of 24 variants had a consistent direction of effect on both 
influenza and COVID-19 (Fig. 1).

The lack of significant and directionally consistent associations 
between reported influenza infection and COVID-19 loci suggests that 
the two diseases share few—if any—genetic risk factors. Consistent with 
these findings, the two risk variants for reported influenza identified in 
the AncestryDNA GWAS (in or near B3GALT5 and ST6GAL1) did not have 
a directionally consistent association with COVID-19 in the HGI analysis 
(Supplementary Table 4). Furthermore, the genetic correlation (rg)12 
between reported influenza infection and both SARS-CoV-2 infection 
(rg = 0.30, P = 0.009) and COVID-19 hospitalization (rg = 0.34, P = 0.007) 
was modest (Supplementary Table 5). Collectively, these results sug-
gest some sharing, but substantial divergence, in the genetic etiology 
underpinning influenza infection and COVID-19.

The AncestryDNA GWAS of reported influenza infection identified 
two associated loci (Table 1), with lead variants rs16861415 in ST6GAL1 
(3q27.3; OR = 0.86 for C allele, 95% CI = 0.83–0.90, P = 1.4 × 10−10) and 
rs2837112 in B3GALT5 (21q22.2; OR = 0.90 for A allele, 95% CI = 0.88–
0.92, P = 1.3 × 10−19). The effect allele ranged in frequency between 3% 
(AFR) and 8% (EUR) for rs16861415, and between 39% (AFR) and 49% 
(EUR) for rs2837112, with no evidence for heterogeneity of effect sizes 
across ancestries or cohorts (Supplementary Table 6). The reduction 
in influenza risk observed in homozygous carriers was 37% for ST6GAL1 
and 20% for B3GALT5 (Table 1), with no evidence for epistasis between 
the two loci (Supplementary Note).

Next, we performed sensitivity and replication analyses to deter-
mine if the two influenza associations were robust to phenotype 
definition and reproducible. In the AncestryDNA cohort, excluding 
253,880 individuals without influenza test results from the control 
group (resulting in 18,448 positive test cases versus 23,985 negative 

Table 1 | Two loci identified in a multiancestry meta-analysis of reported influenza infection performed in the AncestryDNA 
cohorta and validated in an independent meta-analysis consisting of seven biobanks with electronic medical recordsb

Variant (effect allele) Analysis OR (95% CI) P Effect allele frequency in cases/
controls

Homozygote OR (95% CI)

Chromosome 3q27.3, nearest gene ST6GAL1

rs16861415 (C)
Discovery 0.864 (0.826–0.903) 1.4 × 10−10 0.064/0.074 0.627 (0.489–0.804)

Replication 0.901 (0.872–0.930) 3.3 × 10−10 0.094/0.097 0.802 (0.717–0.894)

Chromosome 21q22.2, nearest gene B3GALT5

rs2837112 (A)
Discovery 0.901 (0.882–0.922) 1.3 × 10−19 0.460/0.485 0.824 (0.789–0.860)

Replication 0.936 (0.917–0.954) 4.1 × 10−11 0.432/0.461 0.877 (0.843–0.913)
a18,334 cases versus 276,295 controls in the discovery analysis. bUK Biobank (UKB), GHS, PMBB, CCPM, Mayo Clinic, UCLA and FinnGen consisting of 22,022 cases and 1,131,269 controls in the 
replication analysis. Unadjusted P values were derived using Firth regression (two-sided test) as implemented in REGENIE9.
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and 21q22.2 loci in the meta-analysis of the discovery and replication 
cohorts, that is, rs13322149 and rs2837113, respectively (Extended Data 
Fig. 3). Based on high linkage disequilibrium (LD, r2 > 0.80) between 
each variant, and sentinel expression quantitative trait loci (eQTLs) and 
enhancer-overlapping variants (Supplementary Tables 7 and 8), four 
genes were prioritized: ST6GAL1 and ADIPOQ at the 3q27.3 locus; and 
B3GALT5 and IGSF5 at the 21q22.2 locus. Analysis of rare loss-of-function 
(LOF) and missense variants assayed via exome sequencing of 14,189 
cases with influenza and 811,714 controls did not identify any significant 
genome-wide associations (Extended Data Fig. 5); however, when we 
focused on the four genes highlighted above, we found a missense 
variant in IGSF5 (frequency 0.01%) associated with a 9.2-fold higher risk 
of medical record influenza, which was significant after correcting for 
631 rare variant tests performed across the four genes (P = 2.3 × 10−5; 
Supplementary Table 9). This observation provides additional support 
for IGSF5 as one of the likely effector genes underlying the common 
variant association with flu at the 21q22.2 locus.

Of the four likely effector genes of the influenza loci, ST6GAL1 
and B3GALT5 are strong biological candidates (ADIPOQ and IGSF5 
are discussed in the Supplementary Note). ST6GAL1 codes for the 
enzyme β-galactoside α-2,6-sialyltransferase 1, which catalyzes the 
addition of sialic acid to galactose by an α-2,6 linkage13; it is most highly 
expressed in the liver and in Epstein–Barr virus-transformed B cells in 
humans (Extended Data Fig. 6a)14. Critically, influenza virus infection 
is initiated when the viral hemagglutinin glycoprotein binds to an 
α-2,6-linked sialic acid found on human host cell surface glycoproteins 
and glycolipids in the upper respiratory tract, which are used by the 
virus as attachment factors that facilitate the subsequent engage-
ment with a functional receptor required to enter the target cell15–17. 
The lead variant at this locus (rs13322149) colocalized with a sentinel 
eQTL (rs73187789:A, r2 = 0.95) that is associated with lower expression 
of ST6GAL1 in thyroid tissue from the Genotype-Tissue Expression 
(GTEx) project14 (P = 3.4 × 10−12; Supplementary Table 7), with consistent 
directional effects in other tissues, including the lung (Extended Data 
Fig. 6b). B3GALT5 codes for β-1,3-galactosyltransferase 5 and is most 
highly expressed in the small intestine and salivary gland (Extended 
Data Fig. 6c)14. This enzyme catalyzes the addition of galactose in the 
β-1,3 conformation to an N-acetylglucosamine (GlcNAc) saccharide 

during the synthesis of glycan core structures18. As noted above, 
ST6GAL1 adds sialic acid to a galactose. The lead variant at this locus 
(rs2837113) is a sentinel eQTL for B3GALT5 in skin and salivary gland 
tissue, with the rs2837113:A influenza-protective allele associating 
with higher gene expression (Supplementary Table 7).

Lastly, we performed in vitro experiments to study the impact 
of gene expression knockdown on influenza virus H1N1 (Puerto Rico 
8 strain) infectivity. For these experiments, we focused on two likely 
effector genes of influenza-associated variants—ST6GAL1 and B3GALT5—
because of their potential role in a critical step of influenza virus infectiv-
ity, that is, modulation of α-2,6-linked sialic acid abundance at the cell 
surface. We tested two small interfering RNAs (siRNAs) per gene in the 
A549 and Calu-3 cell lines, respectively, performing two independent 
experiments per siRNA. siRNAs against ST6GAL1 achieved approxi-
mately 90% expression knockdown and resulted in approximately 80% 
reduction in sialic acid abundance at the cell surface and approximately 
50% reduction in influenza infectivity (Extended Data Figs. 7 and 8), 
which is consistent with previous findings19. These results support the 
notion that lower ST6GAL1 enzymatic activity reduces the ability of 
influenza virus to infect host cells, a mechanism that probably explains 
the association between variants at the 3q27.3 locus and lower risk of 
influenza infection. In contrast, knockdown of B3GALT5 expression was 
not associated with a consistent effect on influenza infectivity (Extended 
Data Fig. 9). As such, despite being a good biological candidate, it is 
unclear if B3GALT5 underlies the association at the 21q22.2 locus.

There are several important limitations that should be considered 
when interpreting the results from this study (discussed in detail in the 
Supplementary Note), including (1) phenotype misclassification, (2) 
potential confounding effects of unmeasured risk factors for influ-
enza infection, (3) the use of self-reported influenza information in 
the AncestryDNA cohort; and (4) an undetermined influenza strain 
infecting GWAS participants.

In conclusion, we demonstrated that the genetic architectures 
of COVID-19 and influenza are mostly distinct, with few shared 
common genetic risk factors. We identified and replicated the first 
genome-wide-significant loci for influenza and demonstrated that 
inhibition of ST6GAL1 reduces viral infectivity in vitro. Host genetic 
studies of infectious diseases commonly identify protective variants 
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Fig. 1 | Association between reported influenza infection in the AncestryDNA 
cohort and 24 variants previously reported to be associated with COVID-19 
outcomes by the HGI. Of the 24 COVID-19 risk variants, 16 were discovered in a 
GWAS of COVID-19 hospitalization (comparing 25,027 cases hospitalized with 
COVID-19 against 2,836,272 individuals with no record of SARS-CoV-2 infection), 
while eight were discovered in a GWAS of reported SARS-CoV-2 infection 
(comparing 125,415 individuals with a record of SARS-CoV-2 infection against 

2,575,157 individuals with no record of SARS-CoV-2 infection). Of the 24 variants, 
only one (rs505922, 9:133273813:C:T, in ABO), was associated with reported 
influenza (18,334 cases versus 276,295 controls) after Bonferroni correction for 
24 tests (P = 0.002, obtained using Firth regression, two-sided test); however, the 
direction of effect for influenza (blue circles) was the opposite of that reported 
for COVID-19 (red diamonds). The error bars represent the 95% CI for the OR 
estimate.
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that putatively downregulate (or ablate) proteins required for viral entry 
(CCR5 in HIV20, ACE2 in SARS-CoV-2 (ref. 7) and FUT2 in noroviruses21). 
Our findings provide the latest vignette to this evolving narrative.

Online content
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influenza A. Further details on these associations are provided in Supplementary 
Table 6. Unadjusted P values were derived using Firth regression (two-sided 
test) implemented in REGENIE9. The error bars represent the 95% CI for the OR 
estimate.
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Methods
Ethics statement
UKB study. Ethical approval for the UKB study was obtained from the 
North West Centre for Research Ethics Committee (no. 11/NW/0382). 
The work described in this article was approved by the UKB (under 
application no. 26041).

GHS study. The GHS institutional review board (IRB) (no. 2006-0258) 
approved the DiscovEHR analyses.

AncestryDNA study. All data for this research project was from par-
ticipants who provided previous informed consent to participate in 
AncestryDNA’s Human Diversity Project, as reviewed and approved 
by their external IRB, Advarra.

Penn Medicine BioBank study. Informed consent was obtained from 
each participant regarding the storage of biological specimens, genetic 
sequencing and genotyping, and access to all available electronic 
health record (EHR) data. This study was approved by the University 
of Pennsylvania IRB and complied with the principles set out in the 
Declaration of Helsinki (2013).

Mayo Clinic. Ethical approval and consent was reviewed and approved 
by the Mayo Clinic IRB (no. 09-007763).

Mayo-Regeneron Genetics Center project. All participants provided 
informed consent for use of specimens and data in genetic and health 
research and ethical approval for project generation was provided by 
the Mayo Clinic IRB (no. 09-007763).

Colorado Center for Personalized Medicine biobank. Ethical 
approval and consent was reviewed and approved by the Colorado 
Multiple IRB (no. 15-0461).

University of California Los Angeles. Patient recruitment and sample 
collection for precision health activities at University of California 
Los Angeles (UCLA) was approved by the UCLA IRB (no. 17-001013). 
Informed consent was obtained for all study participants.

Phenotype definitions, array genotyping and imputation
AncestryDNA COVID-19 research study. US-based AncestryDNA 
customers over the age of 18 who had consented to the research, were 
invited to complete five surveys assessing COVID-19 outcomes, as 
well as providing other demographic information and comorbidities, 
as described previously8. Surveys were released to customers on the 
following dates: April 2020, June 2020, July 2020, December 2020 
and February 2021. About 900,000 customers completed at least one 
survey (66.4% female, median age 57). Regeneron selected a subset 
of 300,000 respondents based primarily on COVID-19 and influenza 
status for inclusion in the GWAS. The specific criteria used to select par-
ticipants for inclusion and to determine their COVID-19 and influenza 
status are described in Supplementary Table 10. Briefly, we selected 
participants who reported: (1) having a positive swab or serology test 
for SARS-CoV-2; (2) being a first-degree relative of an individual with 
COVID-19; (3) having a negative swab test for SARS-CoV-2; (4) having 
a positive flu test in the 2019–2020 or 2020–2021 flu seasons; and 
(5) survey respondents with no test results for SARS-CoV-2 matched 
1:2 or 1:1 to individuals from group (1) based on age, sex, ethnicity 
and the array type used for genotyping. This ascertainment strategy 
maximized the number of cases with COVID-19 and matched controls 
available for analysis.

We selected two survey questions to determine the influenza case 
status in AncestryDNA: (1) ‘The 2019–2020 flu season spans from fall 
2019 to late spring 2020. Have you had a flu test in the 2019–2020 flu 
season?’ and (2) ‘The 2020–2021 flu season spans from fall 2020 to late 

spring 2021. Have you had a flu test in the 2020–2021 flu season?’ Indi-
viduals who responded with ‘Yes, and I tested positive’ were included 
as cases in our analysis (Supplementary Table 10). Individuals who 
responded with ‘Yes, and I tested negative’ were included as controls 
for all influenza analyses (initial discovery and the sensitivity analysis, 
restricting solely to individuals who self-reported an influenza test). 
Individuals who responded with ‘No’ were also included as controls for 
the main discovery influenza analysis.

DNA samples for the 300,000 respondents were genotyped on an 
Illumina array containing 730,000 SNPs. We removed individuals with 
discordant sex (based on reported and genetically determined sex) and 
those with <98% sample call rate8. We removed array variants with allele 
frequency differences greater than 0.1 between array versions, as well 
as variants with a call rate lower than 98%. Variants were then imputed 
with the Haplotype Reference Consortium reference panel (v.1.1). 
We determined best-guess haplotypes with Eagle (v.2.4.1) and per-
formed imputation with Minimac4 (v.1.0.1). From 11,117,080 variants, 
we retained 8,049,082 imputed variants (r2 > 0.3) in the final dataset.

GHS DiscovEHR study. The GHS MyCode Community Health Initia-
tive is a health system-based cohort from Pennsylvania with ongoing 
recruitment since 2006. Participants were genotyped on either the 
Illumina OmniExpress Exome (OMNI) or Global Screening Array (GSA) 
and imputed to the TOPMed reference panel (stratified according to 
array) using the TOPMed Imputation Server. Before imputation, we 
retained variants with a minor allele frequency (MAF) ≥ 0.1%, miss-
ingness < 1% and Hardy–Weinberg (HWE) P > 10−15. After imputation, 
data from the OMNI and GSA datasets were merged for subsequent 
association analyses, which included an OMNI and GSA batch covari-
ate, in addition to the other covariates described below. ICD-10-based 
influenza case status was defined using a combination of the following 
three two-digit ICD-10 codes and their nested three-digit and four-digit 
codes: J09 (influenza due to certain identified influenza viruses), J10 
(influenza due to other identified influenza viruses) and J11 (influenza 
due to unidentified influenza viruses) (Supplementary Table 11). Using 
these ICD-10 codes, we defined as influenza cases individuals with (1) 
one or more inpatient record of influenza or (2) two or more outpatient 
records of influenza. Influenza controls were all other individuals with 
available genotype data, except for 722 individuals not identified as 
cases but who had a positive cell culture assay for influenza A or B, as 
described below; these individuals were excluded from the analysis.

A subset of 82,348 individuals had viral cell culture assays that 
included influenza A and B. Of these, 1,694 and 235 individuals had 
a positive assay for influenza A and B, respectively. Lastly, we used 
inpatient hospital records to identify 528 individuals with influenza 
listed as the primary cause of hospitalization, using the ICD-10 codes 
listed above (Supplemental Table 11).

UKB study. The UKB study includes approximately 500,000 adults 
aged 40–69 at recruitment between 2006 and 2010. DNA samples 
were genotyped using the Applied Biosystems UK BiLEVE Axiom 
array (n = 49,950) or the Applied Biosystems UK Biobank Axiom array 
(n = 438,427). Genotype data for variants not included in the arrays 
were inferred using the TOPMed reference panel, as described above. 
Influenza case status was defined in the same way as with all the other 
ICD-10-based biobanks (see Supplementary Table 11 for a full list of 
ICD-10 codes and case sample sizes). As with the GHS, we used inpatient 
hospital records to identify 1,168 individuals with influenza listed as the 
primary cause of hospitalization, using the ICD-10 codes listed above 
(Supplemental Table 11).

Penn Medicine BioBank study, Colorado Center for Personalized 
Medicine biobank, Mayo Clinic biobank and University of California 
Los Angeles ATLAS Precision Health Biobank. The Penn Medicine 
BioBank (PMBB) contains approximately 70,000 study participants, 
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all recruited through the University of Pennsylvania Health System. 
Participants donate blood or tissue and allow access to EHR infor-
mation. The Colorado Center for Personalized Medicine (CCPM) 
biobank at the University of Colorado Anschutz Medical Campus in 
Aurora encompasses approximately 45,000 individuals (aged 30–92). 
De-identified phenotype data were collected by Health Data Compass 
and include an individual’s entire medical record from the University 
of Colorado’s EHR. Project generation included 116,277 individuals 
from the Mayo Clinic biobank (ongoing enrollment from 2009) and 30 
disease-specific registries. Structured data in the EHR were extracted 
using the Observational Medical Outcomes Partnership common data 
model (https://www.ohdsi.org/data-standardization/). The ATLAS 
Precision Health Biobank at UCLA comprises approximately 32,000 
individuals. De-identified phenotype data include all hospital visits 
beginning in 2013 and converted to ICD-10 codes. Influenza case status 
for these biobanks was defined in the same way as described above 
(see Supplementary Table 11 for a full list of ICD-10 codes and case 
sample sizes).

Exome sequencing
Sample preparation and sequencing. Exome capture was completed 
at the Regeneron Genetics Center. Briefly, samples were pooled before 
exome capture, with either (1) a slightly modified version of the xGen 
probe library (Integrated DNA Technologies (IDT); UKB, PMBB and 
81,620 samples of the DiscovEHR), (2) NimbleGen VCRome (58,856 
samples of DiscovEHR) or (3) the TWIST human compressive exome 
panel for CCPM, Mayo Clinic and UCLA. The multiplexed samples were 
sequenced using: (1) for the UKB samples—75-bp paired-end reads 
with two 10-bp index reads on the Illumina NovaSeq 6000 platform 
using S2 or S4 flow cells; (2) for the DiscovEHR samples captured with 
VCRome—75-bp paired-end reads with two 8-bp index reads on the 
Illumina HiSeq 2500 platform; (3) for the DiscovEHR captured with the 
IDT system—two 8-bp index reads on the Illumina HiSeq 2500 platform 
or two 10-bp index reads on the Illumina NovaSeq 6000 platform on S4 
flow cells; or (4) for the PMBB, CCPM, Mayo Clinic and UCLA—two 10-bp 
index reads on the Illumina NovaSeq 6000 platform on S4 flow cells.

Variant calling and quality control. Sample read mapping, variant 
calling, aggregation and quality control were performed using Deep-
Variant. Briefly, NovaSeq whole-exome sequencing reads were mapped 
with the Burrows–Wheeler Aligner MEM to the hg38 reference genome. 
DeepVariant identified small variants and reported them as per-sample 
genomic variant call format (VCF); they were aggregated into a jointly 
genotyped, multisample VCF. After aggregation of genotypes, we 
trained a support vector machine model on several summary-level 
per-site metrics to distinguish poor from higher-quality variants.

Gene burden tests. Briefly, for each gene region as defined by 
Ensembl22, genotype information from multiple rare coding variants 
was collapsed into a single burden genotype, such that individuals who 
were: (1) homozygous reference for all variants in that gene were consid-
ered homozygous reference; (2) heterozygous for at least one variant 
in that gene were considered heterozygous; and (3) only individuals 
that carried two copies of the alternative allele of the same variant 
were considered homozygous for the alternative allele. We did this 
separately for seven classes of variants: (1) predicted LOF (frameshift, 
splice acceptor and donor, and stop gained variants); (2) predicted LOF 
or missense; (3) predicted LOF or missense variants predicted to be 
deleterious by at least 1 of 5 algorithms; (4) predicted LOF or missense 
variants predicted to be deleterious by 5 of 5 algorithms; (5) missense; 
(6) missense variants predicted to be deleterious by 1 of 5 algorithms; 
(7) missense variants predicted to be deleterious by 5 of 5 algorithms. 
Variants were annotated using VEP and the canonical transcript. The 
five missense deleterious algorithms used were SIFT23, PolyPhen-2 
(HDIV), PolyPhen-2 (HVAR)24, LRT25 and MutationTaster26. For each 

gene, and for each of these seven groups, we considered five separate 
burden masks based on the alternative allele frequency of the variants 
collapsed into the burden genotype: <1%, <0.1%, <0.01%, <0.001% and 
singletons only. Each burden mask was tested for association with the 
same approach used for the individual variants.

Genetic association analyses
Association analyses were performed using the REGENIE9 genome-wide 
Firth logistic regression test. We included in step 1 of REGENIE (that is, 
prediction of individual trait values based on the genetic data) directly 
genotyped (imputed for the GHS) variants with an MAF > 1%, <10% 
missingness, HWE P > 10−15 and LD pruned (1,000 variant windows, 
100 variant sliding windows and r2 < 0.9). The association model used 
in step 2 of REGENIE included the covariates of age, age2, sex, age × sex, 
age2 × sex and the first ten principal components (PCs) derived from 
the analysis of a stricter set of LD-pruned (1,000 variant windows, 50 
variant step size and r2 < 0.9) common variants from the array (imputed 
for the GHS) data. For both individual rare variants and burden masks, 
we used the same covariates as in the GWAS but added 20 PCs from 
rare variants27–29 and (when appropriate) sequencing batch covariates.

Within each study, association analyses were performed sepa-
rately for five ancestral groups defined based on genetic similarity 
with samples from the five superpopulations studied by the 1000 
Genomes Project: from Africa (AFR), the Americas (AMR), East Asia 
(EAS), Europe (EUR) and South Asia (SAS). As such, these five subgroups 
can be thought of as 1000 Genomes-like ancestral superpopulations. 
Genetic similarity was defined by projecting each sample onto refer-
ence PCs calculated from the HapMap3 reference panel. Briefly, we 
merged our samples with HapMap3 samples and kept only SNPs in com-
mon between the two datasets. We excluded SNPs with an MAF < 10%, 
genotype missingness greater than 5% or HWE P < 10−5. We calculated 
PCs for the HapMap3 samples and projected each sample onto those 
PCs. To assign a group to each non-HapMap3 sample, we trained a 
kernel density estimator using the HapMap3 PCs and used the kernel 
density estimators to calculate the likelihood of a given sample belong-
ing to each of the five groups. When the likelihood for a given group was 
greater than 0.3, we assigned the sample to that group. When a sample 
had two group likelihoods greater than 0.3, we arbitrarily assigned 
1000 Genomes-like AFR over 1000 Genomes-like EUR (nAncestryDNA = 0; 
nCCPM = 0; nGHS = 36; nMayo Clinic = 0; nUCLA = 0; nUKB = 56; nPMBB = 7), 1000 
Genomes-like AMR over 1000 Genomes-like EUR (nAncestryDNA = 1,953; 
nCCPM = 489; nGHS = 455; nMayo Clinic = 358; nUCLA = 497; nUKB = 436; 
nPMBB = 138), 1000 Genomes-like AMR over 1000 Genomes-like EAS 
(nAncestryDNA = 0; nCCPM = 0; nGHS = 2; nMayo Clinic = 0; nUCLA = 0; nUKB = 2; 
nPMBB = 1), 1000 Genomes-like SAS over 1000 Genomes-like EUR (nAnces-

tryDNA = 617; nCCPM = 24; nGHS = 32; nMayo Clinic = 34; nUCLA = 89; nUKB = 592; 
nPMBB = 36) and 1000 Genomes-like AMR over 1000 Genomes-like AFR 
(nAncestryDNA = 5; nCCPM = 3; nGHS = 192; nMayo Clinic = 0; nUCLA = 4; nUKB = 51; 
nPMBB = 77). We excluded samples from the analysis if no genetic ances-
try likelihoods were greater than 0.3, or if more than three genetic 
ancestry likelihoods were >0.3 (nAncestryDNA = 2,947; nCCPM = 774; nGHS = 821; 
nMayo Clinic = 391; nUCLA = 837; nUKB = 1,205; nPMBB = 384).

We performed an inverse-variance-weighted meta-analysis to com-
bine association results across genetic ancestries and studies and used 
Cochran’s Q to assess the heterogeneity of effect sizes between con-
tributing studies and genetic ancestries. Within the text, we reported P 
values from the Cochran’s Q test as unadjusted heterogeneity P values.

LD score regression
LD score regression12 was used to estimate genetic correlations30 
between influenza and summary statistics of two COVID-19 pheno-
types from the HGI2, that is, SARS-CoV-2 infection (C2) and COVID-19 
hospitalization (B2). As LD score regression depends on matching 
the LD structure of the analysis sample to a reference panel, we used 
the phenotypes and corresponding summary statistics available in 
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Europeans by the HGI2, which is why severe COVID-19 (A2) was not 
used. We conducted analyses using the standard program settings 
for variant filtering (removal of non-HapMap3 SNPs, non-autosomal, 
chi-squared > 30, MAF < 1% or allele mismatch with reference). Dif-
ferences between the observed genetic correlations were compared 
using z-scores.

Impact of ST6GAL1 and B3GALT5 knockdown on influenza 
infectivity in vitro
Cell culture. A549 and Calu-3 cells were purchased from ATCC and 
maintained in F-12 medium supplemented with 10% heat-inactivated 
FCS, and MEM containing Earle’s Balanced Salts, l-glutamine nones-
sential amino acids, sodium pyruvate and 10% FCS, respectively. Cells 
were tested periodically for mycobacterial contamination.

siRNA knockdown. Lipofectamine RNAiMAX and four Silencer Select 
siRNAs at a final concentration of 10 μM were used for the knockdown 
experiments according to the manufacturer’s protocol. siRNA1 no. 
s12841 and siRNA2 no. s12843 were used to knock down ST6GAL1, 
while siRNA1 no. s20171 and siRNA2 no. s20172 were used to knock 
down B3GALT5. A nontargeting Cy3-conjugated siRNA (control no. 
1) was used as the negative control and to optimize the transfection 
conditions. siRNA targeting GAPDH (cat. no. 4390849, Thermo Fisher 
Scientific) was used to control the specificity of the effect. On the day 
of the experiments, cells were seeded in 12-well microplates and trans-
fected in triplicate for each siRNA and control. Forty-eight hours after 
transfection cells were detached with TrypLE, wells were combined; 
cells were counted for seeding and plated at 20,000 cells per well in 
black, clear-bottom 96-well plates, with at least eight replicates for 
each siRNA condition, and incubated at 37 °C overnight for the infec-
tion experiment. The other cells were then seeded in a well of a 12-well 
microplate and incubated at 37 °C overnight to test for knockdown 
efficiency.

In vitro influenza infection. Seventy-two hours after transfection, 
H1N1 influenza virus A (Puerto Rico/8/34) expressing green fluores-
cent protein (GFP) (PR8-GFP) was thawed on ice. In infection medium 
(DMEM containing 3% FCS and 10% penicillin-streptomycin glutamine), 
PR8-GFP was diluted to a concentration representing a multiplicity of 
infection (MOI) of 10. The virus was then serially diluted 1:3 to a final 
MOI of 0.01. Knockdown cells were then removed from the incubator 
and the medium was removed from the cells. Then, 100 μl of diluted 
virus or medium alone was added to the wells; then cells were fur-
ther incubated at 37 °C for 18–24 h. After that time, virus-containing 
medium was removed from the cells and each well was overlayed with 
100 μl 1× PBS. Plates were imaged on a SpectraMax i3 with MiniMax to 
measure infection by quantifying GFP+ cells. Percentage infection was 
then calculated and normalized to the negative control cells at each 
MOI as 100%. Data were graphed using Prism v.9.3 (GraphPad Software).

RNA extraction and quantitative PCR. Seventy-two hours after trans-
fection, RNA was extracted using RNeasy PLUS Mini kit. Complemen-
tary DNA was synthetized using the SuperScript IV VILO Master Mix and 
the knockdown levels were evaluated using QuantStudio 6 PCR system 
with specific TaqMan probes (ST6GAL1 assay ID Hs00949382_m1; 
ACTB assay ID Hs01060665_g1; GAPDH assay ID Hs02786624_g1; assay 
ID B3GALT5 Hs00707757_s1). Data were analyzed with the Analysis 
Software v.2.6 for QuantStudio 6. Plots and statistics were generated 
with Prism v.9.3.

Membrane sialic acid staining. siRNA-transfected cells and controls 
were dissociated 72 h after transfection using TrypLE and incubated for 
15 min at room temperature in the dark with fluorescein-conjugated 
Sambucus Nigra Lectin at a final concentration of 2 μg ml−1. After two 
washes with PBS, membrane fluorescence was evaluated using the 

CytoFLEX LX cytometer. Raw cytofluorimeter data were analyzed using 
FlowJo v.10.8.0; graphs, representing the mean intensity of three wells, 
were generated using Prism v.9.3.

Immunoblot. Total lysate from siRNA-treated A549 cells was extracted 
using radioimmunoprecipitation assay buffer (cat. no. 89900) and 
quantified using the Bio-Rad Laboratories DC protein assay (cat. no. 
5000111). For each sample, 25 μg of total lysate were loaded on a well 
of 4–12% NuPAGE Bis-Tris gel (cat. no. NP0323BOX) and run using MES 
running buffer (cat. no. NP0002). After blotting, membranes were 
blocked in blocking buffer (5% milk plus 3% BSA in tris-buffered saline 
with Tween 20) for 1 h at room temperature and goat anti-ST6GAL1 
antibody (cat. no. AF5924, R&D Systems) diluted 1:200 in blocking 
buffer at 4 °C overnight. Secondary chicken anti-goat horseradish 
peroxidase (HRP)-conjugated antibody was used for blotting (cat. no. 
HAF019, R&D Systems) diluted 1:1,000 in blocking buffer. β-Actin HRP 
(diluted 1:10,000, 30 min, cat. no. 5123, Cell Signaling Technology) 
or GAPDH HRP (1:10,000, 30 min, cat. no. HRP-60004, Proteintech) 
were used as the loading control. The chemiluminescence signal was 
detected using a ChemiDoc imager (Bio-Rad Laboratories).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Summary statistics are available via the GWAS Catalog (accession no. 
GCST90432107). Individual-level exome sequencing, genotype and 
phenotype data are available to approved researchers via the UKB at 
https://www.ukbiobank.ac.uk/enable-your-research. The FinnGen 
release 8 influenza GWAS summary statistics are available to approved 
researchers at https://www.finngen.fi/en/access_results. The influenza 
A seropositivity GWAS summary statistics were downloaded from 
the GWAS Catalog (accession no. GCST006339). Precalculated LD 
scores from the 1000 Genomes10 European reference population were 
obtained from https://data.broadinstitute.org/alkesgroup/LDSCORE/. 
GTEx data can be accessed at https://gtexportal.org/. Source data are 
provided with this paper.

Code availability
Genetic data are represented in the PLINK format (v.1.90b6.21), which 
is available at https://www.cog-genomics.org/plink2/, and were ana-
lyzed using REGENIE (v.3.1.3), which is available at https://github.
com/rgcgithub/regenie. Meta-analyses were performed using METAL 
(v.2020-05-05), which is available at https://github.com/statgen/
METAL. Imputation was done with Minimac4 (v.1.01), which is avail-
able at https://github.com/statgen/Minimac4. Read alignment was 
performed using the Burrows–Wheeler Aligner (v.0.7.17) available at 
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R packages used include ggplot2 (v.3.4.2) and patchwork (v.1.1.3). 
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References
22. Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–

D761 (2018).
23. Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M. & Ng, P. C. SIFT 

missense predictions for genomes. Nat. Protoc. 11, 1–9 (2016).

http://www.nature.com/naturegenetics
https://www.ukbiobank.ac.uk/enable-your-research
https://www.finngen.fi/en/access_results
https://www.ebi.ac.uk/gwas/studies/GCST006339
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://gtexportal.org/
https://www.cog-genomics.org/plink2/
https://github.com/rgcgithub/regenie
https://github.com/rgcgithub/regenie
https://github.com/statgen/METAL
https://github.com/statgen/METAL
https://github.com/statgen/Minimac4
http://bio-bwa.sourceforge.net
https://broadinstitute.github.io/picard/
http://www.htslib.org
https://github.com/Genomicsplc/wecall
http://www.htslib.org


Nature Genetics

Letter https://doi.org/10.1038/s41588-024-01844-1

24. Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting functional 
effect of human missense mutations using PolyPhen-2. Curr. 
Protoc. Hum. Genet. 7, Unit7.20 (2013).

25. Chun, S. & Fay, J. C. Identification of deleterious mutations within 
three human genomes. Genome Res. 19, 1553–1561 (2009).

26. Schwarz, J. M., Rödelsperger, C., Schuelke, M. & Seelow, D. 
MutationTaster evaluates disease-causing potential of sequence 
alterations. Nat. Methods 7, 575–576 (2010).

27. Kosmicki, J. A. et al. Pan-ancestry exome-wide association 
analyses of COVID-19 outcomes in 586,157 individuals. Am. J. 
Hum. Genet. 108, 1350–1355 (2021).

28. Mathieson, I. & McVean, G. Differential confounding of rare and 
common variants in spatially structured populations. Nat. Genet. 
44, 243–246 (2012).

29. Zaidi, A. A. & Mathieson, I. Demographic history mediates the 
effect of stratification on polygenic scores. eLife 9, e61548 (2020).

30. Bulik-Sullivan, B. et al. An atlas of genetic correlations across 
human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

Acknowledgements
This research was conducted using the UKB resource (project no. 
26041). The UCLA ATLAS Collaboration is supported by the David 
Geffen School of Medicine, UCLA Health, and the UCLA Clinical and 
Translational Science Institute (no. UL1TR001881). The PMBB is funded 
by a gift from the Smilow family, the National Center for Advancing 
Translational Sciences of the National Institutes of Health under 
Clinical and Translational Science Award no. UL1TR001878, and the 
Perelman School of Medicine at the University of Pennsylvania. We 
thank the participants and investigators of the FinnGen study. We 
also thank the AncestryDNA customers who voluntarily contributed 
information in the COVID-19 survey.

Author contributions
J.A.K. performed the GWAS, meta-analysis and statistical analyses. 
S.A.D.G. and S.B. performed the experimental analyses. S.A.D.G., S.B., 
X.-M.Y., H.M. and C.K. provided the materials and reagents. J.A.K., 
D.S., N.B. and M.N.C. created the phenotypes. J.A.K. and M.A.R.F. 
wrote the manuscript and created the figures. G.T., M.D.K., A.R.S., C.K., 
K.K., A. Baum and J.E.H. assisted with the biological interpretation. 

C.S. performed the eQTL analysis. J. Mbatchou, K.W. and J. Marchini 
assisted with the statistical analyses. A.E., K.S., A. Baras, G.R.A. and 
M.A.R.F. supervised the study. G.H.L.R., M.V.C., D.S.P., S.C.K., H.G., 
A. Baltzell, A.R.G., S.R.M., R.P., D.A.T., M.Z., K.A.R., E.L.H. and C.A.B. 
provided the data from AncestryDNA. A.E.J., J.B.L., D.J.C. and T.M. 
provided the data from the GHS. A.V., G.S., M.D.R. and D.J.R. provided 
the data from the PMBB. A.M., R.L., E.M., A.J.M., X.B., W.J.S., J.D.O., L.H. 
and J.G.R. performed DNA extraction, genotyping, imputation and 
variant calling. All authors reviewed and approved the final version of 
the manuscript.

Competing interests
J.A.K., A.M., D.S., S.A.D.G., S.B., X.-M.Y., G.T., H.M., C.S., M.D.K., J.E.H., 
N.B., R.L., E.M., X.B., A.J.M., J. Mbatchou, K.W., W.J.S., A.R.S., J. 
Marchini, J.D.O., L.H., J.G.R., A.E., C.K., K.K., A. Baum, M.N.C., K.S., A. 
Baras, G.R.A. and M.A.R.F. are current employees or stockholders 
of Regeneron Genetics Center or Regeneron Pharmaceuticals. 
G.H.L.R., M.V.C., D.S.P., S.C.K., H.G., A. Baltzell, A.R.G., S.R.M., R.P., 
D.A.T., M.Z., K.A.R., E.L.H. and C.A.B. are current or past employees of 
AncestryDNA and may hold equity in AncestryDNA. The other authors 
declare no competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s41588-024-01844-1.

Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s41588-024-01844-1.

Correspondence and requests for materials should be addressed to 
Goncalo R. Abecasis or Manuel A. R. Ferreira.

Peer review information Nature Genetics thanks Janie Shelton and the 
other, anonymous, reviewer(s) for their contribution to the peer review 
of this work. Peer reviewer reports are available.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-024-01844-1
https://doi.org/10.1038/s41588-024-01844-1
https://doi.org/10.1038/s41588-024-01844-1
http://www.nature.com/reprints


Nature Genetics

Letter https://doi.org/10.1038/s41588-024-01844-1

Extended Data Fig. 1 | Results from the discovery GWAS of reported influenza 
infection in the AncestryDNA cohort. We tested 10 million common (alternate 
allele frequency [AAF] > 1%) variants, derived from array genotyping followed by 
HRC imputation, comparing 18,334 individuals who reported a positive test for 
influenza (cases) against 276,295 individuals who did not report a positive test 
for influenza (controls). a, Quantile-quantile plot showing observed P-values for 
individual variants (y-axis) against P-values expected by chance given multiple 
testing (x-axis). The genomic inflation factor (λGC) of this analysis was 1.05, 

whereas the intercept from LD-score regression was 1.04. b, Manhattan plot 
showing association (−log10 P-value) with imputed variants. The dotted grey line 
demarcates the genome-wide significance threshold of P = 5 × 10−8. c,d, Genetic 
ancestry-specific results for the 3q27.3/ST6GAL1 (c) and the 21q22.2/B3GALT5 
(d) variants. Unadjusted P-values derived from Firth-regression (two-sided test) 
implemented in REGENIE9. Error bars represent the 95% confidence interval 
around the odds ratio (data point).
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Extended Data Fig. 2 | Summary of results from the replication GWAS of 
lifetime medical record-based influenza infection performed across seven 
biobanks. We tested 11 million common (AAF > 1%) variants derived from array 
genotyping followed by TOPMed imputation (except FinnGen, which used an 
imputation reference panel comprising samples from Finland), comparing 
22,022 individuals with (cases) against 1,131,269 individuals without (controls) an 
ICD-10 code for influenza (controls). a, Quantile-quantile plot showing observed 
P-values for individual variants (y-axis) against P-values expected by chance given 

multiple testing (x-axis). The genomic inflation factor (λGC) of this analysis was 
1.04, whereas the intercept from LD-score regression was 1.01. b, Manhattan plot 
showing association (−log10 P-value) with imputed variants. The dotted grey line 
demarcates the genome-wide significance threshold of P = 5 × 10−8. c,d, Cohort-
specific results for the 3q27.3/ST6GAL1 (c) and the 21q22.2/B3GALT5 (d) variants. 
Unadjusted P-values derived from Firth-regression (two-sided test) implemented 
in REGENIE9. Error bars represent the 95% confidence interval around the odds 
ratio (data point).
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Extended Data Fig. 3 | Meta-analysis of the discovery (reported positive 
test in AncestryDNA) and replication (lifetime medical record across seven 
biobanks) GWAS of influenza. a, Quantile-quantile plot showing observed 
P-values for individual variants (y-axis) against P-values expected by chance 
given multiple testing (x-axis). The genomic inflation factor (λGC) of this analysis 
was 1.06, whereas the intercept from LD-score regression was 1.02. b, Manhattan 
plot showing association ( − log10 P-value) with imputed variants. The dotted 

grey line demarcates the genome-wide significance threshold of P = 5 × 10−8. c,d, 
Regional associations plots for the 3q27.3/ST6GAL1 (c) and 21q22.2/B3GALT5 (d) 
loci. Variants are colored based on their linkage disequilibrium (r2) with the lead 
variant (purple triangle). Upward facing triangles represent variants with OR > 1, 
and downward facing triangles represent OR < 1. Unadjusted P-values derived 
from Firth-regression (two-sided test) implemented in REGENIE9.

http://www.nature.com/naturegenetics
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Extended Data Fig. 4 | Association between COVID-19 risk variants and 
influenza infection in AncestryDNA (18,334 cases vs. 276,295 controls), 
biobank cohorts (22,022 cases vs. 1,131,269 controls) or overall meta-analysis 
(40,356 cases vs. 1,407,564 controls). Of the 24 COVID-19 risk variants, 16 
were discovered in a GWAS of COVID-19 hospitalization (comparing COVID-19 
hospitalized cases against individuals with no record of SARS-CoV-2 infection), 

and 8 were discovered in a GWAS of reported SARS-CoV-2 infection (comparing 
all individuals with a record of SARS-CoV-2 infection against individuals with 
no record of SARS-CoV-2 infection). The association observed between the 24 
variants and influenza infection was comparable between AncestryDNA, biobank 
cohorts and overall meta-analysis GWAS. Error bars represent the 95% confidence 
interval around the odds ratio (data point).

http://www.nature.com/naturegenetics
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Extended Data Fig. 5 | Summary of association results between lifetime 
medical record-based influenza and rare coding variants from exome 
sequencing in six biobanks (Colorado, DiscovEHR, Mayo-Clinic, UCLA, UKB, 
UPENN-PMBB). We tested 23 million rare (AAF < 1%) variants derived from exome 
sequencing, comparing 14,189 individuals with (cases) against 811,714 individuals 
without (controls) an ICD10 code for influenza. a,b, Manhattan plots of (a) 
individual coding variants (each point represents a single variant) and (b) coding 

variants tested on aggregate through gene burden tests (each point represents 
a burden test for a gene, with up to 40 different burden tests performed per 
gene; Methods). The dotted grey line demarcates P = 2.1 × 10−9 (corresponding 
to a Bonferroni correction for the number of individual variant and gene-based 
burden tests performed). Unadjusted P-values derived from Firth-regression 
(two-sided test) implemented in REGENIE9.
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Extended Data Fig. 6 | Expression of ST6GAL1 and B3GALT5 across human 
tissues measured by the GTEx consortium. a, Expression levels expressed as 
transcripts per million (TPM) per tissue in GTEx for ST6GAL1. Box plots show 
the interquartile range (ICR) and the median. Sample sizes for each tissue can 
be found on the GTEx website (see Data Availability). b, Association between 
rs73187789:A and expression levels of ST6GAL1 across tissues. Variant rs73187789 

was a lead independent eQTL for ST6GAL1 in thyroid tissue and was in high LD 
(r2 = 0.95) with the lead variant associated with risk of influenza in ST6GAL1. Error 
bars represent the 95% confidence interval around the normalized effect size 
(NES) from linear regression. c, Expression levels expressed as TPM per tissue in 
GTEx for B3GALT5. Box plots show the ICR and the median. Sample sizes for each 
tissue can be found on the GTEx website (see Data Availability).
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Extended Data Fig. 7 | Impact of siRNA knockdown of ST6GAL1 in A549 
cells on influenza infectivity. In each plot, bars represent the averages across 
replicates from each experiment (n = 2), points represent the values from the 
individual replicates (n = 4 for experiment 1; n = 3 for experiment 2), and lines 
show the width of the distribution of the data points. The first column shows 
mRNA levels of ST6GAL1 relative to ACTB transcript in cells treated with four 
different siRNAs: two targeting ST6GAL1 (siRNA1 and siRNA2) and two negative 

controls (one targeting GAPDH [experiment 2 only] and a scrambled siRNA). The 
second and third columns show results from infection assay with PR8-GFP (H1N1, 
multiplicity of infection [MOI] of 0.4 to 10), with the latter column showing 
infectivity relative to the scrambled siRNA control. The GAPDH siRNA (but not the 
two siRNAs against ST6GAL1) significantly reduced GAPDH expression relative 
to the scrambled siRNA ( ~ 80% reduction). P-values derived from a two-sided 
Wilcoxon Rank Sum Test and asterisks (*) mark those experiments with P < 0.05.

http://www.nature.com/naturegenetics
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Extended Data Fig. 8 | Impact of ST6GAL1 siRNA knockdown on sialic acid 
abundance. a, Flow cytometry histograms (geometric mean across three 
replicates) of siRNA-transfected cells stained with FITC-conjugated S. Nigra (SNA) 
Lectin 72 hours post-transfection to measure membrane-level sialic acid. A small 
proportion of cells treated with ST6GAL1 siRNAs displayed high fluorescence 
levels, consistent with incomplete transfection. b, Bar graph showing mean 
fluorescence intensity at the maximum from histogram in a. Bars represent 
the average across replicates from three experiments, points represent values 
from the individual replicates, and lines show the width of the distribution of 
individual experiments. In comparison to the negative control, membrane-level 

sialic acid dropped by 79–92% after ST6GAL1 knockdown. c,d, Representative 
images of ST6GAL1 and GAPDH protein levels measured in A549 cells 72 hours 
after treatment with siRNAs at concentration 5 to 40 μM (c) and at the final 
selected concentration of 10 μM (d). e, Quantification of ST6GAL1 and GAPDH 
protein levels in A549 cells treated with 10 μM of ST6GAL1 siRNA, based on three 
individual replicates. Protein levels are normalized to beta-actin and shown 
relative to the negative control siRNA. Uncropped gels are provided as Source 
Data. P-values derived from a two-sided Wilcoxon Rank Sum Test and asterisks (*) 
mark those experiments with P < 0.05.
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Extended Data Fig. 9 | Impact of B3GALT5 siRNA knockdown on influenza 
infectivity in Calu-3 cells. In each plot, bars represent the averages across 
replicates from each experiment (n = 2), points represent the values from the 
individual replicates (n = 3), and lines show the width of the distribution of the 
data points. The first column shows mRNA levels of B3GALT5 relative to ACTB 
transcript in cells treated with four different siRNAs: two targeting B3GALT5 
(siRNA1 and siRNA2) and two negative controls (one targeting GAPDH and a 

scrambled siRNA). The second and third columns show results from infection 
assay with PR8-GFP (H1N1, multiplicity of infection [MOI] of 0.4 to 10), with the 
latter column showing infectivity relative to the scrambled siRNA control. The 
GAPDH siRNA (but not the two siRNAs against B3GALT5) significantly reduced 
GAPDH expression relative to the scrambled siRNA (~90% reduction). P-values 
derived from a two-sided Wilcoxon Rank Sum Test and asterisks (*) mark those 
experiments with P < 0.05.

http://www.nature.com/naturegenetics
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