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Previous work has shown that binding of target proteins to a sparse, unbiased sample of all possible
peptide sequences is sufficient to train a machine learning model that can then predict, with
statistically high accuracy, target binding to any possible peptide sequence of similar length. Here,
highly sequence-specific molecular recognition is explored by measuring binding of 8 monoclonal
antibodies (mAbs) with specific linear cognate epitopes to an array containing 121,715 near-random
sequences about 10 residues in length. Networkmodels trained on resulting sequence-binding values
are used to predict the binding of eachmAb to its cognate sequence and to an in silico generated one
million randomsequences. Themodel always ranks thebindingof thecognate sequence in the top100
sequences, and for 6 of the 8 mAbs, the cognate sequence ranks in the top ten. Practically, this
approach has potential utility in selecting highly specific mAbs for therapeutics or diagnostics. More
fundamentally, this demonstrates that very sparse random sampling of a large amino acid sequence
spaces is sufficient to generate comprehensive models predictive of highly specific molecular
recognition.

There are many examples of using machine learning approaches to analyze
or engineer protein structure, binding or function starting with amino acid
sequence (reviewed previously1–4). Past work from this lab has focused on a
simple sequence-binding system based on large libraries (>100,000 unique
sequences) of essentially randomsequence peptideswith lengths of about 10
amino acids. These peptides are synthesized in high density arrays on silica
surfaces using photolithographic approaches common in the electronics
industry5. The arrays are made commercially by the hundreds with extre-
mely high reproducibility, and thus represent a convenient and inexpensive
tool for developing sequence-binding relationships for large numbers of
samples. Initially, the binding of a set of nine different proteins was
analyzed6. Thefluorescently labeled proteins were incubatedwith the arrays
and the binding to each sequence was recorded. A fraction of the peptide
array data was used to train a fully connected neural network resulting in a
model which was then used to predict the binding to the remaining
sequences on the array. The sequences not used for training represented an
independent and nearly random test sample set. Because the sequences are

essentially random, this implied that the approach was able to create sta-
tistically accuratemodels for the binding of each of the nine diverse proteins
to any of the roughly trillion possible amino acid sequences in this length
range (correlations of measured vs. predicted binding typically >0.95). A
similar approach was then applied to total IgG in serum for a group of >500
individuals from 6 different cohorts (4 cohorts with viral infections, one
cohort with Chagas disease and one with no known infections)7. Again, it
was possible to predict IgG binding for each individual to any sequence in
this length range with high statistical accuracy. Further, the disease specific
information was captured by the model such that the ability to distinguish
between cohorts using either supervised classification our unsupervised
clustering was more accurate when using the model output than using the
raw data, particularly in the presence of sequence independent noise in the
measured data. Recently, the approach has been applied to understanding
the humoral immune response to Lyme Disease using similar approaches8.

Peptide binding to protein surfaces or to total IgG associated with
polyclonal immune responses both involve many possible interactions
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between the target or sample and each sequence. Thus,what ismodeled is an
average response and this is generallymore continuous in terms of sequence
variation vs. binding affinity than one might expect for a single, highly
specific interaction between a target and a particular amino acid sequence. It
is likely that developingmodels that recognize interactionswith very specific
sequences based on binding measurements to a sparce, random set of
peptide sequences would be much more challenging. Here, the ability of
such peptide array-based models to predict the binding of a monoclonal
antibody (mAb) to a particular linear cognate sequence that it is known to
bindwithhigh specificity andhighaffinity is examined.This is performedby
training a neural network model on the binding levels of each of eight such
mAbs to 121,715 peptide sequences chosen nearly randomly and synthe-
sized in an array format. The resultingmodels are then used to compare the
predicted binding level of the cognate sequence for eachof the eightmAbs to
the predicted binding levels of a set of one million randomly selected
sequences. If the model is accurate, one would both expect that it would
predict a binding affinity for the cognate sequence that ranks near the top of
the list of binding levels for the million random sequences and additionally
that it would be able to accurately predict which of the amino acids in the
cognate sequence were essential to binding.

The primary goal of this work is to explore whether measurements of
the binding of amAb to a sparse, random sample of combinatorial sequence
space can be used to train a machine learning model to recognize the very
specific sequence-binding interactions of that mAb. However, descriptions
of mAb binding are of potential practical interest as well due to their broad
applications in research, diagnostics and therapeutics. Currently there are
more than 150 approved mAbs in use therapeutically or under review9 and
many more involved in diagnostic tests and as research reagents. The key
qualities of mAbs are their affinity and specificity, with mAbs often having
dissociation constants of tens to hundreds of picomolar with relatively little
off-target binding10. Binding typically involves interactions between the
mAb and amino acids in a specific spatial arrangement11. This can be the
particular order of aminoacids in a linear sequence (continuous epitopes) or
their arrangement at the surface of a protein, potentially from multiple
noncontiguous regions (discontinuous or structural epitopes). Themultiple
interactions at defined positions is what affords the mAb both high affinity
and high specificity.

Many experimental and computational tools exist to explore mAb
binding interactions. Experimentally, X-ray crystallography can provide the
highest structural resolution of antibody-antigen binding, but is not suited

for exploring weaker binding interactions12 or very large numbers of mAb-
antigen pairs. Cross-linkingmass spectrometry can provide insight into off-
target binding interactions, but lacks the resolution and sensitivity to
quantitate relative binding affinities13,14. Peptide microarrays and bead
libraries consistingof tiledprotein orwhole proteome sequences canbeused
to determine binding sites of antibodies, but are generally specific to the
sequences tiled and, for whole proteomes, may require either very large, or
rather specialized, libraries15,16, though generalized approaches have also
been developed17. Computationally, the complexity of these interactions has
made predictive modeling of mAb binding and epitope prediction a chal-
lenging problem18. Molecular docking is a useful computational tool to
estimate antibody-antigen binding sites but can be computationally
expensive when screening a mAb against a large library of potential targets
and usually does not take advantage of empirical binding data19–21. Epitope
binding sites can be predicted by modeling epitope databases or antibody-
antigen structures, but these predictions are generally not specific to a given
mAb19,22,23. An important application of these approaches is the application
to predicting off-target binding24,25, a significant issue particularly with
regard to therapeutic mAbs14,26. While the approaches described above
provide important insight into the specific binding interactions mAbs
engage in, most face practical limitations in scaling to large numbers of
mAbs and large numbers of potential targets or off-targets.

In thiswork, a set of eightmAbswithwell-characterized linear epitopes
are bound toaplanar arrayofnear-randompeptide sequences 5–11 residues
in length. The binding values are then used to train a neural network
generating a comprehensive and quantitative model of mAb binding which
canbe used topredict the binding of themAb to any amino acid sequenceof
similar length. The ability of that model to recognize the known, specific
cognate binding sequence of the mAb is then explored.

Results and discussion
Monoclonal antibodies used
The eight monoclonal antibodies (mAb) used in this study are listed in
Table 1. All of thesemAbs have known, linear epitopes of contiguous amino
acids (for Ab827, 4C128, Lnkb229 the antigen analysis is published and for
others epitope and antigen information is provided by the supplier listed in
Table 1). All were raised to human targets except forAb1, and all areMurine
antibodies. In each case, 4 concentrations of the mAb (0.125 nM, 0.5 nM,
2.0 nM, 8.0 nM)were used in binding assays and the bindingmeasurements
at each concentration were replicated 4 times.

Table 1 | Monoclonal antibodies used

Name Targeta Epitope use for
evaluationb

Array sequencesc Source

Ab1 aa 211-220 Murine p53-beta galactosidase fusion protein expressed in
E. coli., P04637

RHSVVVP RHSVV, RHSVVV Millipore/Sigma
Cat# CBL404

Ab8 Bacterially expressed full-length human p53, P04637 SDLWKLL SDLWKLL, SDLWKL ThermoFisher
Cat# MA1-19055

4C1 External domain of human TSH receptor., P16473 QAFDSHY LQAFDS, QAFDSH, FDSHYD GeneTex
Cat# GTX47974

DM1A aa 426-450 - human brain α-Tubulin., Q71U36 LEKDYEE AALEKDY, ALEKDYE,
LEKDYEE

Millipore/Sigma
Cat# 05-829

Lnkb2 Human IL-2, P60568 PLEEVLN PLEEVLN Absolute Antibody
Cat# Ab00232-1.1

TF3B5 Aa 1242-1255 C-terminus human ErbB-2 (HER2), P04626 PEYLGLD None ThermoFisher
Cat# Ma5-13675

C3 aa 251-450 N-terminal extracellular domain human ErbB-2 (HER2),
P04626

SLPNPEG None Santa Cruz Bio
Cat# SC-377344

9E10.3 aa 408-439 C-terminus of human c-myc, P01106 KLISEED None ThermoFisher
Cat# MA5-12080

aThe targets/antigens the mAbs were raised to. Each target description is followed by a uniport reference number
bThese epitopes were used as the cognate epitope sequence in determining the rank of binding out of 1million random sequences, see Table 2. Note that because there is no isoleucine on the array, I was
substituted for V in mAb 9E10.3 when predicting ranks.
cThe sequences given here were those purposely synthesized on the peptide array in order to evaluate binding to the cognate epitope. TF3B5, C3 and 9E10.3 epitopes were not on the array. Cognate
sequences were excluded from the dataset used to train the neural network models.
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Peptide array assay
Monoclonal antibody preparations were incubated with peptide arrays
consisting of 126,051 unique peptide sequences (of which 121,715 were in
the size range used) that were selected to sample all possible amino acid
sequence combinations of approximately 10 amino acids as evenly as pos-
sible (a complete description of the size distribution and amino acid dis-
tribution as a function of residue position has been published previously6).
These peptides were built using 16 of the 20 natural amino acids, ADE FG
HKLNPQRSVWandY.Note thatwith the exceptionof 9E10.3, all of the
mAbs had cognate epitope binding sequences that only included these
amino acids (9E10.3 contains an isoleucine and for the analyses below, this

was assumed to be similar to valine). Control sequences distributed across
the arrays were used to gauge the uniformity of binding andmultiple copies
of cognate epitopes and some variantswere synthesized on the peptide array
for 5 of the 8 mAbs (Table 1). The mAb cognate epitope sequences were
used togauge the actual binding level of themAb to its cognate epitope in the
context of an isolated linear sequence attached to substrate. The binding of
eachmAb to the peptide arrayswas performed as described inMethods and
binding of afluorescently labeled secondary antibodywas used to determine
how much mAb was bound to each sequence by detecting with an array
scanner (Methods).

The four replicates of eachmAbat each concentrationwere averaged as
the mean of the log10 values of the observed binding. Based on the com-
parisons of Pearson correlation coefficients between replicates (Supple-
mentary Fig. S1), no replicate arrays were excluded from the averaging.
Based on the standard deviations between replicates for each binding value
in each array, no individual binding values were excluded from the aver-
aging; all collected data was used without removing outliers. Except where
noted below, the average log10 values from the replicates were used for
analysis and all modeling of the sequence-binding relationships was per-
formed after removing themAb cognate sequences from the array dataset to
avoid training on those epitope sequences.

Distributions of binding to array sequences
Figure 1 and Supplementary Fig. S2 show the distribution of binding values
for each mAb to the array sequences in different ways after averaging
replicates. Supplementary Fig. S2 provides a plot of the log10 number of
peptides at each binding value for each mAb and concentration. Figure 1
focuses on the lowest concentration, comparing violin plots of the dis-
tribution. Note that the y-axis is log10 binding. The cognate sequence
binding of each mAb (sometimes several versions) are represented as red
dots for the first five mAbs and the cognate sequence itself is given in red
letters for thosemAbs and inmagenta for thefinal threemAbs. In all but one
case (4C1) at least one version of the mAb cognate sequence saturates the
detector (65,536 counts or 4.82 on a log10 scale). The top ten binding array
sequences and the SeqLogo consensus sequence30 determined from them
is shown.

Several things are evident in Fig. 1. First, as a result of the specificity of
mAbs the vast majority of sequences bind at values very close to the back-
ground (about 850 counts or 2.9 on the log scale). For most mAbs there are
only a handful of points higher than 3.5 and for Ab8 there are none. Sup-
plementary Table S1 shows how many peptides have values that are above
background based on the variation seen in the replicates. Second, in most
cases, the top ten sequences define some identifiable motif related to the
known cognate sequence.While this is less evident forAb8, one sees that the
amino acid composition of the top sequences is similar to that of the cognate
epitope.Thus, there is antibody-specific information in thebinding to evena
sample of near-random peptide sequences. Finally, in most cases there is
also one or more apparently unrelated sequences in the top ten that may
represent a mimotope, i.e. a peptide that, despite apparent dissimilarity in
the letter code, can have similar physicochemical properties to the cognate
sequence. The binding distributions of themAbs exemplify the challenge of
using binding data from peptides that randomly sample all of the 16 amino
acid sequence space (1610 = ~1012 sequences) without regard to any specific
biological relevance to create comprehensive sequence-binding models.
While this approach ensures generality as it is not biased towards any
particular outcome, the specificity of mAbs means that the bulk of the data
from the array is from sequences that bind very weakly.

Modeling the sequence-binding relationship using machine
learning methods
To build a general relationship between sequence and mAb binding from
the array data, a fully connected neural network was employed with 2
hidden layers and 250 nodes per layer. This was similar in structure to
networks used previously for describing serum IgG binding7 or binding to
isolated proteins6. Two additions weremade to the sequence representation

Fig. 1 | Violin plots of log 10 binding. Blue dots: array peptides (121,715 unique
sequences), Red dots: cognate sequences. Cognate sequences represented on the
array are shown in red, top ten array sequences are in black. Cognate sequences in
magenta are not synthesized on the array. The SeqLogo derived from the top ten
sequences is shown above them. See Table S1 for numbers of peptides >2 standard
deviations above the median.
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beyond what has been done previously. Peptide sequences with fewer than
the maximum number of residues were padded with a “blank” residue
(marked as “X”), so that they were all the same length. Also, the N- and
C-termini were marked with start and end tokens “(“ and “)”, respectively.
The sequences, including the three additional characters, were then input
into the neural network as one-hot encoded vectors, similar to previous
work6,7.Note that only thepeptides between5 and11 residues in lengthwere
used in the training (there were 121,715 unique peptides in this length
range) because the focus was on identifying continuous epitopes which are
generally in that length range and because there is a tendency for the neural
network to overestimate the binding of longer peptides, simply due to the
larger number of elements to assign value to, potentially biasing the model.

One other adjustment was made to the dataset prior to running the
neural network. At higher concentrations, for some of themAbs, there were
a number of sequences whose binding saturated the detector (Supple-
mentary Fig. S2), potentially causing the neural network to underestimate
high binding values. This was corrected by substituting saturating values at
one concentration with the value from the next lower concentration mul-
tiplied by the relative increase in concentration. This assumption of linearity
with concentration is justified by the fact that binding values of peptides on
the array in the linear range, do, in fact, increase linearly with concentration
(Supplementary Fig. S3). Each mAb was modeled separately, but all four
concentrations for the mAb were used as targets simultaneously. Thus, the
final weightmatrix of the neural network had four columns, each associated
with a different concentration.

Evaluating the neural network prediction performance
For performing the binding predictions below, the neural network was
trained 12 separate times using the binding of all measured array sequences
to themAbs in the training set (except for the cognate sequenceswhichwere
removed during training). (For reference, Supplementary Fig. S4 shows the
results of a 10-fold cross validation of the sequence-binding relationship for
each mAb to illustrate the accuracy of predictions within the measured
dataset.) After training, for each mAb, the resulting models were used to
predict the binding of themAb at each concentration to onemillion in silico
randomly generated sequences of the same length as the cognate sequence
and the values of the 12 models were averaged (cognate sequences used
given in Table 1). The average binding value predicted from the 12 models
for the cognate sequencewas then compared to those of themillion random
sequences and the rank position of the cognate sequence was determined
(Table 2, details provided in the supplementary material). The ranking
process described above was repeated 10 times with a different million
random sequences each time and the error of the mean of each cognate
sequence rank was determined. As a result, both variation due to different
random sequence sets and variation as a result of different random starting
points for the neural network training are taken into account in the data and
errors provided.

Baseline prediction
Table 2, column 2 gives the rank of the predicted cognate epitope sequence
based on the binding as described above using the input sequences with no
further modification. Five of the eight mAb cognate sequences (Ab1, 4C1,
DM1A,TF3B5, C3) are in the top 0.1% (top 1000) of the random sequences,
and two of them,DM1AandTF3B5, are in the top~0.001%. The prediction
for both Ab1 and Ab8 is essentially random. While being in the top 0.1%
implies this simple modeling approach predicts significant specificity of
mAbbinding, the specificity is not at the level suggestedby thebindingof the
cognate sequence in Fig. 1, particularly for Ab1 and Ab8.

Weighting the highest value binding sequences
It is clear from Fig. 1 and Supplementary Table S1 that the number of
sequences that bind substantially to the monoclonal antibodies is generally
small. Yet it is the higher binding sequences that contain some of the most
important binding information. It thus makes sense to balance the dataset
by weighting high binding values more than the very large number of low
binding values in themodeling. To accomplish this, binding distributions of
the 8 nM mAbs were used to develop a weighting rule and weighting was
implemented by increasing the number of copies of the high binding
sequences accordingly (see Methods). When the same neural network
model was applied to the weighted dataset, predictions for several of the
mAbs improved markedly. In particular Ab1, 4C1, and Lnkb2 improved
their ranks in the million random sequences by roughly one to three orders
of magnitude. Ab8 did not improve with weighting and the DM1A cognate
sequence actually became significantly less highly ranked.

Training on multiple copies of each sequence with shifted
registers
In themodeling described above, the residue positions of each sequence are
in a specific register within the one-hot vector describing that sequence.
However, it would be desirable for the neural network to learn to recognize
binding motifs irrespective of where they were in the sequence vector. To
achieve this, the training set was expanded to include each sequence in 6
different registers within an extended sequence vector (see Methods). All
shifted registered versions have the same target binding values associated
with them for training. As can be seen in the fourth column of Table 2, this
generalization greatly improves the predicted ranks of almost all of the
mAbs cognate epitope sequences such that 5 rank in the top 0.001% of
sequences and 7 are in the top 0.01%. The one exception is 9E10.3, which
ranks significantly lower with shifting than without.

It is worth considering why this works as well as it does for most of the
mAbs. The effect on the prediction for Ab8 is particularly significant,
improving its ranking by 4 orders of magnitude. It is likely this is due to the
fact that there are so few sequences which contain the needed sequence-
specific information. The matrix manipulations in a neural network are
register-specific; an aminoacid in thefirst position is always treated the same

Table 2 | Ranks out of 1,000,000 random sequences based on concentration

mAb Epitope Baselinea +Weightingb +Shiftingc +Compd % Ranke

Ab1 RHSVVVP 280,000 ± 30,000 580 ± 100 2.6 ± 0.7 3.0 ± 0.7 0.0003%

Ab8 SDLWKLL 680,000 ± 90,000 720,000 ± 50,000 16 ± 2 7.9 ± 1.2 0.0008%

4C1 QAFDSHY 700 ± 200 120 ± 20 12 ± 2 15 ± 1.5 0.0015%

DM1A LEKDYEE 1.6 ± 0.6 29 ± 4 1.8 ± 0.4 2.2 ± 0.5 0.0002%

Lnkb2 PLEEVLN 22,000 ± 11,000 61 ± 25 1.4 ± 0.2 1.4 ± 0.2 0.0001%

TF3B5 PEYLGLD 11 ± 2.6 10 ± 0.7 1.0 ± 0.0 1.1 ± 0.1 0.0001%

C3 SLPNPEG 48 ± 9 10 ± 2 9.0 ± 1.9 9.5 ± 1.4 0.0010%

9E10.3 KLVSEED 340 ± 90 160 ± 30 2400 ± 500 79 ± 3.9 0.0079%
aThis is the baseline case without weighting high binding values, shifting the sequence register or normalizing for composition-dependent binding. The standard error is shown.
bBaseline case plus additional weighting of those sequences that bound the mAb with high affinity
cWeighting plus adding 5 copies of each sequence in shifted register, as described in the text
dWeghting, shifting and normalization by subtracting the log of the composition dependent binding from the log of the total binding (full model)
eBased on rank after weighting, shifting and composition adjustments.
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way mathematically. Thus, with sequence shifting, the number of available
sequences to train on is effectively increased 6-fold. Further, any bias that
may exist in amino acid composition of a particular position or any effects
from the fact that the sequences are not all the same length are effectively
decreased.Thismeansof improving thepredictive powerof themodel could
be applied to other situations, such as whole sera for epitope predictions
associated with an immune response to disease7. While similar in some
respects to using a convolutional neural network, it differs in that the entire
sequence is considered at once, rather than small pieces of it.

Trainingafter normalizing for the levelofcomposition-dependent
binding
In anyantibody interactionwitha target sequence, therewill be some level of
interaction which is strictly sequence dependent (sequence-specific) and
some level of binding that depends only on the overall nature of the peptide
(charge, hydrophobicity, etc.). One way to separate out the binding that is
strictly dependent on sequence order is to determine what fraction of the
binding for each peptide can be determined only from information about
the peptide composition and then subtract this. Supplementary Fig. S5
shows the result of fitting the binding of the mAbs to the peptide array by
only considering 16 linear coefficients, one for each amino acid used, that
operate on a composition vector representing the peptide (a vectormade up
of the number of each amino acid present). The part of the log10 binding that
could be described by composition alone was subtracted from total log10
binding and the neural network was then trained on the resulting sequence
dependent binding for each mAb. Using this approach, there is very little
change in most of the mAbs. For Ab8, there is a modest improvement and
the 9E10.3 cognate sequence moves up in rank significantly. Apparently,
removing composition-dependent binding fromAb8 and 9E10.3 allows the
neural network to focus on learning the sequence dependence without
simultaneously modeling general compositional binding. The final ranks
obtained for all mAbs using the full model are within the top 0.01% of the
1,000,000 random sequences and 7 of the 8 are within, or very near, the top
0.001%. Supplementary Table S2 gives the predicted top 20 random
sequences for each mAb. One can see the relationship to the cognate
sequences in each case for at least some of the top sequences. In the case of
Ab8 in particular, there are also apparently unrelated sequences that contain
multiple arginine and tyrosine residues. As a control, the model was also
trained after randomizing the order of the sequences on the array relative to
their binding values. This gives ranks near 50%after averaging, as onewould
expect (Supplementary Table S3).

Exploring different sized sections of the antigen sequence
around the cognate sequence
Choosing 7 amino acids as the length of each cognate epitope is largely
arbitrary. While past work has identified the region of the antigen that is
important in binding, the length of the region that influences that binding is
not obvious. Supplementary Tables S4 and S5 shows the results of using
sequences of different lengths from 6 to 10 residues taken from the cognate
epitope region of the antigen to each mAb. Supplementary Table S4 shows
the sequences used and Supplementary Table S5 shows the rank using the
full model (weighting, shifting and removing compositional binding) of
each of those sequences among one million randomly generated sequences
of the same length. The changes in rank are relatively small for different
sized regions of antigen sequence used, with some mAbs slightly favoring
longer sequences and some slightly favoring shorter ones.

Predicting which amino acids aremost important in the cognate
sequences
The neural network models can also be used to predict the binding of all
possible single aminoacid substitutionsof themAbcognate sequencesusing
the 16 amino acids that make up the array peptides. The linear binding at
2 nM concentration was predicted and normalized to the cognate sequence
value for each possible single amino acidmutation (Supplementary Fig. S6).
For four of themAbs, these substituted sequenceswere also synthesized on a

separate array and their valuesmeasured for comparison.Thepredictedand
measured values for those fourmAbs are shown in Fig. 2. The color scheme
shown is limited to the range between no binding (0) and 1.1 times the
cognate binding to clearly show binding at or below the cognate level. The
correlation between the measured and predicted values using all of the
values in each matrix is also shown. The agreement between predicted and
measured variants of the cognate sequences is generally good, with the
model accurately determining which amino acids at which positions are
critical in most cases except in a few cases. For Ab8, W is predicted to be
easily substituted by several other possible amino acids. However, in the
measured peptidesW can only be substituted by Y, and that with some loss
of binding. In TF3B5, E is predicted to be essential, but in the measured
sequences, it is clear that E can be replaced by any of five other amino acids
with no loss in binding. In 9E10.3, the ED pair towards the end of the
cognate sequence shows somewhat different variability of substitution
between predicted and measured values. This cognate sequence includes
three similar amino acids in a row (EED) and it may have been hard to
differentiate the effects of the last two.However, in general, the prediction of
which amino acids are most essential is in line with what is measured.

Mapping mAb binding to antigen sequences
The ability to apply the neural network binding models developed here to
biological sequences is currently limited by the fact that 1) only 16 of the 20
natural amino acids are included in thepeptide sequences on the arrays used
in this study and 2) three dimensional structures are not currently con-
sidered in determining binding sites in the application of the models onto
proteinswhich limits the ability tomap non-continuous epitopes. However,
to demonstrate proof of principle with the current model system, Fig. 3
shows color maps of the binding of each of the mAbs modeled here to its
respective antigen structure. The 4 missing amino acids were dealt with by
similarity substitution (I→V, T→S, M→L, C→S) determined using the
PAM250 similarity matrix31, based on comparison of various similarity
matrices32. The sequences of the appropriate antigen subunit are renderedas
Alphfold233 predicted structures to provide an entire representation of the
sequence, including unstructured regions not present in the crystal struc-
tures (Table 1 gives theUniprot IDnumbers fromwhich the structureswere
derived). The sequences of the antigen subunit were tiled as overlapping 7
residue peptides (6 residue overlap). The 2 nM binding concentration was
thenpredicted andeach tiledpeptide assigned a color betweengreen and red
based on the log10 predicted binding level. The log was used here to allow
visualization of very weak sites. One can see one such site, for example, as a
brown region at the C-terminus of P53 when Ab8 binding is predicted.

In most of the mAb binding maps, there is little significant binding
other than the cognate sequence (bright red). However, 9E10.3, in contrast
to the others, shows three strong binding sites. The issue in this case is not an
inaccurate prediction of the model but rather a combination of there being
three similar sequences within the myc antigen and the amino acid lim-
itations of the model system used. The three sequences of the myc protein
antigen that bind strongly to 9E10.3 are: KLISEE (cognate, only this parti-
cular helixwas used to select themAb, seeproduct literature, ThermoFisher,
Cat#MA5-12080),KLVSEandMVTE.However, because themodel system
contains only 16 of the 20 amino acids, it was necessary to replace I and M
with V and L, respectively. Thus, the sequences become KLVSEE, KLVSE
andLVSE. Looking at the substitutionmatrices of Fig. 2, one can see that the
critical part of the cognate sequence is LVSE. Development of arrays
incorporating all amino acids will be needed for their more general use in
identifying epitopes within proteins and proteomes.

Robustness of the trained models
As shown inTable 2 and SupplementaryTable S5, themodels, when trained
on the entire array of about 122,000 peptide sequences, correctly recognize
the cognate sequences for each of themAbs as being a top binding sequence
in a large library of random sequences. How robust are these models? One
way to explore that is bydecreasing the number of peptide sequences used in
the training. Supplementary Fig. S7 shows the result of decreasing the
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fraction of the sequences used in the training stepwise from 100%
(~122,000) to 6% (~7300). By far the most fragile model is that describing
Ab8 which gives a near random result when 75% of the peptide sequences
are retained. (Note that this is spuratic; some reduced models are almost
indistinguishable from the model using all sequences and some are dra-
matically worse). The rest are stable at least to the point where 50% of the
sequences are used in training. Ab1 and 9E10.3 drop in rank at 25% of the
original number of sequences, but the other mAb models decay more
gradually between50%and6%,with the exceptionofTF3B5which seems to
predict very well even with only 6% of the original array data to train from.

Another way to explore the robustness of the models is by specifically
removing sequences that are similar to the cognate sequence. To accomplish
this, each sequence on the peptide array was compared to the 7mer cognate

sequence of Table 1 in all possible registers, even those that only partially
overlap, and training sets with only peptide sequences with nomore than 6,
5, 4, 3 or 2 amino acids that aligned were retained and new models were
generatedbasedon these (thesemodelswere trainedwithweighting, shifting
and removal of compositional binding, see Table 2). Supplementary
Table S6 shows how many sequences were removed from each of the
training sets for each of the mAbs, and Supplementary Table S7 shows the
numerical ranks for each model. The results are graphically presented in
Fig. 4. As was seen when decreasing the total number of peptide sequences
used in training, Ab8 proved to be the most fragile model requiring
sequenceswithat least 5 aminoacids in commonwith the cognate epitope to
maintain accurate prediction. TheAb1 cognate is predictedwell as long as at
least 4 amino acids are allowed to be in common with its cognate sequence.

Fig. 2 | Single amino acid mutation/substitution matrix for each of the mAb
cognate sequences. The y-axis is the cognate sequence, and the x-axis is the amino
acid used for substitution. The color is proportional to the binding predicted by the
full neural network model (left side) and the measured binding for the cognate
sequence and all single amino acid variants (right side). Note that the measured
binding values come from a different set of arrays with different sequences and

layout than the arrays used for the bulk of the work and thus what are presented for
both predictions andmeasurements are relative values rather than absolute binding.
The 2 nM concentration mAb data was used for the predicted values shown. Note
that any sequence with a value of 1.1 times the binding of the cognate sequence or
higher is shown as yellow. This allowed better resolution of values less than 1.
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The others drop gradually, but even when only 3 common amino acids are
allowed, their cognate sequences are still ranked in the top 0.1% of the
random sequences, and three still rank in the top 0.001%. Clearly there is a
range in the robustness of the trainedmodels that depends on the details of
the data available and the nature of the binding interaction.

Conclusions
The goal of thiswork is to explorewhat can be learned about the bindingof a
targetmolecule that is highly specific for a particular aminoacid sequenceby
applying machine learning to a dataset derived from binding the target to a
sparse, unbiased sample of short amino acid sequences. Here, mAbs with
specific linear epitopes were chosen both as an example of a sequence
specific target molecule and due to the inherent interest in understanding

and predictingmAb binding. Past work from this lab has demonstrated the
ability to use similar datasets and algorithms to predict binding of peptides
to the surface of multiple proteins and for total binding of serum IgG to
peptides, but recognizing the very specific binding of mAbs to their linear
epitope sequences represents amore difficult challenge.As shown inTable 2
and Supplementary Table S5, models can be developed which do recognize
the cognate sequences as being highly specific based on the binding of the
mAb to a sparse, unbiased sample of sequences. Further, Fig. 2 demonstrates
that the models can differentiate between mAb binding to their cognate
sequences and to sequences that differ by only one amino acid, making it
possible to map, with reasonable accuracy, the relative importance of dif-
ferent amino acids in mAb binding.

The neural network approach used was quite simple: a fully connected
networkwith a one-hot representation of each amino acid sequence as input
and log10 binding of that sequence to four different mAb concentrations as
the target for optimization. However, in order for themodels to predict well
for all of the mAbs, additional modifications of both the input and target
data were required. The neural network model in its simplest form was
modestly predictive for most of the mAbs with the exception of Ab1 and
Ab8. One issue with binding of mAbs to random sequences is that the vast
majority of the peptides show essentially baseline binding. Weighting the
peptides that bindmore strongly improved themodel formost of themAbs.
Forcing theneural network to ignore the absolutepositionof the sequence in
the vector and generalize its learning so that it recognized the sequence
regardless of its position within the artificial register of the input vector
helped further inmost cases. This formof data augmentation by training on
multiple sequence registers is well-established to help generalize convolu-
tional neural networks for image recognition tasks34. It is surprising inmany
respects that the much simpler neural network model used here (2 hidden
layers of 250 nodes, fully connected) would be able to utilize this data
augmentation to generalize in this way. The onemAb for which training on
multiple sequence registers resulted in poorer recognition of the cognate
sequence was 9E10.3, but by removing binding due to amino acid com-
position, the cognate sequence for this mAb was predicted in the top 100

Fig. 4 | Ranks of the 7mer cognate epitope (Table 1) in 1 million random
sequences using training sets of array peptides in which sequences similar to the
cognate sequence have been removed. The Y axis is the percent rank, with 0.0001%
signifying rank 1 in amillion. TheX axis is themaximumnumber of amino acids that
were in common with the epitope in the peptide array sequences used for training.
The points and error bars (standard error of the mean) represent the average and
standard error of 5 randomly chosen sets of 1 million comparison peptides each and
12 randomly initiated models. In most cases, the error bar is too small to see in the
plot. See Supplementary Tables S6 and S7 for tabular values.

Fig. 3 | The sequence of amino acids was tiled into overlapping peptides of 7
residues (6 residue overlap). The log10 binding values at 2 nM concentration were
predicted and converted to a color, increasing from green to red, and mapped onto
the Alphafold2 representation of the sequence provided on the Uniprot website
(Uniprot IDs given in Table 1).
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sequences out of one million, presumably by focusing the learning of the
neural network on the sequence specific aspect of binding.

Note that because therewas so little high binding data available to learn
from in some mAb binding datasets, the absolute predicted values of the
cognate sequenceswere oftenunderestimated (Supplementary Fig. S4). This
was particularly true for Ab1 and Ab8, where high binding sequences were
extremely scarce.Apparently, itwasdifficult for themodel to learn topredict
the absolute binding values of sequences that were more than an order of
magnitude higher than anything the model was trained on. However, the
relative values, and thus the rank of the binding value, was predictable, even
when the absolute value was underestimated. From a practical perspective
this is the more important outcome.

While predictive when all peptides on the array were used in the
training, the models for Ab1, and particularly Ab8, were not robust to
removal of sequences. For Ab8, removing just 7 of the most similar
sequences to the cognate sequence rendered the model effectively without
any predictive power (Fig. 4, SupplementaryTables S6 andS7).Again, this is
consistent with the relative scarcity of sequences on the array that bound
substantially to these two mAbs.

This brings up a valid question about the extent to which the model is
generally learning the landscape of mAb binding affinity as opposed to
simply memorizing a few closely related high binding sequences on the
array. For Ab8 in particular, where the model was so dependent on so few
sequences, thismay indeedbe partially the case, though themodel still needs
to recognize the sequence in the context of other sequence around it.
However, for most of the mAbs there are several arguments supporting the
conclusion that the model learns to put multiple parts of the sequence-
binding information together in recognizing the cognate sequence as highly
specific. First all but twoof themAbcognate epitopes rank in the top 0.1%of
all sequences even when we limit similarity of training sequences to only
three out of seven residues (Fig. 4, SupplementaryTables S6 andS7). Indeed,
even when limited to no more than 2 amino acids in common with the
cognate sequence, half of the mAb cognate sequences are ranked in the top
few percent. Second, the ability to recognize that some single amino acid
changes can completely block binding while others maintain or increase
binding (Fig. 2), also suggests that the model has a more comprehensive
view of sequence dependence than just remembering one or two examples.
Third, the ability toworkwith different lengths of cognate sequence up to 10
(Supplementary Tables S4 and S5) is consistent with learning sequence
context and what to include and what to ignore. Finally, the fact that the
model generally predicts the binding values of peptides on the array that
were held out of the training and used as a test set, regardless of their
sequence, supports the idea that the learning is general, rather than simply
memorization (Supplementary Fig. S4, in cases where there is a significant
dynamic range of binding, it is well predicted).

As described in the introduction, there are a number of different
approaches to predicting epitope sequences, as well as off-target binding
sequences, of mAbs. This includes peptide array approaches in which
proteins or proteomes of interest have been directly tiled15,16. It is fair to ask,
whywouldn’t one simply tile theproteomeof interest rather thangenerating
model predictions from sequences broadly sampled from all possible
sequences?There are two reasons for exploring the approachdescribedhere,
one practical and one more fundamental.

From a practical perspective, the array-based approach employed here
and the comprehensive model it produces provide both a universal assay
platform that can be applied to any mAb at low cost/high throughput with
complete flexibility in the evaluation of mAb binding to any sequence. For
example, suppose one is interested in exploring all potential targets (or off-
target binding) in the human proteome for 100 lead mAbs. A single 8 inch
silicon wafer substrate used in array generation contains >300 individual
arrays, thus the arrays from onewafer could assay all of thesemAbs at three
concentrations and create models for each (and one photolithographic
fabrication station generates 4 wafers at a time). In contrast, tiling the ~11
million overlapping peptides in the humanproteomewould be very difficult
and expensive to do at this throughput. In addition, such a tiled arraywould

only be generated for a particular reference proteome and would not
necessarily contain mutations of interest in a particular disease state or for
individual proteomes. Using a comprehensive model based on much
smaller, near-random sequence arrays, one can predictmAb binding to any
sequence including the proteome sequences of individuals determined from
their personal DNA sequences. Models also allow the prediction of binding
to sequences that may be challenging to synthesize in a tiled library. Of
course, the current system is limited in this regard, bothbecause it focuseson
linear epitopes and because only 16 of 20 amino acids were used, but it
provides a proof of principle upon which more useful systems could be
developed.

As described above, the focus of this work is more fundamental, and
from that perspective, the study’s outcome, building on previous work from
this lab6–8, is important for another reason. Almost all of the machine
learning work to date that relates amino acid sequence to structure and
function has involved taking a set of known functional sequences (folded
proteins, antibiotic peptides, epitopes, etc.) and learning from known
examples. Alphafold2 is perhaps the most ambitious such achievement33,
taking ~140,000 known examples of protein structures and generalizing to
predict the structure of any sequence. In such cases, one does not knowhow
much of the primary sequence space the predictions are actually applicable
to because the training is biased towardsknown functionand there is usually
no way to empirically test all the possible sequences to see how significant
that bias is. However, in the work described here, the training was done
without any known examples, based on a largely unbiased sampling of the
possible sequences. Yet this very sparse and unbiased sample of a trillion-
member sequence space is sufficient to provide a reasonably accuratemodel
of the entire molecular recognition landscape, including predicting the
relative binding of something as specific as amAb cognate epitope. Thus, at
least for a relativelymodest sized sequence space in the context ofmolecular
recognition, it is possible to create a comprehensive model from sparse
sampling where there was no a priori bias in the sequences used to train the
model and no reason to expect bias in its predictions.

Methods
Peptide arrays
Peptide microarrays containing diverse peptides were synthesized at
Cowper Sciences, Inc., (Chandler, AZ) following a previously described
manufacturing process35. In brief, 200mm silicon oxide wafers were func-
tionalized with an amino silane coating and terminated with Boc-Glycine.
Each peptide sequence was constructed on the functionalized surface by
repetitive photolithographic deprotection and coupling cycles with preset
mask-amino acid combinations. A total of 16 amino acids were used
(ADEFGHKLNPQRSVWY) to generate a library of 126,051 unique pep-
tides with amedian length of 9 residues and range from5 to 13 amino acids.
This arrangement provided coverage of 99.9% of all possible 4-mers and
48.3% of all possible 5-mers consisting of the 16 different amino acids used.
Only the 121,715peptides between5 and11 aminoacids in lengthwere used
in this study. Synthesis verification was performed by MALDI mass spec-
trometry (see supplementary information).

Monoclonal antibody sample preparation
All aliquoting and dilution steps were performed using a BRAVO auto-
mated pipetting station (Agilent, Santa Clara, CA). Eight individual murine
monoclonal Antibody standards used in the study (referenced in Table 1)
were initially prepared at 100 nM and 10 nM stock concentrations in 1%
mannitol/PBSTbuffer.Dose curves fromeachAbwere prepared by dilution
at 4x steps from an 8 nM starting concentration. All mAb concentrations
were assayed in quadruplicate.

Antibody assays
Peptide microarray slides were assembled into standard 96-well format
cassettes (4 microarray slides per cassette). An automated assay workflow
was initiated with slide rehydration, by incubating a cassette in 1xPBST for
20min at 57 °C. Buffer was removed from the cassette and 90 uL of each
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prepared monoclonal antibody sample was applied to assigned arrays. The
cassettes were then covered with aluminum seal and incubated for 1 h at
37 °CwhilemixingonTeleShake95. Following incubation, each cassettewas
washed with 10xPBST (300uL/wash/well) using a microtiter plate washer
(BioTek Instruments, Inc., Winooski, VT). Labeled anti-Murine anti-IgG
Antibody conjugated to AlexaFluor 555+ (Invitrogen Thermo Fisher Sci-
entific) was used as secondary antibody, at 4.5 nM concentration in 0.5%
casein/PBST buffer for 1 h with mixing on a TeleShake95, at 37 °C. Fol-
lowing incubation of the secondary antibody, the slides were again washed
with 10xPBST, followed by 3x washes with water. The cassette was dis-
assembled, and slides were sprayed with isopropanol and spun dry.

Dried slides were imaged using an ImageXpress imaging system
(Molecular Devices, San Jose, CA). Post scanning, flat-field correction was
applied to generate a single array TIFF image file. Image analysis was per-
formed using custom software that enables automatic grid placement and
feature intensity extraction. A murine sera control sample was run on each
slide and used to assess slide-to-slide reproducibility, with an accepted
replicate correlation coefficient of >0.95.

Neural network architecture
The basic neural network architecture has been described previously and
schematics provided6,7. A fully connected neural network was used and the
inputswere one-hot representations of sequences.Various network training
parameters were optimized (numbers of hidden layers, numbers of nodes,
epochs trained,minibatch size, etc.) and a networkwith 2 hidden layers and
250 nodes was selected (full details are contained in the codemade available
on https://zenodo.org/records/10262899). Training was performed relating
the sequences to binding values on the array. All of themeasured sequence-
binding pairs in the 5–11 amino acid length range, except the sequences on
the array thatwere cognate epitopes of the 8mAbs,were used in the training.
This did not introduce bias, since neither the cognate sequences nor any of
the million random sequences later used in predicting the rank of the
cognate sequences were part of the training. (For completeness, Supple-
mentary Fig. S4 shows a 10-fold cross validation of predictions of the array
data.) Each mAb was separately modeled, but all four concentrations were
modeled at once as a four-column target.What is different in the analysis of
this data from previous approaches from this lab6,7 is the way the input
sequences and the targets were modified prior to training the neural
network.

Padding and designation of N- and C-termini
The peptides on the array used for this analysis had a distribution of lengths
from5 to 11 residues, centered near 9 residues. To deal with varying lengths,
sequences less than11 residueswerepaddedwith token “X”, theN-terminus
wasmarkedwith token “(“ and the C-terminusmarked with token “)”. As a
result, the sequences that were assigned one-hot representations had 19
different one-hot bits, 16 for the amino acids used in the synthesis and 3 for
the “X()” token. For example:

(PWRGPWARV)XX
(LPGVQG)XXXXX
(GNFAYQRDG)XX
This approach to designating the sequences becomes particularly

important when the position of the sequences within a larger character
vector is varied.

Weighting of high binding data
As described in the text, the number of sequences that bound tomAbs with
values substantially greater thanbackgroundwas often small. As a result, the
background sequence-binding pairs often completely dominated the loss
function in the training and key binding information was not emphasized.
To avoid this, multiple copies of higher binding sequence-binding pairs
were used. The sequences were binned by their binding values at a con-
centration of 8 nM (bin width of 0.2, binning the log10 binding values) and
any bin with less than 300 values in it was expanded to 300 values by
randomly picking sequence-binding pairs within the bin and copying them.

No one sequence-binding pair was allowed to be copied more than
100 times.

Creating register shifted versions of the input vectors
One of the most effective approaches used to improve the ability of the
neural network to predict high binding of mAb cognate sequences was by
forcing the network to consider multiple frames of each sequence as being
equivalent. Each sequence-bindingpair in the training setwas expanded to6
copies, each in a different frame within the original character vector as
follows:

(PWRGPWARV)XXXXXXX
X(PWRGPWARV)XXXXXX
XX(PWRGPWARV)XXXXX
XXX(PWRGPWARV)XXXX
XXXX(PWRGPWARV)XXX
XXXXX(PWRGPWARV)XX
In the training, the 6 sequences are all assigned the same measured

binding value. This greatly improved the fidelity of themodel inmost cases.
Evaluationof themodelwas performed in the sameway. Inotherwords, any
sequence forwhichabindingvaluewas tobepredictedwas also submitted as
6 copies in 6 frames as above and in this case, the highest binding value was
then chosen for ranking that sequence. Since all sequences were processed
the same way (in this case all million randomly generated sequences), this
does not introduce any bias in the overall ranking.

Compositional binding estimates
Estimates of compositional binding for each sequence were determined by
taking all sequences in the training set and assigning a simple vector of 16
composition values (the number of occurrences of each of the 16 amino
acids used in that sequence). The values were then used in a linear fit (16
coefficients and a bias term). In the case of sequences to be predicted, the
compositional binding was determined by applying the linear model coef-
ficients learned from the fit of the training set.

Statistics and reproducibility
The binding values of each array peptide for each of the 8 mAbs and each
of the 4 concentrations were measured 4 times and averaged. No values
were excluded. The sequence-bindingmodels trained on the binding of all
four concentrations to each sequencewas applied to predict the binding at
the four concentrations to each of 1 million randomly generated
sequences aswell as the cognate sequence for thatmAb. The binding of the
million random sequences and the cognate were ranked separately at all
four concentrations. For each sequence, the highest rank value (closest to
1) was selected and these values re-ranked to remove any duplicate ranks.
Themajor variation in the resulting rank comes from three sources: errors
in the measurements, the fact that the neural network starts with a set of
randomly selected weights, and the fact that the cognate epitope was
ranked in a set of randomly chosen sequences. To determine this variation
and the resulting error of the mean in Table 2, 12 neural network models
(starting with 12 sets of randomweights) were determined for eachmAb.
These 12 models were used to predict the binding to each of two inde-
pendent sets of 1 million random sequences and the results of the 12
models for each of the 2 sequence sets averaged. The entire process was
then repeated with new random seeds 5 times to generate the error sta-
tistics shown. This should take into account the possible sources of
variance.

Data availability
The array data for all 8 mAbs is provided on Zenodo (https://zenodo.org/
records/12510566)36 both with all 4 replicate binding measurements aver-
aged at each concentration and as four unaveraged replicate files. Note that
Fig. 1 as made from the data in the averaged array datafile. Also, excel files
are uploaded that contain the data in Figs. 2 and 3 (labeled as
Fig. 2_Data.xlsx and Fig. 3_Data.xlsx). The data for Fig. 4 is provided in the
Supplementary material pdf as a table.
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Code availability
Matlab code needed to train the neural network model and determine the
ranks of the cognate mAb epitopes in 1 million randomly generated
sequences has been deposited in the same location as the datasets (https://
zenodo.org/records/12510566)36. The Matlab script contains all needed
functions and if it is run in the same folder any of the data files (averaged or
individual replicates) it will generate the ranks of the mAbs within the 1
million randomly generated sequences, regenerating results similar to
Table 2 but without as much averaging of different trained models. A
detailed description is given in the Supplementary Materials text and Sup-
plementaryTable S8. The codewas developed onMatlab 2022a, but runs on
2021 and 2023 versions as well.
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