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A universal coordinate system that can ensemble the huge number of cells and capture their
heterogeneities is of vital importance for constructing large-scale cell atlases as references for
molecular and cellular studies. Studies have shown that cells exhibit multifaceted heterogeneities in
their transcriptomic features at multiple resolutions. This nature of complexity makes it hard to design a
fixed coordinate system through a combination of known features. It is desirable to build a learnable
universal coordinate model that can capture major heterogeneities and serve as a controlled
generative model for data augmentation. We developed UniCoord, a specially-tuned joint-VAE model
to represent single-cell transcriptomic data in a lower-dimensional latent space with high
interpretability. Each latent dimension can represent either discrete or continuous feature, and either
supervised by prior knowledge or unsupervised. The latent dimensions can be easily reconfigured to
generate pseudo transcriptomic profiles with desired properties. UniCoord can also be used as a pre-
trained model to analyze new data with unseen cell types and thus can serve as a feasible framework
for cell annotation and comparison. UniCoord provides a prototype for a learnable universal
coordinate framework to enable better analysis and generation of cells with highly orchestrated

functions and heterogeneities.

Cells in complex organs exhibit multifaceted heterogeneities, determining
the various physiological and pathological phenomena of life. Since the
discovery of cells, researchers have always been trying to classify cells into
different cell types with their morphological features, molecular markers or
cellular functions'. With the rapid development of single-cell omics tech-
nology, there arises the ambition to build cell atlases that can serve as a
reference to describe the multifaceted heterogeneities of cells™*. When given
a cell, a desired cell atlas should be able to locate the cell to a specific body
position and differentiation stage by assigning spatial and temporal coor-
dinates. Moreover, the atlas should describe cell types/states as well as the
activities of various biological processes of the cell, all of which can be
summarized as functional coordinates. A universal coordinate system is
essential to achieve this goal. A well-designed universal coordinate system
can organize the huge number of cells within a cell atlas in a quantitative
way, and thus benefit future molecular and cellular studies.

Many studies have been proposed to quantify the spatial, temporal, and
functional features of cells. For example, a variation of tools has been

developed to construct temporal trajectories or assign a pseudo-time score
to each cell in single-cell RNA-seq (scRNA-seq) data®"’. Similarly, with the
rapid development of spatial profiling technologies, tools keep emerging to
infer cell positions for scRNA-seq data''""*. Diverse features or systems were
proposed to illustrate the multifaceted functional characteristics of cells,
such as hierarchically organized cell types™'*"”, the continuum of cell states
related to tumor progression'®"” and cell cycle”’, and the index of macro-
phage activation states™. Beyond these approaches focusing on specialized
cellular features, some works attempted to build information systems that
organize these features within a unified framework, such as a spatial coor-
dinate system that labels the original sampling site of cells”’, and methods
that embed transcriptomic profiles of cells into a latent space without
explicit interpretations™*.

All these attempts tried to describe cells with specific features, which
can hardly serve as a universal coordinate system as they do not match the
complex nature of cells. For example, anatomic structures of human bodies
are conserved in the population, but there are great variations and

"MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China. 2School of Life
Sciences and School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China. These authors contributed equally: Haoxiang

Gao, Kui Hua, Xinze Wu.

e-mail: weilei92@tsinghua.edu.cn; zhangxg@tsinghua.edu.cn

Communications Biology | (2024)7:977


http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-06564-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-06564-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-06564-0&domain=pdf
http://orcid.org/0000-0003-4581-1723
http://orcid.org/0000-0003-4581-1723
http://orcid.org/0000-0003-4581-1723
http://orcid.org/0000-0003-4581-1723
http://orcid.org/0000-0003-4581-1723
http://orcid.org/0000-0003-2228-7025
http://orcid.org/0000-0003-2228-7025
http://orcid.org/0000-0003-2228-7025
http://orcid.org/0000-0003-2228-7025
http://orcid.org/0000-0003-2228-7025
http://orcid.org/0009-0004-0018-7597
http://orcid.org/0009-0004-0018-7597
http://orcid.org/0009-0004-0018-7597
http://orcid.org/0009-0004-0018-7597
http://orcid.org/0009-0004-0018-7597
http://orcid.org/0000-0002-1546-6458
http://orcid.org/0000-0002-1546-6458
http://orcid.org/0000-0002-1546-6458
http://orcid.org/0000-0002-1546-6458
http://orcid.org/0000-0002-1546-6458
http://orcid.org/0000-0001-5284-2259
http://orcid.org/0000-0001-5284-2259
http://orcid.org/0000-0001-5284-2259
http://orcid.org/0000-0001-5284-2259
http://orcid.org/0000-0001-5284-2259
http://orcid.org/0000-0002-7533-3753
http://orcid.org/0000-0002-7533-3753
http://orcid.org/0000-0002-7533-3753
http://orcid.org/0000-0002-7533-3753
http://orcid.org/0000-0002-7533-3753
http://orcid.org/0000-0002-9684-5643
http://orcid.org/0000-0002-9684-5643
http://orcid.org/0000-0002-9684-5643
http://orcid.org/0000-0002-9684-5643
http://orcid.org/0000-0002-9684-5643
mailto:weilei92@tsinghua.edu.cn
mailto:zhangxg@tsinghua.edu.cn

https://doi.org/10.1038/s42003-024-06564-0

Article

flexibilities in morphology and sizes among individuals, except the cellular
conformation™. Studies have shown that cells exhibit multifaceted hetero-
geneities in their transcriptomic features, including spatial, temporal and
functional gradients at multiple resolutions™ . This makes it hard to design
a fixed coordinate system with known cell types, locations and sampling
time points to capture and index all the gradients, especially when con-
sidering the fact that the currently measured features are still far from
providing the whole information of cells. It is desirable to build a learnable
universal coordinate system that can capture all major heterogeneities in
currently available data and can be compatible for future extensions when
data with richer information are available. Such a system should be able to
integrate both discrete and continuous coordinates within a single model,
and these coordinates are preferable with interpretability. The system
should also provide possibilities of generating pseudo cells by reconfiguring
coordinates to help explore cell states that are not included in existing data or
can hardly be observed by experimental approaches.

In this work, we developed a Universal Coordinate model (UniCoord)
that learns to represent cells with a series of discrete and continuous features
according to transcriptomic profiles. It used a specially tuned joint varia-
tional autoencoder (VAE) model to learn key features that best represent
cellular heterogeneities. Each feature can be either discrete or continuous,
and either supervised by prior knowledge or unsupervised. We applied
UniCoord on several datasets, and the results showed that UniCoord is able
to capture multiple key cellular features such as spatial, temporal and
functional gradients from massive data. These features are powerful for
accurate data reconstruction and label identification. Furthermore, Uni-
Coord can serve as a controlled generative model for data augmentation,
such as generating pseudo cells with desired features and interpolating extra
cells in spatial or temporal gradients to fill the gaps between sampled cell
states. UniCoord can be used as a pretrained model feasible to analyze new
data with unseen cell types, such as using a UniCoord model trained by
healthy data to analyze disease data. UniCoord provides a prototype for a
learnable universal coordinate framework for analyzing the highly orche-
strated functions and multifaceted heterogeneities of diverse cells, and paves
the way towards a seamless cell atlas by unified organization and data
augmentation.

Results

Overview of UniCoord

We developed UniCoord to learn key features that represent cellular het-
erogeneities from scRNA-seq data. We devised a specially tuned joint-VAE
model to represent the transcriptomic profile of a single cell in a low-
dimensional latent space. A conventional VAE model’ includes an encoder
and a decoder (Fig. 1, see “Methods” for details). The encoder transforms the
transcriptomic profile of a single cell into a set of means to represent the
features about cellular heterogeneities, and a set of variances to deal with
uncertainty. The decoder samples from the latent space according to the
distribution defined by the means and variances learned by the encoder, and
then transformed the sample into a generated transcriptomic profile.

The goal of UniCoord is to represent the transcriptomic profiles of cells
in the latent space with interpretability. We thus designed each dimension in
the latent space to be either supervised by prior knowledge or unsupervised.
We trained the supervised dimensions to capture information corre-
sponding to well-defined features of the cell, such as the activity of a bio-
logical pathway, the differentiation stage, or the clinical diagnosis of the cell’s
donor. We trained the unsupervised dimensions to capture complementary,
yet unknown information of the cell, such as an unsupervised classification
or score of cells. Through this approach, the latent dimensions can be
regarded as the universal coordinates of cells.

Both discrete and continuous features can be used to represent cellular
heterogeneities. For instance, the cell type and sequencing platform are
commonly considered discrete features in RNA-seq studies. The spatial,
temporal, and functional gradients are continuous features of vital impor-
tance to the analysis of biological processes. We proposed a model based on
joint-VAE”, a disentangled representation framework that can deal with
both discrete and continuous features in a single model, to handle these
multifaceted heterogeneities. We considered two main aspects of loss in
model training. We considered the reconstruction loss between the original
and constructed data, which guaranteed the accuracy of the VAE model.
Besides, we designed different loss functions for different forms of super-
vised features to make these features consistent with prior knowledge (see
“Methods” for details).

Generating pseudo-single-cell data by in silico reconfiguration
Abundant transcriptomic profiles of cells are essential in the analysis of
physiological and pathological processes. However, the cell numbers in
existing data are often not sufficient, and it is challenging to experimentally
observe certain cell types or states, especially for intermediate states. We thus
introduced a feature of UniCoord named in silico reconfiguration to gen-
erate cell pseudo-single-cell transcriptomic profile data with desired fea-
tures. After training, we can modify the value of any latent dimension of any
cell to the value we expect (such as altering a sequencing platform to
another), and then use UniCoord to generate a new transcriptomic profile.
By this way, we can “reconfigure” the cell into a new one with desired
properties.

We first evaluated in silico reconfiguration of discrete features, such as
the sequencing platforms and cell types. We trained a UniCoord model with
the lung data in the human Ensemble Cell Atlas (hECA)’, and used cell
types, sequencing platforms, and unsupervised continuous latent dimen-
sions as the latent dimensions. The original scRNA-seq data derived from
different sequencing platforms were separated in the Uniform Manifold
Approximation and Projection (UMAP) plot (Fig. 2a), which is mainly due
to the distinct distribution of data such as the median number of expressed
genes in each cell (Supplementary Fig. 1a). We used the latent representation
of original cells as the seed and reconfigured the mean value of the latent
dimension corresponding to the sequencing platform into “10X”. We then
sampled random variables from the modified distribution and used the

Fig. 1 | The schematic diagram of UniCoord. The
encoder transforms the transcriptomic profile of a
single cell into a low-dimensional latent space. The
decoder samples from the latent space and trans-
formed the sample into a generated transcriptomic
profile. The latent dimensions can either be inter-
pretable (supervised) or unsupervised, and can
either be discrete or continuous. The latent dimen-
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four mouse organs, colored by tissues (left), vessel types (middle), or normalized
artery-capillary-vein zonation scores (right). The zonation scores were normalized
to be between 0 and 1. h UMAP plots of original cells (blue) and cells with zonation
scores reconfigured into different values (yellow). For both models, all genes in the
dataset were adopted to perform the experiments, and the number of unsupervised
latent dimensions was set as 50. a, b All genes were used for visualization.

¢, e, g, h Highly variable genes (HVGs) were used for visualization. ¢, e, h For each
generated cell, we calculated its nearest neighbor in the original dataset for
visualization.

sampled random variables. We found that the generated cells were joined
together and clustered well by cell types (Fig. 2b). These generated cells
showed similar distributions of the number of expressed genes, regardless
the platform that their corresponding original cells were derived from
(Supplementary Fig. 1b). We then reconfigured the cell types of all cells into
a specified one. When we reconfigured the cell type as T cells and the
sequencing platform as “10X”, the generated data highly expressed markers
of T cells, including PTPRC, CD3E, and TRAC (Fig. 2¢, d). When we
reconfigured the cell type as fibrocytes and the sequencing platform as
“10X”, these immune-related markers were turned off, and extracellular
matrix markers such as DCN and COL1A I were highly expressed (Fig. 2e, f).
We also reconfigured the cell type as T cells/CD8 T cells and the sequencing
platform as “Microwell-seq” of all cells. The generated cells also showed to
be similar to the corresponding original cells (Supplementary Fig. 1c, d).
In silico reconfiguration can also be applied to continuous features. To
demonstrate this, we trained a UniCoord model with the data of vascular
endothelial cells from four tissues (brain, heart, liver, and testis) in a mouse
endothelial atlas”, with tissue origin, zonation scores, and unsupervised
continuous latent dimensions as the latent dimensions. The original study
discovered an artery-capillary-vein trajectory in vascular endothelial cells
and raised a zonation score to describe the location of a cell on the trajectory.
Thus, we used the information of tissues, zonation scores (normalized to be
between 0 and 1), and unsupervised continuous latent dimensions as the
latent dimensions. The result showed that UniCoord successfully recon-
structed the information of tissues as well as the zonation trajectory (Fig. 2g).
We then reconfigured the zonation scores of all cells and generated pseudo

vascular endothelial cells. The generated cells were accurately placed at the
designated locations on the trajectory (Fig. 2h and Supplementary Movie 1).
These results demonstrated the advantage of in silico reconfiguration with
UniCoord in generating pseudo cells with desired properties, which could
help analyze and integrate datasets from different sources.

Interpolating timestamps or spatial coordinates to fill data gaps
Cell state transitions are always continuous, but it is impossible to obtain
continuous observation of cellular transcriptomic profiles through high-
throughput sequencing technologies. One common approach to obtain
time-series single-cell transcriptomic data is to measure samples at different
time points. However, there still exist inevitable gaps between time points.
We thus used the in silico reconfiguration approach to obtain a more
continuous and comprehensive view of cell state transitions by timestamp
interpolation. We trained a UniCoord model with a mouse iPSC repro-
gramming dataset’™. In this dataset, cells were treated with doxycycline to
induce mouse embryonic fibroblasts (MEFs) de-differentiating into iPSCs,
and were then transferred to either serum-free 2i medium or serum medium
on day 8 (Fig. 3a). Cells in the serum medium are more likely to re-
differentiate into stromal cells and neurons (Fig. 3b, ¢). The dataset covered a
total of 18 days at half-day intervals, forming a discrete trajectory (Fig. 3a).
We used timestamps and unsupervised continuous latent dimensions as the
latent dimensions. After training, we sampled cells from each time point and
used their latent representations as seeds. We reconfigured the latent
dimension denoting the timestamp of each sampled cell by adding the
original value with a uniformly random variable between -0.5 to 0.5 day.
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sample layer is shaded in gray in (g, k).

Through this approach, we interpolated the missing time points and created
a continuous trajectory (Fig. 3d). We found that the trend in the evolution of
cell types became more evident (Fig. 3f). Furthermore, though we did not
encode any information about the experimental design, the interpolated
results showed clear subgroups of cells with different treatments (Fig. 3e).

We then investigated whether UniCoord can restore the tran-
scriptomic profiles of cells unseen in training. We excluded the data with a
certain timestamp during UniCoord training and tried to restore the
excluded data by timestamp reconfiguration (see “Methods” for details). We
first excluded the data of day 1 and restored the cells with the “unclassified”
label by reconfiguring the timestamp of all other unclassified cells as day 1.
We calculated the mean gene expression of the unclassified cells of each day
and compared the restored data with them by the Pearson’s correlation
coefficient (PCC). As shown in Fig. 3g, the restored unclassified cells showed
to be most similar to the original unclassified cells of day 1.5. We performed
similar experiments to restore unclassified cells from day 0 to day 8. We
found that though the restored data showed a high PCC with the original
data with the corresponding timestamp, they showed to be most similar to
the original data with adjacent timestamps (Fig. 3h). This may be due to the
absence of the corresponding timestamp data in the training dataset pre-
venting the model from precisely capture the trend of the data and pre-
ferring to infer it from data with adjacent timestamps.

UniCoord can also be applied to reconstruct spatial trajectories by
interpolating spatial coordinates. In our recent work on human heart cell
atlas™, we sampled cardiomyocytes (CMs) from four layers of the left
ventricle with different depths, and found these CMs from different layers
exhibited distinct characteristics (Fig. 3i). We used UniCoord to interpolate
the continuous change between these layers. We trained a UniCoord model
with the data using the information of sample layers and unsupervised

continuous latent dimensions as the latent dimensions, where the four
sample layers are treated as numeric layer 1-4, respectively. After training,
we sampled cells from each layer, and reconfigured the latent dimension
denoting the layer information by adding the original value with a uniformly
random variable between -1 to 1. We generated pseudo cells with this
approach and found that the generated data formed a continuous spatial
trajectory (Fig. 3j). We then excluded data from layers 1, 2, 3, and 4,
respectively, and used UniCoord to restore these unseen data by reconfi-
guring cells of all other sample layers (“Methods”). As shown in Fig. 3k, the
restored data of layers 1, 2, and 3 showed most similar to the original data for
the corresponding layer. The restored data of layer 4 showed comparable
similarity to the original data of layers 3 and 4, which may be due to the fact
that the extrapolation task is more difficult than the interpolation task. All
the results demonstrated the versatility and potential of UniCoord in
reconstructing spatial and temporal trajectories by interpolating timestamps
or spatial coordinates, allowing for more comprehensive and accurate
analyses of complex biological processes.

Pre-training UniCoord model with cell atlas data for analyzing
disease-related cells

We applied UniCoord on the hECA data’ which has a total of 1.09 million
cells to represent the cellular heterogeneity in the atlas. We randomly
sampled 50,000 cells from the dataset and used these cells to train a Uni-
Coord model. We used three aspects as the latent dimensions: cell types,
sequencing platforms, and biological process (BP) features that represent
the information of specific biological processes. To calculate BP features, we
first applied AUCell” on the transcriptomic profiles of the training cells to
convert gene expression levels into the activity strengths of Gene Ontology
Biological Process (GOBP) terms™”. We then trained a random forest
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model that used these strengths to classify cell types, and identified the top
100 GOBP terms with the highest important scores. After, we clustered these
terms into 30 groups and selected the term that showed the activity strength
in each group. These selected GOBP terms were regarded as the key GOBPs
(Supplementary Fig. 2 and Supplementary Table S1), and the AUCell scores
of these key GOBPs were regarded as values of BP features (see “Methods”
for details).

We took the UniCoord model trained by hECA data as a pretrained
model to analyze data that were not included in the training dataset. We
used the model to represent cells in a hepatocellular carcinoma (HCC)
dataset™. The dataset contains 56,721 cells from 46 distinct liver tumor
samples (Fig. 4a, b). As shown in Fig. 4c, d, cells represented by the Uni-
Coord model were less sensitive to the batch of samples. UMAP visualiza-
tions of the GOBP latent dimensions of these cells showed similar results
(Supplementary Fig. 3b), suggesting that the batch effects were eliminated
during the calculation of GOBP activity strength. However, when visua-
lizing the representation results of malignant cells, we can still find some
differences among different patients (Supplementary Fig. 3¢, d), suggesting
that the heterogeneities of malignant cells were not totally overlooked by the
UniCoord model.

We then used UniCoord to annotate cell types of the HCC data
(Fig. 4e). We found that the cell types unseen in hECA data were predicted as
the related cell types (Fig. 4f). For example, cancer-associated fibroblasts
(CAFs) were mainly annotated as smooth muscle cells as they share several
important markers such as a-smooth muscle actin”. Besides, tumor-
associated macrophages (TAMs) and tumor endothelial cells (TECs) were
mainly annotated as their corresponding progenitor cell type, respectively.
Interestingly, malignant cells were predicted as “others” which is a mixture
of all cell types with small quantities in hECA. This suggested that the
pretrained UniCoord model successfully discovered that malignant cells
were different from any cell type encoded in the model. Besides, B cells in the
HCC data were also mainly predicted as “others”, suggesting that the state of
these B cells was deviated from healthy B cells.

We investigated the BP features in the representation of the HCC data
(Supplementary Fig. 3a, see “Methods” for details). We found that BP fea-
tures such as B cell receptor signaling pathway, phagocytosis & recognition,
and peptide cross-linking were highly activated in B cells. Connective tissue
development, muscle cell development, and extracellular matrix organiza-
tion were highly activated in CAFs. These BP features are highly related to
the functions of the corresponding cell type. Malignant cells exhibited the
lowest score of positive regulation of cell killing, which is consistent with
their uncontrolled proliferation. The results showed the feasibility of Uni-
Coord as an interpretable pretrained model for representing and decoding
complex cell heterogeneities.

We then investigated whether UniCoord can capture patient-specific
information. We trained a UniCoord model with patient IDs and cell types
as latent dimensions. We analyzed the five patients with the highest number
of malignant cells. We generated new cells by reconfiguring the patient ID of
malignant cells from patient H72 as H70. We calculated the correlation
between each generated cell and the mean gene expression (Supplementary
Fig. 3e). It can be seen that although the generated cells were reconfigured
from H72, they showed much higher correlation with H70. This result
indicated that UniCoord can be used to identify patient-specific features.

Discussion

In this work, we presented UniCoord, a universal coordinate model that can
represent cells with discrete and continuous features computationally
derived from gene expression and/or metadata. We showed that UniCoord
can efficiently capture the information in single-cell transcriptomic profiles.
The resulting features can be used to well reconstruct the original tran-
scriptional profiles and generate pseudo cells. The features can be either
unsupervised or supervised by prior knowledge. The supervised features can
be further interpreted for understanding cellular heterogeneities, and the
unsupervised features can help extract information remaining to be char-
acterized in current studies. Moreover, we demonstrated that UniCoord can

serve as a pretrained model that can be generalized to unseen data or cell
types. These capabilities make UniCoord a powerful tool for analyzing the
highly orchestrated functions and multifaceted heterogeneities of scRNA-
seq data.

One major advantage of UniCoord is its capability to generate pseudo-
single-cell data by in silico reconfiguration, which can serve as a controlled
generative model for data augmentation. This may be helpful to obtain
transcriptomic profiles of desired cells or cell states that can hardly be
observed experimentally. We demonstrated in silico reconfiguration by
configuring sequencing platforms and cell types. We also showed that by in
silico reconfiguration, UniCoord can reconstruct continuous trajectories
from discrete data by interpolating the missing time points or unsampled
spatial locations. This approach can help integrate datasets from different
sources and generate pseudo cells to fill spatial, temporal or functional gaps
in current data, both of which will contribute to the construction of cell
atlases by unified organization and data augmentation. With the rapid
development of generative deep learning models, there have been several
other studies to conditionally generate pseudo-single-cell data which also
have the potential for augmenting data***’. Benchmarking these methods is
an important issue for future improvement and utilization of UniCoord.
Furthermore, as an interpretable model, UniCoord is complemented with
the fashionable large-scale pretrained models** ™. The results produced by
these large models can be interpreted by UniCoord, and UniCoord can
generate pseudo cells with high confidence to fit the huge demand of data for
large model training.

It should be noted that the performance of UniCoord may be influ-
enced by the quality and quantity of training data, particularly in smaller or
less diverse datasets. Although UniCoord can interpolate data to fill gaps, the
accuracy of the interpolated values could be limited in situations with high
data sparsity or large gaps. UniCoord could benefit from the development of
a more comprehensive and refined cell atlas that covers a wider range of cell
types and aspects of cellular heterogeneities. Besides, the design of BP fea-
tures can be further improved to enhance the clarity. In the future, Uni-
Coord can be extended to more types of omics data to form a multiscale
framework for representing cellular complexity, and more applications,
such as measures of cellular functional distance and in silico perturbation of
cell states can be further explored based on the framework.

Methods

The model of UniCoord

UniCoord was derived from the joint-VAE model™ with some refinements.
The latent space of UniCoord differs from conventional VAE in two aspects:
() thelatent space of UniCoord is a combination of discrete and continuous
dimensions, while conventional VAE only contain continuous dimensions;
(b) each dimension in UniCoord could be physically interpretable if
supervised by prior knowledge.

The gene expression level x; of cell i could be modeled by a conditional
distribution p(x;|ID;, UD;, IC;, UC; ), where ID;, UD;, IC;, and UC; stand
for interpretable discrete, unsupervised discrete, interpretable continuous
and unsupervised continuous latent dimensions for cell #, respectively. ID;
and IC; capture information corresponding to well-defined features of the
cell, such as the activity of a certain biological process, the differentiation
stage of the cell, or clinical diagnoses of the cell’s donor. UD;and UC; capture
complementary, yet unknown information in the data. UD; and UC; also
play auxiliary roles that help the model reconstruct the original data. The
mapping function p from these latent dimensions to expression levels is
learned by training a neural network called decoder, and the posterior
distribution of latent variables q(ID;, UD;, IC;, UC,|x;) is learned by train-
ing another neural network called encoder.

Model structure

The UniCoord model consists of an encoding module, a reparameterization
module, and a decoding module. The encoding module processes the input
data through three linear layers, with dimensions of 512, 256, and 128,
respectively. The first and second linear layers have a dropout probability of
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Fig. 4 | Analyze HCC data using the UniCoord model pretrained by hECA data.  are colored by cell types (c), sample IDs (d), and UniCoord-predicted cell types (e).
a,b The UMAP plot showing the landscape of the HCC dataset, represented by PCA.  f The relations between original labels (top) and cell types predicted by UniCoord
Cells are colored by cell types (a) or sample IDs (b). c-e The UMAP plot showingthe  (bottom). Protein coding genes in the dataset were adopted to perform the experi-
landscape of the HCC dataset, represented by the pretrained UniCoord model. Cells  ments. All genes were used for visualization all UMAP plots.
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0.1. All three linear layers use the ReLU activation function. The output of
the third linear layer was then transformed into two groups of parameters
serving as the latent space. For continuous latent dimensions, two linear
layers are used to map the output of third linear layer to mean and logarithm
of variance, respectively. For each discrete latent dimension, a linear layer is
used to map the output to its one-hot encoded value.

The reparameterization module samples from the latent space con-
structed by the encoder. The reparameterization trick can disentangle
random variables with parameters and make back propagation algorithm
possible. For continuous latent dimensions, we kept the conventional
reparameterization trick used in VAE". For discrete latent dimensions, we
applied the Gumbel-softmax reparameterization’ for sampling.

The decoding module maps the samples provided by the repar-
ameterization module back to the representation of the original data. The
decoding model uses four linear layers to map the data from the dimensions
of the latent samples to 128, 256, 512, and the dimensions of the original
data, respectively. The second and third linear layers have a dropout
probability of 0.1. All four linear layers use ReLU activation functions. The
output of the decoding module is regarded as the generated data.

In all experiments of this study, the interpretable discrete dimensions,
such as cell types and sequencing platforms, were encoded by one-hot
encoding. The method for constructing BP features were explained below.
All other interpretable continuous dimensions, such as timestamps and
spatial coordinates, were encoded as their original values. For all models
with unsupervised latent dimensions, the number of unsupervised con-
tinuous dimensions was set as 50, the number of unsupervised discrete
dimensions was set as 0.

Loss functions
The loss function of UniCoord is composed of several parts, and each part
gives the model a specific feature. In general,

Loss = /\reconsmction * Lreconsruction + ﬁ * (LGaussianKL + LCategoryKL>

+/1diffusion * Ldiffusion + Aregression * Lregression + Aclassiﬁcation

* Lclassiﬁcation + Ahierarchiml * Lhierarchical

All As are hyperparameters that control the weight of each part, and
details of each loss are introduced below.

Reconstruction loss. The reconstruction loss is the basic part of losses
that make the model an autoencoder. It is defined as the MSE between the
reconstructed data x” and original data x:

1 2
_ /
L econsruction = ; E E (xij - xij)
=1 j=1

Where 7 is the number of cells, m is the number of genes, X;; represents the
expression level of gene j in cell i, and xj; represents the reconstructed
expression level of gene j in cell i.

KL divergence. KL divergence works as the regularization component
that prevents over-fitting. For continuous dimensions, KL divergence
constrains the posterior distribution to be close to a standard normal
distribution. For discrete dimensions, KL divergence constrains the
posterior distribution to be close to a uniform categorical distribution.

Diffusion loss. Some of the continuous dimensions can be defined as
diffusion dimensions, playing the same roles as reductions in the diffu-
sion map. We desired cells with similar scores in diffusion dimensions
should also be similar in expression levels. So, we first constructed k-
nearest neighbors for all cells and then calculated the average of the latent
distribution of one cell’s neighbors. The average was inputted into the
decoder to generate a reconstruction expression vector x”. The diffusion
loss is defined as the MSE between x” and the original data x.

Regression loss. The regression loss is the MSE loss between the original
label and the mean parameter of the corresponding latent continuous
dimension.

Classification loss. The classification loss is the cross entropy between
the original label and the corresponding latent discrete dimension.

Hierarchical loss. The hierarchical loss is the cross entropy between two
latent discrete dimensions that are designed to have hierarchical rela-
tionships. The descendant layer labels are first aggregated to ancestor
labels following the designed relationship. Then the cross entropy
between the aggregated labels and the model-generated ancestor labels is
defined as the hierarchical loss.

Model training

The “chunk_size” parameter is used to divide the training dataset into
multiple parts for training in chunks. This is particularly useful for large
datasets as it can reduce the memory and computation resources required
for each iteration to improve training efficiency. By default, the “chunk_-
size” is set to 20,000. The model is optimized using the Adam optimizer by
default, and the default learning rate is 5e-4.

Computational performance

We evaluated the computational performance of UniCoord during
training on the hECA dataset. We employed an NVIDIA GTX 1080 Ti
GPU to train on the dataset, which consists of 56,721 cells. The training
process took ~4 min to complete. During this process, the GPU memory
consumption was observed to be around 9GB. It is noteworthy that the
usage of CPU resources and system memory was not substantial. This
provides practical insight into the feasibility of implementing UniCoord
on similar-scale datasets using commonly available high-performance
computing resources.

Generation of BP features

The BP features are selected from GOBPs. To avoid outliers of enrichment
analysis, we kept GOBP gene sets with gene numbers between 50 and 500,
which resulted in 2535 gene sets. Each of these gene sets was used to calculate
an enrichment score for all cells in hECA data. Enrichment scores were
calculated for each gene set across all cells in hECA data using the AUCell
function in the SCENIC package™ with default parameters. Information
entropy was then calculated for the AUCell scores of each gene set, and
10,000-fold permutation tests were performed to obtain P values of the
information entropy. We kept gene sets with P values <0.001 to train a
random forest classifier to classify cell types in the hECA dataset annotated
by the unified Hierarchal Annotation Framework (uHAF)*. The feature
importance was evaluated using the feature_importance score of the clas-
sifier, and gene sets with the top 100 most important scores were selected to
calculate the Pearson’s correlation coefficients between each other’s scores.
Hierarchical clustering was performed to identify gene set groups with high
correlations. We cut the hierarchical clustering to 30 groups and selected the
one with the highest information entropy from each group. These 30 gene
sets and their corresponding AUCell scores make up the BP features.

Cell generation and evaluation

For the cell restoration experiment of the mouse iPSC reprogramming
dataset, we excluded the data with the timestamp to be inferred from the
dataset. For the cell restoration experiment of the left ventricle CM
dataset, we excluded the data with the sample layer to be inferred. For all
cell restoration experiments, we divided the dataset as a training set
(80%) and a test set (20%). We trained the UniCoord model with the
training set, and then restored the excluded data with the testing set
(20%) by reconfiguring the corresponding timestamp/layer. After, we
calculated the mean gene expression of each timestamp/layer in the
original data and calculated the PCC between the mean gene expression
and the restored data.
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scRNA-seq data analysis

Details of all scRNA-seq datasets used in this study can be found in Data
Availability. The scRNA-seq data analysis was based on the Python package
Scanpy”. As UniCoord needed the normalized data, we applied
sc.pp.normalize_total (target_sum = le4, exclude_ highly_expressed =
True), and sc.pp.loglp (default parameters) before feeding data into our
model. For visualizing the landscape of single cells, we follow the standard
analysis tutorial of Scanpy, and the data generated from UniCoord were also
handled with the same procedure.

Analysis related to UniCoord was conducted with our Python package,
unicoord. Differentially expressed genes and differential BP feature activities
(Supplementary Fig. 2) were detected using the tlrank_genes_groups
function in Scanpy.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

We only used public datasets in this study. The hECA data can be down-
loaded through the Python package ECAUGT®. The mouse endothelial
atlas dataset is available on the ArrayExpress database, with the Entrez
accession number E-MTAB-8077. The mouse iPSC reprogramming tra-
jectory data is available on the Gene Expression Omnibus (GEO) database
with the accession number GSE122662. The human heart cell atlas data can
be downloaded from its interactive website (http://xglab.tech/hahca). The
HCC dataset is available on the GEO database with the accession number
GSE151530.

Code availability
The Python package UniCoord is available at https://github.com/pluto-the-
lost/unicoord or Zenodo®.
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