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Next-generation phenotyping integrated  
in a national framework for patients with  
ultrarare disorders improves genetic  
diagnostics and yields new molecular  
findings

Individuals with ultrarare disorders pose a structural challenge for 
healthcare systems since expert clinical knowledge is required to establish 
diagnoses. In TRANSLATE NAMSE, a 3-year prospective study, we evaluated 
a novel diagnostic concept based on multidisciplinary expertise in 
Germany. Here we present the systematic investigation of the phenotypic 
and molecular genetic data of 1,577 patients who had undergone exome 
sequencing and were partially analyzed with next-generation phenotyping 
approaches. Molecular genetic diagnoses were established in 32% of 
the patients totaling 370 distinct molecular genetic causes, most with 
prevalence below 1:50,000. During the diagnostic process, 34 novel and 
23 candidate genotype–phenotype associations were identified, mainly 
in individuals with neurodevelopmental disorders. Sequencing data of 
the subcohort that consented to computer-assisted analysis of their facial 
images with GestaltMatcher could be prioritized more efficiently compared 
with approaches based solely on clinical features and molecular scores. Our 
study demonstrates the synergy of using next-generation sequencing and 
phenotyping for diagnosing ultrarare diseases in routine healthcare and 
discovering novel etiologies by multidisciplinary teams.

A recent analysis of the Orphanet database showed that around 3–6% 
of the global population have a rare disease (that is, a disease with 
a prevalence of <1 in 2,000) and that 72% of such cases may have a 
genetic cause1. Rare diseases thus represent a substantial global 
health burden. However, only a minority of patients suspected to 
have a rare disease receive both a definite clinical diagnosis and a 
confirmatory molecular test result2,3. This concerns in particular 
the subset of patients with ultrarare disorders that are defined in the 
European Union as affecting no more than one person in 50,000 and 
that follow a long tail distribution with respect to their frequency 
(Regulation (EU) No. 536/2014). It is estimated that roughly 80% of 

the more than 5,000 rare genetic diseases have a prevalence below 
one in a million1.

The International Rare Disease Research Consortium therefore 
stated that, by 2027, all patients who come to medical attention with a 
suspected rare or ultrarare disease should be diagnosed within 1 year 
if the respective disorder has been described in the medical literature4. 
Since many rare diseases are Mendelian in nature, comprehensive 
genetic testing is a key element to achieve that goal.

In Germany, around 90% of the population has statutory health 
insurance, and the current reimbursement scheme allows physi-
cians to request chromosome analyses, molecular karyotyping and 
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Fig. 1 | Workflow in the TRANSLATE NAMSE project and phenotypes in which 
exome sequencing was performed. a, Patients with a suspected rare disease 
were referred to a MDT and deeply phenotyped using HPO terminology.  
If a genetic etiology was considered likely, exome sequencing was performed. 
The MDT then evaluated the molecular findings and could order additional 
analyses for variants of uncertain significance or variants in potentially novel 
disease candidate genes (created with BioRender.com). b, Exome sequencing 
was performed predominantly in children. The main indications for exome 
sequencing in children were neurodevelopmental disorders. In adults, the 
main indications were neurological/neuromuscular disorders. In both children 
and adults, the least common disease categories were ‘cardiovascular’, 

‘endocrine, metabolic, mitochondrial, nutritional’ (emmn) and ‘hematopoiesis/
immune system’ (his). c, Phenotypic similarities between patients, as encoded 
according to their HPO terms, were visualized with UMAP. As reference, all 
OMIM diseases were included using their HPO annotations (gray background 
dots). For each patient, color coding indicates allocation to disease groups, in 
accordance with the leading clinical feature. An overlap is evident for patients 
in the neurodevelopmental and neuromuscular groups (aquamarine and 
blue clusters), which indicates high phenotypic similarity. This precludes the 
unequivocal assignment of these patients to a diagnostic group. The triangles 
indicate patients who contributed to the identification of a novel, high-evidence 
gene–phenotype association.
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sequencing of single genes or gene panels. For example, high-resolution 
genome-wide array-based segmental aneusomy profiling detects a 
pathogenic aberration in around 19% of patients with developmental 
delay5. Besides contiguous gene syndromes, most of the remaining rare 
disorders are monogenic and are caused by single nucleotide variants 
or small insertions or deletions (indels). However, single gene analyses 
or small gene panels are only likely to detect a pathogenic aberration if 
the phenotype is highly predictive of the molecular cause, for example, 
hemoglobinopathies6.

For phenotypes with high genetic heterogeneity, such as neurode-
velopmental disorders, genetic investigation is more challenging. For 
intellectual disability, for example, studies so far have identified disease 
associations for more than a thousand genes7. For these disorders, 
research has shown that exome sequencing can be more cost-effective 
than sequencing potentially multiple gene panels8. However, this is 
also accompanied by more genetic variants that have to be assessed. 
Therefore, a clear indication for exome sequencing and efficient data 
analysis strategies are crucial. Between 2018 and 2020, a novel diag-
nostic concept within the German healthcare system was evaluated in 
the prospective study TRANSLATE NAMSE9.

This involved standardized structures and procedures and mul-
tidisciplinary teams (MDTs) at ten university hospital-based centers 
for rare diseases (CRDs). The MDTs conducted a three-step diagnostic 
process: (1) primary review of patient records; (2) selection of diag-
nostic procedures, including a possible recommendation for exome 
sequencing; and (3) evaluation of all findings, including genetic vari-
ants. A key goal was to investigate whether exome sequencing would 
facilitate the diagnosis of ultrarare disorders or even the delineation 
of novel monogenic disorders. In this work, we report the molecular 
findings of this study.

Furthermore, we investigated how phenotypic features can be 
used to estimate the probability that a molecular diagnosis can be 
established with exome sequencing (YieldPred). In a companion study, 
we also assessed the extent to which the results from computer-assisted 
pattern recognition in facial dysmorphism contribute to variant inter-
pretation (prioritization of exome data by image analysis, PEDIA). The 
present analyses demonstrated that exome sequencing facilitated the 
diagnosis of ultrarare genetic diseases and novel gene–disease associa-
tions and that artificial intelligence (AI)-driven technologies improved 
the diagnostic yield for ultrarare genetic disorders.

Results
Phenotypic characteristics of the study cohort
Between 2018 and 2020, a total of 5,652 individuals (2,033 adults 
and 3,619 children) with a suspected rare disorder were enrolled 
in TRANSLATE NAMSE by CRDs at ten German university hospitals 
(Fig. 1a)9. The present analyses were performed using the data from 
a total of 1,577 of these 5,652 patients (268 adults, 1,309 children). 
In these individuals, the MDT at the respective CRD considered a 
genetic cause as plausible and exome sequencing as the most suit-
able test (exome sequencing cohort, Supplementary Table 1). Each 
of these 1,577 individuals was assigned to one of six major disease 
categories by the respective CRD physician (Fig. 1b). The majority of 
children were assigned to the disease category ‘neurodevelopmental 
disorders’ (n = 702, 54%), and the largest proportion of adults were 
assigned to the disease category ‘neurological or neuromuscular 
disorders’ (n = 117, 44%). Smaller proportions of adult and pediatric 
cases were assigned to the groups ‘organ malformation’, ‘endocrine/
metabolic disorders’, ‘immune/hematologic disorders’ and ‘cardio-
vascular disorders’. Patient phenotypes were also annotated with 
terms of the Human Phenotype Ontology (HPO) by the respective CRD 
physicians. On average, five HPO terms were specified per individual 
(Supplementary Fig. 1a). The phenotypes within the present cohort 
were visualized by projecting the patient-specific HPO terms into a 
two-dimensional space. While most patients from the same disease 

group were in close proximity, the clusters showed a partial overlap 
(Fig. 1c). For example, many patients categorized within ‘neurologi-
cal or neuromuscular disorders’ also showed HPO terms typically 
associated with ‘neurodevelopmental disorders’ and vice versa (Sup-
plementary Fig. 1b). This suggests that grouping patients into single 
disease groups may be overly simplistic.

Diagnostic yield of exome sequencing
A molecular diagnosis was established in a total of 499 of the 1,577 
patients (32%), that is, in these cases, exome sequencing identified 
variants that fully or partially explained the phenotype. The diagnostic 
yield was slightly higher in children (32%) than in adults (28%, P = 0.13, 
Fisher’s exact test; Fig. 2a) and twofold higher in patients assigned to 
the category ‘neurodevelopmental disorder’ than for all other disease 
categories (42% versus 22%, P < 0.001, Fisher’s exact test with Bonfer-
roni correction; for single comparisons between disorder groups, see 
Fig. 2b). Furthermore, exome sequencing found variants of uncertain 
significance. Specifically, these variants were enriched for missense 
variants (80% versus 45%, P < 0.001; Supplementary Fig. 2), due to lower 
support for pathogenicity according to the guidelines of the American 
College of Medical Genetics (ACMG) and the Association for Molecular 
Pathologists for interpretation of sequence variants.
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Fig. 2 | Diagnostic yield of exome sequencing depends on age and disease group. 
a,b, The diagnostic yield differed according to age group (adult/child) (a) and 
disease category (b). For all disease categories, with the exception of cardiovascular, 
the diagnostic yield was increased by novel DGGs and high-evidence candidate 
genes (dark-colored tip of the bar). The absolute number of solved cases in which 
a variant was found in an established disease gene is given at the bottom of each 
bar, and the number of solved cases attributable to a novel DGG or high-evidence 
candidate gene is given at the top of each bar. The entire TRANSLATE NAMSE  
exome sequencing cohort was considered for a and b (n = 1,577). Diagnostic yield 
between disease categories were compared using two-sided Fisher’s exact test.  
P values were adjusted by Bonferroni correction. ***P < 0.001; exact corrected  
P values: neurodevelopmental (ndd) versus neurologic neuromuscular P = 5.4 × 10−5, 
ndd versus organ abnormality P = 5.2 × 10−5, ndd versus emmn P = 5.9 × 10−4,  
ndd versus his P = 1.1 × 10−11. emnn, endocrine, metabolic, mitochondrial, nutritional;  
his, hematopoiesis/immune system.
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De novo variants and parental mosaicism
A total of 228 diagnoses (45% of 510 diagnoses including dual diagnoses) 
were attributable to de novo variants, making them the most common 
cause of disease in families with an autozygosity below 0.02 and the 
second most common cause in families with consanguinity (Fig. 3). 
In three families with variants that were initially classified as de novo, 
evidence for probable or certain parental mosaicism was found (Sup-
plementary Note). In one of these families, the same likely pathogenic 
variant in PUF60 was identified as the cause of developmental delay in 
two affected brothers. Since the variant was not detectable in the exome 
data of either parent, gonadal mosaicism could not be confirmed and 
was instead presumed on the basis of the family history. The detection 
in the exome sequencing analysis of three probable parental mosaics 
among 228 patients corresponds to a frequency of 1.3%, which is within 
the estimated interval of clinically relevant parental mosaicism10–12.

Recessive disease burden
The second-largest proportion of solved cases involved an auto-
somal recessive (AR) mode of inheritance (125 solved cases, 14.5% 
of all diagnoses; Fig. 3a). In total, 94 of the causative variants in the 
125 recessive diagnoses in the present cohort would also have been 
classified as pathogenic if identified in healthy individuals13. The 
diagnostic yield was considerably higher in patients with presumed 
consanguinity (low autozygosity 31%, n = 1,014 versus high autozygosity 
41%, n = 144, P = 0.01, Fisher’s exact test), and the composition of the 
modes of inheritance also differed significantly between the high- and 
low-autozygosity groups (Fig. 3b). The relative contribution of homozy-
gous variants was significantly higher in the high-autozygosity group 
(73% of n = 62 diagnoses) than in the low-autozygosity group (2% of 
n = 313 diagnoses) (odds ratio (OR) 111.5, P < 0.001, Fisher’s exact test). In 
contrast, the contribution to disease of de novo variants was 13% (n = 62 
diagnoses) in the high-autozygosity group compared with 54% (n = 313 
diagnoses) in the low-autozygosity group (OR 0.2, P < 0.001, Fisher’s 
exact test). Since the de novo mutation count is dependent on parental 
age but not on autozygosity, the disease prevalence that is attributable 
to de novo variants should be comparable between both groups and 
can be used for normalization (Fig. 3c). For an inbreeding coefficient 
of >2%, this suggests a recessive disease burden that is sevenfold higher 
than for those with lower inbreeding coefficients, which is consistent 
with previous reports14–16. However, it also has to be acknowledged that 
population expansion results in a drop in the prevalence of recessive 
disorders in random mating populations and that the lower recessive 
disease burden might be only a transient effect17.

Dual molecular diagnoses and secondary findings
For 11 individuals, who represented approximately 2% of all solved 
cases, molecular diagnoses for two distinct or overlapping disease 
phenotypes were established (Supplementary Table 2). This group 
showed a tendency for high autozygosity (43%, n = 7 versus 16%, n = 361, 
P = 0.09, Fisher’s exact test) and recessive disorders (41%, n = 22 diag-
noses versus 24%, n = 488 diagnoses, P = 0.08, Fisher’s exact test). The 
detected percentage of dual diagnoses (2%, 11 of 499 solved cases) is 
consistent with both the enrichment of high autozygosity and recessive 
disorders in this group, and earlier reports18,19.

0

0.5

1.0

n 
in

he
rit

an
ce

/n
 AD

 (d
e 

no
vo

)

n 
in

he
rit

an
ce

/n
 to

ta
l

0

2

4

6

8

b

c

Autozygosity

<2% >2%

Autozygosity

<2% >2%

a Amenable to carrier screening?MOI

AR
(hom)

AR
(comp het)

XL
mt

AD

AD
(de novo)

Yes

No

No Yes

AR
(hom)

AR
(comp het)

XL
mt

AD

AD
(de novo)

Au
to

zy
go

si
ty

 (%
)

0

5

10

15

AR (h
om)

AR (c
omp het) XL mt

AD

AD (d
e novo

)

Fig. 3 | Mode of inheritance and disease burden are dependent on 
autozygosity. a, Pie chart showing the distribution of modes of inheritance (MOI) 
for all diagnoses (n = 510). Most disease-causing variants occurred de novo and 
on an autosome. At least 75% of all autosomal recessive diagnoses could have 
been identified by expanded carrier screening (slice). b, Box plots of autozygosity 
for each MOI (n = 375). Individuals are indicated by gray dots. Autozygosity was 
substantially increased in individuals with autosomal recessive disorders due 
to homozygous variants. In the box plots, the center lines indicate the median 
values, and the bottom and top edges of the boxes are the first (25%) and the third 
(75%) quartiles. The whiskers extend to the minimal and maximal data points with 
a maximum distance of 1.5 interquartile ranges from the edges of the box. c, Bar 
graphs illustrating MOI in individuals with low (<2%, n = 313) and high (>2%, n = 62) 
autozygosity. On the right, the autosomal dominant de novo rate has been used 
for normalization. Individuals with high autozygosity had a higher relative burden 
of recessive diseases, mainly due to the presence of homozygous pathogenic 
variants. The box plots present the median as the center line, the upper and lower 
quartiles as box limits, and 1.5× the interquartile range as the whisker length 
(in the style of Tukey). AD, autosomal dominant inheritance, variant inherited 
or of unknown origin; AD (de novo), autosomal dominant inheritance with de 
novo variant; AR (comp het), autosomal recessive inheritance with compound 
heterozygous variants; AR (hom), autosomal recessive inheritance with 
homozygous variant; mt, mitochondrial inheritance; XL, X-linked inheritance.
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In 17 individuals who had consented to being informed about sec-
ondary findings, we identified medically actionable variants that were 
unrelated to the present phenotype. The list of 59 actionable genes was 
based on the ACMG recommendations; however, secondary findings 
in 7 additional genes were reported following discussions within the 
respective MDTs (Supplementary Note).

Enrichment of ultrarare diagnoses
For the 499 individuals in whom exome sequencing led to a molecular 
diagnosis, a total of 549 disease-causing variants were identified in 
362 different disease-associated genes as well as structural variants 
affecting 14 genomic regions (Supplementary Table 1). This plethora 
of diagnoses suggests that each specific genetic disorder had a very 
low prevalence. To clarify this, the results were compared with the total 
number of (likely) pathogenic ClinVar submissions for the respective 
genes (Fig. 4a). The first quartile of ClinVar variants corresponds to the 
more frequently identified rare diseases and contains 40,078 variants 
assigned to 47 genes. In the group of 499 individuals with a molecu-
lar diagnosis in the present cohort, only 33 patients and 14 different 
disease-associated genes fell into this first quartile. In contrast, the 
majority of the present 499 patients (corresponding to 192 different 
disorders) were assigned to the fourth quartile, which contains disease 
genes with the least ClinVar submissions (Fig. 4b). Notably, almost half 
of the diagnoses assigned in the present cohort were only established 
in the past decade (Fig. 4c). A comparison with a cohort of comparable 
size20 revealed a significantly different distribution with respect to the 
years in which the phenotype was first associated with the respective 
disease-causing gene (Kolmogorov–Smirnoff test, P < 0.001; Supple-
mentary Figs. 3 and 4).

Novel DGGs and candidates
In cases for which no molecular diagnosis could be established due to 
variants in the known clinical exome, all potentially deleterious vari-
ants in the remaining exome were assessed for plausible novel disease 
etiologies (see detailed scoring for 57 candidate genes in 65 cases in 
Methods, Supplementary Note and Supplementary Table 3). Moderate 
evidence was generated for 23 of 57 candidate genes, and high evidence 
was generated for the remaining 34. A total of 17 candidate genes with 
high evidence are currently undergoing further investigation, mostly 
within the framework of international projects. A total of 17 genes (12 
with autosomal dominant inheritance, 5 with autosomal recessive 
inheritance) have acquired diagnostic-grade gene (DGG) status dur-
ing the first three years through international cooperation21–33. After 
the end of the study, two more candidate genes transitioned to the 
group of DGGs due to additional phenotypic, functional and statistical 
evidence became available32,34.

In comparison with pathogenic variants in previously known 
disease-associated genes, the present candidate gene set showed a 
higher proportion of missense variants. This is probably attributable to 
the fact that the classification of missense variants is more challenging 
(Supplementary Table 3).

Functional assays
For 18 cases that were classified as uncertain or unsolved after initial 
exome sequencing, multi-omic assays were performed, that is, an 
analysis of the methylome (n = 4), proteome (n = 3) or transcriptome 
(n = 14). Epigenetic signatures, as derived from methylome analyses, 
clarified the status of de novo missense variants as likely benign in one 
case and as pathogenic in three. This is exemplified by a case with a mis-
sense variant in KMT2D (Supplementary Note)35,36. Variants in MDH2 
were reclassified to pathogenic, on the basis of a proteome analysis of 
patient-derived fibroblasts (Supplementary Note), while results were 
inconclusive in two unsolved cases. In 13 unsolved cases, RNA sequenc-
ing was performed but could not identify transcriptome alterations 
that lead to the identification of causative variants. Thus, in 5/18 cases, 

complementary assays facilitated variant reclassification and high-
lighted the importance of variant validation strategies in diagnostics 
for suspected rare genetic diseases (Supplementary Note)37–39.

Predicting the diagnostic yield using machine learning
Analyses were then conducted to investigate whether the phenotype 
predicted the diagnostic yield of exome sequencing. For this purpose, 
a least absolute shrinkage and selection operator (LASSO) analysis for 
binary outcomes was performed. To reduce the phenotypic dimension 
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and to increase interpretability, HPO terms were first aggregated into 
49 nonoverlapping phenotypic groups. These phenotypic groups were 
used as predictors in the LASSO analysis. The resulting model was able 
to discriminate between solved and unsolved cases (Supplementary 
Fig. 5a; area under the curve (AUC) 0.67, 95% confidence interval (CI) 
0.61–0.74, on a held-out test set of the exome sequencing cohort, n = 321) 
and yielded the HPO groups ‘dysfunction of higher cognitive abilities’, 
‘hematological abnormalities’ and ‘ataxia’ as very influential predic-
tors in terms of the establishment of a molecular diagnosis via exome 
sequencing (Fig. 5a). To improve the predictions for a wider variety of 
phenotypic features, we trained on samples of additional cohorts and 
made the model available as a web service (https://translate-namse.de).  
YieldPred can now be used to estimate the diagnostic yield of exome 
sequencing on the basis of the phenotypic features of a given patient 
and might therefore help in expectation management (Methods and 
Supplementary Figs. 3, 5 and 6).

Variant prioritization using facial image analysis (PEDIA)
A total of 224 of the 1,577 patients had also provided written informed 
consent for the evaluation of their facial images with the AI tool Gestalt-
Matcher40 and the use of the results (gestalt scores) in exome vari-
ant interpretation (PEDIA)41. In 94 of these PEDIA subcohort cases, a 
molecular diagnosis was established. For 81 of these 94 cases, the 
gestalt scores improved prioritization results, that is, the correct 
diagnosis was ranked higher. In general, the PEDIA approach (that 
is, a combined scoring approach involving genotype-, phenotype- 
and facial gestalt-based prioritization tools) can contribute to pri-
oritization efficiency, provided that (1) the clinical features of the 
underlying disorder include facial dysmorphism and (2) molecularly 
solved cases are already part of the GestaltMatcher Database40 (https://
db.gestaltmatcher.org/). In the present PEDIA subcohort, for 81 cases, 
representing 68 different disorders, one or more previously solved 
cases were phenotypically so similar that the gestalt score for the 
associated disease gene resulted in a higher ranking for the patho-
genic variant than prioritization approaches that do not make use of 
image analysis.

Four different variant prioritization approaches involving 
genotype-based and/or phenotype-based scores were analyzed and 
their respective accuracy rates compared. For the PEDIA approach, the 
correct disease-associated gene was listed among the top ten sugges-
tions in 82% of the cases. The PEDIA approach outperformed prioriti-
zation by either a molecular score (combined annotation-dependent 
depletion, CADD42) or GestaltMatcher only, as well as the combined 
molecular and feature score (CADD + case annotation and disorder 
annotation (CADA)) (Fig. 5b). As the latter can be considered routine in 
exome sequencing analysis, additional gestalt scores help to improve 
variant interpretation in diagnostics.

Based on these results and the extension of the TRANSLATE NAMSE 
study beyond the initial 3 years, the PEDIA workflow was implemented 
at further sites. The exome sequencing data of another 149 patients 
were then analyzed. In this additional cohort, a molecular diagnosis was 
established in 69 patients, and a top-10 accuracy of 83% was achieved 
using the PEDIA score (Supplementary Fig. 7).

The PEDIA approach is highly modular, and the GestaltMatcher 
score for image analysis can also be combined with other prioritization 
tools such as Exomiser43, Xrare44, LIRICAL45 or Amelie46, which use dif-
ferent molecular scores or HPO-based scores. All tested combinations 
showed improvements in the top-k accuracies and are discussed in 
Supplementary Note and Supplementary Fig. 8.

In some cases, the gestalt scores were particularly suggestive and 
facilitated the identification of otherwise challenging pathogenic vari-
ants. For instance, in a patient with a very high gestalt score for Koolen 
de Vries syndrome, a 4.7-kb de novo deletion affecting KANSL1 was 
detected47. Other case reports of particular interest are described in 
Supplementary Note and Supplementary Fig. 9.

Exemplary diagnoses with targeted therapy
Implications of diagnoses on clinical management were not assessed in 
a structured way. However, for five patients in the TRANSLATE NAMSE 
cohort with a molecular diagnosis (1%), individualized treatments or 
therapies directed against the mechanism of the disease could be initi-
ated48. A patient with metachromatic leukodystrophy due to pathogenic 
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Fig. 5 | Machine learning identifies features relevant to the diagnostic yield 
and can support variant prioritization. a, The coefficient paths of regression 
analysis using the LASSO are shown. Only features that are included in the final 
model and are present in at least 5% of the cases that were used for training are 
depicted. The more to the left [lower ln(λ)] a coefficient path starts to deviate from 
the x axis, the more informative the corresponding feature is in terms of predicting 
the diagnostic yield. Features with positive coefficients increase the diagnostic 
yield. In contrast, features with negative coefficients render a monogenic cause 
less likely. For example, dysfunction of higher cognitive abilities and ataxia are 
associated with a higher diagnostic yield (clinical features are colored according to 
their higher-order HPO groups; for details, see Supplementary Note). An algorithm 
to predict the diagnostic yield (YieldPred) was developed on the basis of these 
data and can be found online (https://translate-namse.de). b, The performances 
of variant prioritization approaches were compared. All disease-associated genes 
were ranked using the respective variant prioritization method. Subsequently, the 
proportion of cases detected with the correct disease-associated gene (sensitivity) 
was shown as a function of the number of disease-associated genes considered, 
beginning at the top score. The following four approaches for variant prioritization 
were tested in solved cases from the PEDIA cohort (n = 94): (1) only a molecular 
pathogenicity score (CADD68) with top-10 accuracy of 48%; (2) feature-based 
score (CADA69) in addition to CADD with top-10 accuracy of 68%; and (3 and 4) a 
gestalt score from facial image analysis (GestaltMatcher40) alone or in addition 
to both CADD and CADA referred to as PEDIA score41 with top-10 accuracy of 82%. 
Note that the bold lines indicate the observed top-k accuracy and bootstrapped 
95% CIs are indicated by the lighter shading around the lines. MRI, magnetic 
resonance imaging; abn., abnormality; con., congenital; dysf., dysfunction; psych., 
psychiatric; sym., symptoms; sec, secondary.
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variants in arylsulfatase alpha was treated with autologous CD34+ cells 
that were transduced ex vivo using a lentiviral vector encoding aryl-
sulfatase alpha49. The gene therapeutic approach with atidarsagene 
autotemcel has been authorized by European Medicines Agency (EMA) 
in the European Union since 17 December 2020. A patient with pyruvate 
dehydrogenase E1-α deficiency due to a de novo variant in PDHA1 and 
another patient with GLUT1-deficiency due to pathogenic variants in 
SLC2A1 were treated with a ketogenic diet. In a patient with cerebral 
creatine deficiency syndrome 1, due to a missense substitution in 
SLC6A8, supplementation with creatine was started. In a patient with 
congenital disorder of glycosylation of type IIc, due to a homozygous 
missense variant in SLC35C1, the fucosylation deficiency was treated 
by oral fucose supplementation50.

Discussion
Reducing the time to diagnosis from several years to less than 1 year 
is highly relevant in terms of both prognosis and the targeted use of 
healthcare resources, since the number of approved therapies for rare 
diseases in which early treatment is associated with better outcomes is 
now increasing51. Establishing a molecular diagnosis quickly will require 
the implementation of frameworks within healthcare systems that are 
dedicated to patients with rare diseases. The novel diagnostic approach 
evaluated in TRANSLATE NAMSE was the practical realization of such 
a concept. The present investigation suggests that a combination of 
a structured clinical assessment by an MDT, an advanced sequencing 
test, such as exome sequencing, and a comprehensive discussion of 
the results reduces diagnostic delay and may improve therapy. These 
findings are consistent with reports from other healthcare systems and 
other disorders that benefit from interdisciplinary structures20,52–56. On 
the basis of the present data, in 2021, exome sequencing was included 
in the list of standard medical services offered to patients with sus-
pected rare diseases who were referred to German CRDs. For all the 
patients that are still awaiting a molecular diagnosis, new multi-omics 
approaches are promising but also costly. Therefore, in a complex 
healthcare system, these tests compete with other analyses, and their 
efficiency and efficacy in establishing a diagnosis should be evaluated 
in the future. However, it will be crucial within the German healthcare 
system that the inclusion of MDTs in the diagnostic process does not 
delay or even hinder genetic testing for patients with rare diseases. With 
exome sequencing being incorporated into an increasing number of 
guidelines, we also anticipate that the focus of the MDT will shift from 
test selection toward variant interpretation and identifying therapeutic 
options. By these means, MDTs operating in CRDs would fulfill a similar 
purpose for patients with rare disorders as molecular tumor boards 
in centers for personalized medicine already do for cancer patients57.

Two notable findings of the present analyses were that, in com-
parison with ClinVar and a previously reported rare disease cohort of 
similar size20, the TRANSLATE NAMSE cohort was significantly enriched 
for ultrarare disorders (Fig. 4a and Supplementary Fig. 4) and that a 
large number of recently described gene–disease associations were 
found1,8,20,58. In our opinion, this accumulation of ultrarare diagnoses 
and the relative absence of more common conditions is explained by 
the study protocol, which required consideration of different test 
options, including gene panels. Furthermore, the fact that a large num-
ber of the established diagnoses have only become possible in recent 
years as a result of increasing medical genetic knowledge (Fig. 4c) 
highlights the importance of reanalysis of exome data59,60. Indeed, 
the present analyses identified a large number of individuals who 
carried variants that indicated a novel disease–gene association (12% 
of solved cases), which highlights the fact that the analysis of exome 
sequencing data should not be limited to known disease genes. Estab-
lishing novel gene–disease associations and conducting functional 
analyses for the reclassification of variants of uncertain significance 
are time-consuming and highly complex endeavors61. Hence, from the 
present logistical perspective, such analyses are easier to perform in a 

research context than within the routine diagnostic context of clinical 
practice. However, these findings are of crucial importance for affected 
individuals and their families. Thus, from a teleological perspective, 
in some rare disease cases, boundaries separating diagnostics and 
research are somewhat blurred. Therefore, in the tertiary, academic 
setting, collaboration between experts from diagnostics and research 
is highly relevant for patients with suspected ultrarare diseases and a 
lack of definitive diagnostic findings.

In several patients from the present cohort, molecular diagnoses 
also resulted in a change of clinical management to a causal or even 
curative approach to therapy as described above. These cases empha-
size the fact that molecular genetic diagnoses are essential in terms 
of the development of personalized treatments or therapies that are 
directed against the underlying disease mechanism. The systematic, 
consortium-based collection of molecular and clinical data represents 
the first necessary milestone toward achieving this goal. Particularly 
in the case of ultrarare disorders, the collection of these data requires 
additional international collaborative efforts.

Besides the ability to select the appropriate genetic test for 
diagnosing a disease, a core competence of a clinical geneticist is to 
estimate disease risk in the offspring of healthy individuals.17 In addi-
tion to the relatedness of the partners, the burden of heterozygous 
pathogenic variants in recessive genes, which can vary considerably 
depending on demographics62–65, could play an increasingly important 
role in family planning. In a total of 94 of the 125 cases with recessive 
molecular diagnoses, the causal variants would also have been clas-
sified as (likely) pathogenic if they had been identified in healthy 
individuals13. This also means that, if the parents of pediatric patients 
with a recessive disorder in the present cohort had undergone exome 
sequencing to determine their carrier status, three out of four of these 
couples could have received appropriate genetic counseling concern-
ing disease risk in future offspring, which supports the argument for 
extended screening66.

Another aim of the present study was to determine whether com-
plementary AI and machine learning approaches would facilitate diag-
nostic effectiveness and efficiency in the exome sequencing cohort. 
The PEDIA analyses showed that AI-powered next-generation pheno-
typing increased the efficiency of exome sequencing data analysis. 
However, not every case in the present cohort was solved via exome 
sequencing. Therefore, the machine learning model YieldPred was 
developed to identify features that had a major impact on the diagnos-
tic yield in our and other study cohorts. Prospectively, this approach 
can also be used for two purposes. First, it can be used to estimate the 
probability that exome sequencing will result in a molecular diagnosis 
in each patient with a suspected rare disease and can by these means 
help to manage expectations. Second, as YieldPred in its current form 
provides an estimation of the diagnostic yield of exome sequencing and 
not of an underlying monogenic condition of a certain individual, it can 
be used to stratify individuals for more comprehensive genetic testing, 
that is, a low YieldPred score despite a high likelihood of a monogenic 
disease indicates that transcriptomics, proteomics or genome sequenc-
ing could be promising.

It would be desirable for all individuals with a suspected mono-
genic disorder for whom no definitive diagnosis can yet be established 
to have the option of participating in large-scale genomic diagnostic 
and research initiatives. We present TRANSLATE NAMSE as the Ger-
man framework that organizes diagnostics for patients with ultrarare 
diseases with a backbone of case conferences in MDTs in academic 
CRDs. TRANSLATE NAMSE represents the first national-level project 
for undiagnosed patients in Germany, and the future expansion of the 
network on both the national and international level is planned.

In summary, the results of the present study demonstrate that 
our novel, structured diagnostic concept facilitates the identifica-
tion of ultrarare disorders on a national level, provides undiagnosed 
patients with the opportunity to participate in international research, 
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and represents a platform for data sharing that facilitates the develop-
ment of machine learning and AI tools to improve the diagnostic yield.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-024-01836-1.
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Methods
Enrollment, research ethics and consent
A detailed description of the TRANSLATE NAMSE project is provided 
elsewhere9,70. In brief, participants for TRANSLATE NAMSE were 
recruited between January 2018 and December 2020 from a total 
of ten German CRDs (Berlin, Bochum, Bonn, Dresden, Duisburg/
Essen, Hamburg, Heidelberg, Kiel/Lübeck, München and Tübingen). 
Overall coordination of the recruitment process was performed by 
the Institute of Public Health Berlin. This study is governed by the 
approval of the following institutional review boards: Charité – Uni-
versitätsmedizin Berlin, Germany (EA2/140/17); UKB Universitätsk-
linikum Bonn, Germany (Lfd.Nr.386/17); Universitätsklinikum Essen, 
University Duisburg-Essen, Germany (17-7774-BO); Universitätsk-
linikum Heidelberg, Germany (S-499/2017); Universitätsklinikum 
Tübingen, Germany (643/2017BO1); Universität zu Lübeck, Germany 
(17-272); Ludwig-Maximilians-Universität München, Germany (17-
640); Ärztekammer Hamburg, Germany (MC-316/17); Technische 
Universität Dresden, Germany (AK 464122017). All patients or their 
legal guardians provided written informed consent before inclu-
sion. The inclusion criteria for TRANSLATE NAMSE were the lack of 
a definitive diagnosis and the clinical suspicion of a rare disease. The 
medical records and family history of each individual were evaluated 
by a MDT, which comprised at least board-certified physicians of two 
specialities with domain-specific expertise. For each individual, the 
respective MDT then made recommendations concerning diagnos-
tics and further clinical management. To make the recommenda-
tion of exome sequencing, a board-certified human geneticist was 
additionally required within the MDT. For example, strong criteria 
for the indication of exome sequencing were congenital malforma-
tions, a syndromic phenotype, a positive family history suggestive of 
a monogenic disease and lack of absence of an alternative test with a 
comparable suspected diagnostic yield. A total of 1,577 patients (268 
adult and 1,309 pediatric) from the TRANSLATE NAMSE cohort were 
referred for exome sequencing on the recommendation of the MDT 
at the respective CRD (exome sequencing cohort). The phenotypic 
and molecular genetic data of these 1,577 patients were evaluated in 
the present analyses.

Clinical and laboratory phenotype data
Clinical and laboratory phenotype data were transferred to the 
sequencing laboratory in the form of hard-copy case report forms or 
as online data capture applications (Face2Gene Clinic). Online data 
capture allowed the free entry of HPO terms. Data from hard-copy 
report forms and free-text entries were transformed into HPO terms. 
The phenotypes reported in the present study are those that were 
reported to the sequencing laboratories. On the basis of the leading 
presenting clinical feature, each case was assigned to one of six major 
disease groups (Supplementary Fig. 1b). This allowed a more defini-
tive statement on diagnostic yield in relation to the clinical features 
of the patient. In the subsequent analyses, all assigned HPO terms 
(n = 1,649) were compiled and divided into higher-order groups (n = 12) 
and subcategories (n = 49) by expert clinicians. Therefore, patients 
were additionally assigned to at least one higher-order group as well 
as at least one subgroup. To assign a patient to an HPO-defined group, 
the patient had to have at least one of the HPO terms belonging to the 
respective group. The following higher-order groups were defined: 
1, neurodevelopmental; 2, neuromuscular; 3, seizures; 4, growth dis-
orders; 5, facial dysmorphism; 6, abnormality of connective tissue; 7, 
congenital malformations; 8, endocrine and metabolic abnormalities; 
9, immune and hematological abnormalities; 10, sensory organ altera-
tions; 11, abnormal findings on brain magnetic resonance imaging; 
12, others. Within the respective higher-order groups, HPO terms 
were further assigned to subcategories (n = 49) (https://github.com/ 
Ax-Sch/TNAMSE_geno_pheno/blob/main/resources/hpo_categoriza 
tion_19_12_2022.tsv).

DNA sequencing
Details on DNA sequencing for each sequencing laboratory are given 
in Supplementary Table 4. Trio sequencing was conducted for 58% of 
the cases. When additional informative relatives were available, these 
were also included in the analysis as permitted by German law (healthy 
minors were not analyzed). EDTA-treated whole-blood samples or 
saliva kits were delivered to one of the five participating sequenc-
ing centers (Berlin, Bonn, LMU Munich, Munich or Tuebingen) for 
further processing. After DNA extraction, fragment size and purity 
were assessed. If the DNA fulfilled all quality criteria, the sample was 
submitted for sequencing. Exome sequencing was performed on exon 
targets that were isolated using capture and either Agilent SureSelect 
Human All Exon kits v6 or v7 (Agilent Technologies), or the Human Core 
Exome Kit (Twist Bioscience). One microgram of DNA was sheared into 
350–400-bp fragments, which were then repaired, ligated to adaptors 
and purified for subsequent polymerase chain reaction amplification. 
Amplified products were then captured by biotinylated RNA library 
baits in solution, in accordance with the manufacturer’s instructions. 
Bound DNA was isolated with streptavidin-coated beads and reampli-
fied. The final isolated products were sequenced using the Illumina 
NextSeq 500, NextSeq 550, HiSeq 2500 or NovaSeq 6000 sequencing 
system and 2 × 100-bp paired-end reads (Illumina). All five sequenc-
ing centers ensured a coverage of over 20× in over 95% of the RefSeq 
target region.

Exome sequencing data-processing pipeline
Details on exome sequencing data processing for each sequencing 
laboratory are given in Supplementary Table 4. At each of the five 
sequencing centers, exome sequencing processing pipelines were 
established according to best practice guidelines. The DNA sequence 
was mapped to the published human genome build GRCh37 reference 
sequence using Burrows–Wheeler Aligner (BWA). The most up-to-date 
version at the time of sequencing was used, progressing from BWA 
v0.7.11 through to BWA-Mem v0.7.1771,72. Single nucleotide variants 
and small indels were detected with HaplotypeCaller (v3.7, v3.8 or 
v4.1; three laboratories, 40.0% of cases), Freebayes (v1.2.0, one labo-
ratory, 16.6% of cases) or HaplotypeCaller as well as SAMtools v.0.1.7 
(one laboratory, 43.4% of cases)73,74. Mitochondrial DNA variants were 
assessed using data from exome sequencing in three laboratories 
(80% of cases)75. Copy number variations were detected using Exo-
meDepth or ClinCNN on short-read data (two laboratories, 60.0% of 
cases), before exome sequencing by array CGH (two laboratories, 30.0% 
of cases) or not evaluated (one laboratory, 10.1%)76,77. Additionally, 
analysis for structural variants was only conducted by one laboratory 
(16.6% of cases). Analysis for uniparental disomy was performed in two 
sequencing laboratories (60.0% of cases) using the UpdHunter function 
of ngs-bits v2019_09 (https://github.com/imgag/ngs-bits) or custom 
scripts. Finally, analyses for mosaic variants were conducted by four 
laboratories (90% of cases).

Variants were annotated using VEP (four laboratories, 80.2% of 
cases)78 or Jannovar (one laboratory, 19.8% of cases)79 and analyzed in 
VarFish80, megaSAP (https://github.com/imgag/megSAP) or EVAdb 
(https://github.com/mri-ihg/EVAdb) or in tabular format depending on 
the center. Virtual gene panels were used in four out of five sequencing 
sites (56.7% of cases). In the sequencing site where no virtual panels 
were used, a similar approach (HPO-based and Online Mendelian Inher-
itance in Man (OMIM) full-text search) was used. Additionally, filter 
parameters specific for assumed modes of inheritances were applied 
(all laboratories; mainly cutoffs of allele frequencies or counts in the 
population database gnomAD).

The population background of each individual was estimated with 
peddy81. This revealed that the cohort was of predominantly European 
origin (Supplementary Table 1 and Supplementary Fig. 10).

Autozygosity was estimated using RohHunter, bcftools/roh or 
a sliding-window framework82–84. A small subset of samples was run 
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on all three tools, and this yielded comparable results for autozygo-
sity. A threshold of 2% was used to assign patients to a high- or a low- 
autozygosity group14 (Supplementary Fig. 11).

The variants identified in exome sequencing were assessed in 
accordance with the standards and guidelines of the ACMG for the 
interpretation of sequence variants85. At least two physicians or experts 
in molecular genetics participated in the assessment of the variants. 
Finally, all variants that were potentially disease-causing (pathogenic-
ity class 3–5) and actionable secondary findings were reported to the 
respective patients.

Cases in which no diagnosis could be established in a known 
disease-associated gene were included in national and international 
studies for the discovery of novel disease etiologies for example, via 
the MatchMaker Exchange network86,87. Variants with a high likelihood 
of being disease-causing, for example, those with loss of function 
or high pathogenicity scores, or those that had arisen de novo, were 
shared through MatchMaker Exchange or a similar network in order 
to identify similar patients88,89.

Statistical analyses
All statistical analyses were conducted in R (version 4.2.2)90. Propor-
tions were tested using a two-sided Fisher’s exact test. The significance 
level was set to α = 0.05, and P values were corrected via Bonferroni 
correction if necessary.

Visualization of phenotype space using UMAP
First, data on known diseases and their clinical features were down-
loaded from the HPO website (https://hpo.jax.org/app/download/ 
annotation, file: genes_to_phenotype.txt, downloaded on 10 April 
2021). The disease data were merged with the data of the 1,577 individu-
als from TRANSLATE NAMSE by treating each disease–ID as one indi-
vidual. Similarities in HPO terms between all pairs of individuals were 
then calculated using the R package ontologySimilarity (version 2.5). 
The similarities were then converted to a distance matrix and projected 
into a four-dimensional space using uniform manifold approximation 
and projection (UMAP). Subsequently, the first two dimensions of this 
projection were plotted using ggplot2 (version 3.3.4).

Variants amenable to carrier screening
In cases with autosomal recessive inheritance, disease-causing variants 
in ClinVar were queried in January 2017 (beginning of the project) to 
take into account the state of knowledge available at the time of analy-
sis. Variants were classified as amenable to carrier screening if they were 
classified as pathogenic or likely pathogenic in ClinVar or if they were 
predicted loss-of-function variants that were not predicted to escape 
nonsense-mediated messenger RNA decay. In compound-heterozygous 
inheritance, both variants were required to be (likely) pathogenic.

Comparison of disease-associated genes reported in 
TRANSLATE NAMSE with those reported in other cohorts
In the German healthcare system, genetic testing of the more frequent 
rare disorders, for example, retinitis pigmentosa or hearing impair-
ment, is performed using gene panels.

For a comparison with the cohort from the NIHR BioResource 
described in Turro et al.20, all disease-associated genes were first ranked 
according to the frequency of submissions of pathogenic and likely 
pathogenic variants to ClinVar. Disorders caused by genes in the first 
quartile of the ClinVar gene distribution, such as USH2A, ABCA4 and 
BMPR2, are more prevalent than phenotypes associated with genes 
in the fourth quartile. In addition, the year in which phenotype–gene 
associations had first been reported was determined to assess when 
a diagnosis could first have been established. The characteristics of 
the variants identified in the TRANSLATE NAMSE exome sequencing 
cohort were then compared with those identified in a cohort reported 
by Turro et al. in 2020.

Turro et al. subjected DNA from 9,802 individuals with a suspected 
rare disease to genome sequencing and reported pathogenic or likely 
pathogenic variants in 1,138 cases20. Around a quarter of these variants 
were assigned to genes with a high disease prevalence (Supplementary 
Fig. 4). In contrast, most disease-associated genes identified in the 
TRANSLATE NAMSE cohort were ultrarare, and more frequent diag-
noses were underrepresented.

Novel disease candidate genes
Sequence data from the unsolved cases were analyzed for variants in 
potential novel disease candidate genes. The following mandatory 
criteria for novel disease candidate genes were defined: (1) the gene 
had shown no previous robust association with any human phenotype; 
(2) no other clearly causative disease explanation was found; (3) the 
allele frequency of the respective variant was below the minor allele 
frequency cutoff or the variant was absent in controls; (4) inheritance 
was in accordance with the phenotype in the family and/or the variant 
co-segregated with the disease in multiple affected family members. 
As in the ClinGen approach and as suggested by others, characteristics, 
including gnomAD constraint metrics, inheritance and functional data, 
by which the level of evidence for the manually identified candidate 
genes could be assessed were defined61,91,92 (Supplementary Table 3). 
An evidence score was then calculated, which could reach a maximum 
value of 8. Three of the nine criteria can only be applied to genes with an 
autosomal dominant mode of inheritance (de novo status and gnomAD 
constraint metrics), rendering the score less informative for autosomal 
recessive inheritance. For autosomal dominant inheritance, a score 
of 1–3 was ranked as medium evidence and a score of 4 and above as 
high evidence. For recessive inheritance, a score of 3 or above was 
ranked as high evidence and a score of below 3 was ranked as medium 
evidence. Genes first published as disease-associated during the course 
of TRANSLATE NAMSE were classified as novel DGG.

Diagnostic yield prediction (YieldPred)
The TRANSLATE NAMSE exome sequencing cohort (n = 1,577) was 
randomly divided into a training set comprising 1,256 cases (399 
solved, 32%) and a test set comprising 321 cases (99 solved, 31%). The 
binary status of a case (1, solved; 0, unsolved) was regressed on the 
49 HPO-defined subcategories (cf. clinical and laboratory phenotype 
data) using LASSO for binary outcomes with the logit function as a 
link function (R package glmnet, version 4.1-4) and by controlling 
for age (adult/child), sex (male/female), sequencing laboratory and 
the use of the PEDIA workflow. Variable selection was applied on 
the 49 HPO-defined subcategories only. The model was fitted on 
the training set, and the penalty parameter was tuned via tenfold 
cross-validation. The resulting model was then applied to the test 
set, and its predictive performance was evaluated using the receiver 
operator characteristics curve.

We further validated the influence of the separate HPO terms 
on the model. Figure 5 shows the resulting coefficient plot and was 
checked for plausibility. We found a positive correlation between the 
number of HPO terms and the predicted probability on the complete 
TRANSLATE NAMSE exome sequencing cohort (n = 1,577; Supple-
mentary Fig. 6). Since the approach of HPO-defined subcategories 
ensures that multiple lower-order terms are only counted once, this 
finding indicates that a monogenic cause and diagnosis via exome 
sequencing is more likely if a patient exhibits a diverse set of clinical 
features. Furthermore, we investigated the discriminatory power of 
all 1,649 unique HPO terms that were annotated in the TRANSLATE 
NAMSE cohort. Considering each HPO term separately to discriminate 
between solved and unsolved patients led to an average AUC of 0.5 
(s.d. 0.003), that is, no discriminatory power. The maximum achieved 
AUC of a single HPO term, namely HP:0001263 (global developmen-
tal delay), was 0.58. As a sensitivity analysis, we then fitted a logistic 
regression on the complete TNAMSE cohort with the top five HPO 
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terms, namely HP:0001263 (global developmental delay), HP:0000252 
(microcephaly), HP:0001252 (hypotonia), HP:0001250 (seizure) and 
HP:0001251 (ataxia), and achieved an AUC of 0.64 (95% CI 0.61–0.67). 
On the complete TNAMSE set (that is, training and test set combined) 
our YieldPred model yielded an AUC of 0.72 (95% CI 0.69–0.74). In sum-
mary, there are some HPO terms that have higher discriminatory power 
than the majority of the HPO terms. However, the signal of YieldPred is 
additionally driven by the combination of multiple phenotypic features 
that are present in a patient.

To increase the portability and applicability of the Lasso model, 
two additional external and independent cohorts were included. This 
first external cohort (n = 753, 545 solved, 72%; Supplementary Table 5) 
was recruited by the Technical University of Munich, and all individuals 
consented in the scientific use of their phenotype and genotype data. 
As a second external cohort, we used the NIHR BioResource cohort 
described by Turro et al. (n = 5,510, 1,059 solved, 19%). The Lasso model 
was then retrained on cases of all three cohorts and 20% of the cases of 
each cohort were kept as hold-out test set. The AUCs of the final model 
ranged from 0.64 for the TRANSLATE NAMSE cases of the test set and 
0.65 for the Munich cases of the test set to 0.71 for the cases of the test 
set from the cohort of Turro et al. (Supplementary Fig. 5). The final 
model was provided as the tool YieldPred as a web service, where users 
can specify the age, sex and assigned HPO terms of their patient, while 
the remaining confounders are estimated via the mean confounder 
values of the training cohort.

PEDIA analysis
PEDIA integrated the facial image and clinical feature analysis with 
exome data analysis41. For each patient, a frontal facial image, clinical 
features encoded in HPO terminology, and exome sequencing data 
were available for analysis.

The PEDIA approach was used, in which the facial image analy-
sis was analyzed by GestaltMatcher40. GestaltMatcher was trained 
on 6,354 frontal images with 204 different disorders to learn the 
respective facial dysmorphic features, and it further encoded each 
image into a 512-dimensional facial phenotype descriptor. The model 
ensembles and test-time augmentation were later used to generate 
12 512-dimensional facial phenotype descriptors for each image93. 
The similarity between two patients can be quantified by averaging 
12 cosine distances of the facial phenotype descriptors. For each test 
image, a list of similarity scores for 816 disease-causing genes were 
obtained. To convert HPO terms of individual patients into feature 
scores for each gene, the CADA approach was used69. For the exome 
data, each variant was annotated with a version 1.6 CADD score42. After 
filtering out the common variants, the highest CADD score for each 
gene was taken.

In this analysis, benchmarking was performed on two cohorts: 
the PEDIA subcohort and the validation cohort. The PEDIA subcohort 
consisted of a subset of 224 of the 1,577 exome sequencing patients 
(194 pediatric, 30 adult). Of these, 94 had a molecular genetic diagnosis 
(86 pediatric, 8 adult). After the end of the 3-year TRANSLATE NAMSE 
recruitment period, a further 149 patients were enrolled and used as a 
validation cohort. In the validation cohort, 69 out of 149 patients were 
solved cases. All facial images analyzed in the present study can be 
accessed in GestaltMatcher Database (https://db.gestaltmatcher.org/) 
by the GMDB ID in Supplementary Tables 1 and 6. For each patient, each 
gene had a GestaltMatcher score, a CADA score and a CADD score. These 
three scores were the input of the PEDIA approach. The output for each 
patient was a list of genes, and each gene had a PEDIA score. The genes 
were then prioritized by ranking the PEDIA scores in descending order. 
To benchmark the performance, top-k accuracy was used, as calculated 
by the percentage of the patients with the disease-causing gene ranked 
in the top-k position. Finally, the top-1 to top-100 accuracies of the two 
cohorts (the PEDIA subcohort of the exome sequencing cohort and 
validation cohort) were reported.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The corresponding author agrees to fulfill any requests for materials 
not included in the article, subject to verification that the request 
adheres to the consent provided by the research participants. 
Patient-related data not included in the article may be subject to patient 
confidentiality. Raw sequencing data were not consented for sharing, 
except for the PEDIA subset, which is available upon request. Reported 
alleles and their clinical interpretation have been deposited in ClinVar 
using the following submitters: Institute for Genomic Statistics and 
Bioinformatics (University Hospital Bonn) (https://www.ncbi.nlm. 
nih.gov/clinvar/submitters/507028/, https://www.ncbi.nlm.nih.gov/ 
clinvar/submitters/508040/); Institute of Human Genetics, Klinikum  
rechts der Isar (Technical University Munich) (https://www.ncbi.nlm. 
nih.gov/clinvar/submitters/500240/); Institute for Medical Genetics  
and Human Genetics (Charité – Universitätsmedizin Berlin) (https:// 
www.ncbi.nlm.nih.gov/clinvar/submitters/505735/); Institute of Medi 
cal Genetics and Applied Genomics (University Hospital Tübingen)  
(https://www.ncbi.nlm.nih.gov/clinvar/submitters/506385/); and  
Genomics Facility (Ludwig-Maximilians-Universität München) (https:// 
www.ncbi.nlm.nih.gov/clinvar/submitters/507363/).

Code availability
The study’s landing page (https://www.translate-namse.de) redirects 
to a web service for the prediction of the diagnostic yield and the code 
repository at GitHub (https://github.com/Ax-Sch/TNAMSE_geno_ 
pheno). Code is also available via Zenodo at https://doi.org/10.5281/ 
zenodo.10964188 (ref. 94). All source codes are available under a crea 
tive commons license.
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