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EHD instability of a cylindrical 
interface separating two 
couple‑stress fluids
Galal M. Moatimid 1, Mohamed F. E. Amer 1* & Doaa A. Ibrahim 2

This article is an attempt at examining the axi-symmetric and asymmetric streaming flows described 
by the CSF framework. A liquid that has microfibers implanted in it, like a fiber-reinforced composite 
substance, is so-called CSF. It is a system that consists of an endless vertical cylindrical interface 
that separates the two CSF structure. The CSFs are increasingly growing significant in modern 
manufacturing and technology, necessitating greater research into these fluids. An axial EF acts 
over the cylindrical contact in addition to the influence of CSF. The VPT is employed for the sake of 
convenience to minimize mathematical complexity. Combining the elementary linear equations of 
motion and the proper linear related BCs is the major procedure of the linear technique. A collection 
of physically dimensionless numbers is produced using a non-dimensional process. Subsequently, the 
requirements for hypothetical linear stability are developed. With the aid of the Gaster’s theorem, 
the MS is applied in computing the dispersion relationships. After carefully examining a variety of 
effects on the stability investigation of the system at issue, it has been shown that the system is more 
unstable when a porous material is present than it would be without one. The resulting axisymmetric 
disturbance situation is more unstable. The linear techniques are depicted throughout a number of 
graphs.

Keywords  Electrohydrodynamics, Hydrodynamic instability, Couple-stress fluids, Viscous potential theory, 
Porous media

List of symbols
English symbols
(r, θ , z)	� Cylindrical coordinates (m)
U1	� Initial liquid velocity (m s−1)
U2	� Initial gas velocity (m s−1)
R	� The unperturbed radius of the jet (m)
E0	� Initial electric field (EF) (Newton/Coulomb)
F(r)	� Amplitude of the initial disturbance
c. c.	� Complex conjugate of the preceding term
k	� Wave numeral (m−1)
n	� Azimuthal wave number
vj	� Perturbed velocity (m s−1)
ψj	� Perturbed electric potential (Newton m−2)
pj	� Perturbed pressure (Newton m−2)
g	� Gravitational acceleration (m s−1)
E	� The intensity of the EF (Newton/Coulomb)
C1, C2, C3,C4 B1, B2, B3,B4	� Constants of integration
ψ0j	� Initial electric potential (Newton m−2)
p0j	� Initial pressure (Newton m−2)
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Greek symbols
ρj	� Densities of two fluids (kg m−3)
µj	� Dynamic viscosities of two fluids (kg m−3 s−1)
σ	� Surface tension (ST) (Newton m−1)
µj′	� Viscoelasticity of CSFs (kg m−3 s−1)
�	� Permeability (m2)
ω	� Frequency of the surface wave (s−1)
ωr	� Amount of real growth rate (s−1)
ωi	� Amount of imaginary growth rate (s−1)
η	� Interfacial displacement (m)
η0	� The initial amplitude of the interfacial displacement (m)
εj	� Dielectric constants

Subscript
j = 1	� Liquid media
j = 2	� Gas media

A large field of research known as fluid mechanics examines fluids (liquids and gases), whether they are at rest 
or moving. It can be used in many different domains, including biological engineering, mechanical, chemical, 
agricultural, and food science engineering, as well as aerodynamics and bio-fluid mechanics. The Navier–Stokes 
equations were the basic equations of motion of the Newtonian category. There were no precise answers to 
these equations. Only a small number of limited issues have universal solutions. As was common knowledge, 
the precise solutions hold great importance. Not only do they symbolize the fundamental flow phenomena, but 
they can also serve as evidence for solutions derived from a variety of methodologies. It gets more challenging 
to find the exact solutions in non-Newtonian flow circumstances. The relationship involving stress and strain in 
the latter fluids is nonlinear. Couple stress fluids (CSFs), which originally appeared1, have attracted a lot of atten-
tion due to their various properties, including body couples, non-symmetric stress tensors, and couple stresses. 
Because of its many industrial and scientific uses, including the extraction of polymer fluids, the solidification 
of liquid crystals, and the extraction of animal blood, CSFs have drawn attention. A few precise CSF solutions 
were discovered2. Investigators looked at how a chemical reaction and an external vertical magnetic field (MF) 
affected the CSFs between infinite horizontal parallel plates to cause double-diffusive convection to begin3. An 
inclined plane’s ability to support a thin non-Newtonian liquid layer flow was examined4. The evolution differ-
ential equation regulating the behavior of a thin film of a CSF, which provided the time record of the interface 
characteristics, was found within the structure of the long wave approximations. A numerical investigation was 
conducted to examine the impact of a consistent vertical magnetic field (MF) on the stability of pressure-driven 
non-Newtonian fluid flow in an isothermal conduit that conducts electricity5. The CSF theory, which allows 
for polar effects and is frequently seen in liquids containing very big molecules, was used to represent the non-
Newtonian fluid. It investigated how the CSF flowed while taking into account varying viscosity and a uniform 
axial EF6. It was found that raising the coupling stress parameter and the viscosity fluctuation parameter improved 
the velocity, temperature, and overall rate of heat transfer across the channel. It was decided to use the linear/
non-linear stability analysis technique on a CSF layer whose viscosity varied with temperature and pressure7. 
It was discovered that the linear and nonlinear thresholds that capture the mechanics of the convection initia-
tion are identical. It examined how the CSFs affected the magnetized ferrofluid’s convective stability for various 
bounding surface configurations8. To identify eigenvalue problems, both linear and nonlinear analyses were 
performed. In general, the study of CSFs has significance for engineering, biology, materials science, and other 
fields by providing an understanding of the extensive and complicated behavior of non-Newtonian fluids in a 
variety of physical environments.

Electrohydrodynamics (EHD), as a branch of fluid mechanics, examines the effects of EF on fluids. The 
EHD was a combination of these two sciences since many attractive problems in it require both the action of 
the EF and the movement of fluids. EHD incorporates the complex relationship between internal, viscosity, and 
electric power. It produced visually striking phenomena in equipment used in drop-sparing and inkjet printing. 
The EHD thermal instability in a horizontal layer of an elastic viscous nanofluid saturating a porous medium 
was investigated under the effect of a vertical AC EF9. A Darcy model has been applied to a porous media, and 
a CSF model was used to characterize the rheological behavior of nanofluid. Researchers examined the convec-
tion instability in an EF-modulated horizontal dielectric CSF layer10. It was demonstrated that by appropriately 
adjusting several control parameters, the beginning of convection can be delayed or expedited. A mathematical 
model was used to study the combined effects of the axial EF and the transverse MF on two-dimensional micro-
peristaltic channels with different peristaltic wave propagations at the left and right channel walls of a CSF11. To 
see if it had entered the system, a constant axial EF was established12. Their approach produced a large number 
of non-dimensional quantities. In recognition of this work, scientists now have a good understanding of how 
viscous fluids move in cylinders and turn unstable when subjected to EFs. Examiners investigated the stability of 
a perfect gas in the upper layer and a viscous fluid at the bottom of two horizontal fluids superposed one above 
the other13. Coriolis and centrifugal forces were considered. Another typical, normal EF that affected the system 
was this one. In EHD instability, a vertical cylindrical interface was discussed14. An even axial EF had an impact 
on the system that was being examined. There was a combination of the traditional normal modes analysis and 
the implication of the viscous potential theory (VPT). This methodology is used in the current inquiry because 
of how important the EF’s presence is. A statistical and analytical study was conducted on the EHD of thermal 
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stability of a viscoelastic nanofluid overflowing a porous with vertical AC of EF15. For porous media, the Brink-
man type was used, and the CSF model was used to explain the rheological behavior of the nanofluid. Both 
theoretical and quantitative study was done on the viscoelastic liquid film of the CSF type moving with relative 
motion through a permeable media into a perfect gas16. Analytical solutions for both axisymmetric and asym-
metric disturbances were found. Unlike the previous work, the current problem incorporates the energy equation 
to find the temperature distribution because of the importance of heat transmission in many real applications. 
It was discussed how vertical cylindrical EHD instability occurred14. A regular axial EF had an impact on the 
system that was being studied. The thermo-capillary phenomenon was produced by incorporating the effect 
of heat transfer into the buoyancy term and the ST parameter. The fundamental equations included an energy 
equation since temperature transfer has so many practical uses. It investigated how a rotating ring of double 
micro-layers of gas and fluid may maintain temporal stability17–19.

Numerous stability challenges have been looked into using the VPT. The VPT generated the Navier–Stokes 
equation solution for liquids with precisely zero vortices. The VPT solely considered normal stresses; balanc-
ing and tangential stresses were not considered. The RTI of two viscous fluids was examined using VPT20. The 
Rayleigh–Taylor instability (RTI) of the viscoelastic fluid issue was expanded21, and it was revealed that the vis-
coelastic potential theory offers the critical wavelength as well as a growth level that is within 10% of the correct 
theory. The solution to this issue was excellently examined22. The VPT was used to model the stability of slim, 
viscid, and dielectric fluid sheets23. The structural investigation revealed that although liquid viscosity stabilizes 
structures, air viscosity destabilizes them. A study on the linear EHD stability of a boundary between two viscid 
films looked at the VPT24. The impacts of various settings on stability were displayed in a series of graphs. When 
compared to a typical Newtonian viscous fluid, it was realized that the combination of the EF and couple stress 
was more powerful at stabilizing the weakly conducting CSF. It was discovered that the separate kinetic energy 
spectrum components were examined and displayed for various parametric values to obtain comprehensive data 
at the fluid flow critical condition25. It was thought to be a film of CSF heated from the bottom in porous media26. 
A worldwide nonlinear stability study of a CSF layer penetrating a permeable medium with viscosity that depends 
on temperature and pressure was performed27. For all the various conducting boundary systems, it was discovered 
that the Darcy-Brinkman model produced a system that was thermally more reliable than the Darcy prototype. 
How the MF affected the thermal convection of a CSF saturating a porous media was examined28. Because of the 
significance of porous relationships, this methodology will be used in the present study. A permeable stretched 
sheet in motion inside a porous medium caused a non-Newtonian Maxwell fluid to flow was investigated29. The 
realization of an increased heat transfer rate has become a major problem in the domain of thermal technological 
advances, which have faced numerous challenges in recent decades. Often, heating conventional fuels produces 
temperatures that are too high for renewable energy to reach30. An asymmetric channel’s non-Newtonian nano-
fluid behavior brought on by peristaltic waves was examined31. The generation of heat radiation and activation 
energy was also taken into account. The electro-osmotic flow of immiscible fluids across a porous material in 
vertical annular microtubes was visualized using a numerical simulation32.

As aforementioned, CSF has several industrial uses. Given the importance and uses of electrified CSFs and 
flows through porous media in advanced technologies, the purpose of this study is to examine the EHD stabil-
ity of two cylindrical dielectric CSFs flowing over permeable media. To the best of our knowledge, despite the 
study’s relevance for biological fluid flows, there is no literature on the simultaneous presence of CSFs and EF on 
the pressure-driven stability of fluid flow in a cylindrical channel. This paper’s innovation is in demonstrating 
the VPT’s validity while examining the CSFs’ stability features. The main objective of the present study is to urge 
readers to seek suitable answers to the following queries:

•	 What standards does the linear instability method use?
•	 How many physically non-dimensional numerals are there in the linear approach?
•	 How does the concept of linear stability work?

The article is structured as follows: In “Construction of the problem”, details regarding the physical system 
and mathematical model are supplied, in addition to base state profiles and linearized equations for the disturbed 
state. In “BCs and dispersion relation”, a linear specific equation of the interface displacement is obtained using 
the boundary conditions (BCs) which are also provided. The transcendental dispersion relation is also provided. 
In “Discussions of outcomes”, the linear stability approach is developed, and the findings are graphically displayed 
to demonstrate the impact of unlike factors on the instability profile. In “Concluding remarks”, concluding 
remarks and key findings are included.

Construction of the problem
The current study examines a system involving two types of fluids: liquid and gas, called streaming CSFs. These 
fluids flow uniformly in parallel along a jet’s axis. The inner (liquid) and outer (gas) fluids have different charac-
teristics. Therefore, the study addresses itself to a system with two homogeneous, incompressible, dielectric, and 
streaming CSFs uniformly moving parallel to the axis of the jet. The parameters in the inner (Liquid) and outer 
(Gas) fluids are denoted by the subscripts 1 and 2, respectively. Throughout the following formulation, µ and µ′ 
are typically the dynamic viscosity and viscoelasticity of CSF viscous terms, and v is the velocity of CSF Darcian 
velocity of the liquid motion. In porous media, where permeability is indicated by the symbol � , the flows are 
saturated. Porosity can be treated as a unit. The two cylinder-shaped fluids flow at uniform velocities U1 and U2 . 
Density and dielectric constants are referred to as ρ and ε , respectively. A consistent axial EF E0 is parallel to the 
interface between the two media. The gravity force g affecting the opposite z− direction is considered. To study 
the system, cylindrical polar coordinates are used for their practicality. The axis aligns with the axis of symmetry, 
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simplifying the analysis of flow dynamics and interactions. The axis z− is drawn parallel to the axis of symmetry. 
Figure 1 provides a drawing of the working prototype.

The common stability methodology motivation is created utilizing a consistent approach that acknowledges 
Chandrasekhar’s groundbreaking work33. In light of this, any involved function might be written as:

where f  denotes any physical quantity.
In the assessment of the temporal controlling disturbance, the wave numeral is regarded as a positive real 

value. Both k and ω are anticipated to be complex as: ω = ωr + iωi and k = kr + iki through the review of spa-
tial–temporal instability. The spatial growth of instability in addition to the stream direction is therefore produced 
by ki > 0 , the time growth of instability by ωr > 0 , and the two together are produced by Refs.34,35.

The CSF motion is governed by the following equations36:

The equation of continuity exists in37

in which ṽj is the fluid velocities, p̃j is the pressures, and g = (0, 0,−g) is the acceleration of gravity.
In formulating the basic governing equation of motion as given in Eq. (2), the VPT is utilized.
Euler equations are derived from the Navier–Stokes equations by employing the VPT, as previously shown38–40. 

Consequently, the viscous fluid stress tensor in the momentum equation is eliminated in the main formulation 
of the foundational equation of the flow. Therefore, the basic equation is the formula that, while taking into con-
sideration the Brinkman-Darcy rule, determines how well a viscous incompressible liquid flows across porous 
media. Consequently, the fluids are thought to be irrotational under the principles of the VPT. When a cylindri-
cal interface is found at the two undisturbed cylindrical interfaces, we assume that the three liquid phases are 
immiscible and undisturbed. A similar process was effectively applied to move from perturbation theory to the 
viscoelastic fluid41. Given that it can be reasonably presumed that the movements elsewhere are irrotational, 
this approach was predicated by Batchelor’s concept of VPT42. In this problem, the derivations are fully suitable 
to the VPT, without requiring the intricate adjustment of the boundary layer formulas for the low upward flow. 
Since the equations controlling the irrotational flow generate the Laplace formula, it should be feasible to alter 
the BCs at the interface including minor viscoelastic effects. Consequently, the viscoelastic influences can be 
formulated using the normal stress BC from the current work. Assuming the viscoelastic concept, the primary 
equations about the common fluid phases were supplied.

Because of the apparent EF intensity in this circumstance, the reported Maxwell’s formulas must be involved. 
Melcher43 published an innovative book that examined the surface waves of MHD and EHD in depth. Here, 
the influence of the EF is currently used. As a result, the MF effect may be discounted. Maxwell equations are 
simplified as follows:

Consequently, Ej the EF might be expressed concerning a scalar function ψj as

(1)f (r, θ , z; t) = F(r) exp [i(k z + nθ)+ ωt]+ c.c.,

(2)ρj

[

∂ ṽj

∂t
+ (ṽj .∇)ṽj

]

= −∇p̃j + ρjg −
1

�

(

µj − µ′

j ∇
2
)

ṽj , j = 1, and 2

(3)∇ .ṽj = 0 ,

(4)∇ .(εj Ej) = 0 & ∇ × Ej = 0

Figure 1.   Model shown in their unaltered state.
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Equation (4) implies that the EF’s potential complies with Laplace’s equation.

Let the perturbation equations be as follows to examine the above system of equations:

In light of the cylindrical coordinates, the continuity and momentum equations are provided by expressing 
the velocity in a proper component form in Eqs. (2) and (3).

In which ∇2
=

∂2

∂r2
+

1
r

∂
∂r +

1
r2

∂2

∂θ2
+

∂2

∂z2
.

Take the divergence of both sides of Eq. (2) and use Eq. (8) to solve the preceding system of equations.

The above equation may be written as follows by using Eq. (8):

which is the modified Bessel equation, and its solution becomes

and hence, the complete solution of the pressure is:

The integral constants C1 and B1 may be determined from the BCs, as demonstrated in the next section. Fur-
thermore, In(k r) and Kn(k r) there are modified Bessel functions of the 1st and 2nd kinds. As shown in Eqs. (7) 
and (8) are substituted into Eqs. (11)–(13), the following differential equations are obtained:

(5)Ej = E0 ez −∇ψ̃j .

(6)∇
2 ψ̃j = 0

(7)ṽj = (0, 0,Uj)+ vj where vj = Vj(r)Exp [i(kz + nθ)+ ωt]

(8)p̃j = P0j + pj where pj = Pj(r)Exp [i(kz + nθ)+ ωt]

(9)and ψ̃j = �0j + ψj where ψj = �j(r)Exp [i(kz + nθ)+ ωt]

(10)
∂ vrj

∂r
+

vrj

r
+

1

r

∂vθ j

∂θ
+

∂ vzj

∂z
= 0,

(11)ρj

(

∂

∂t
+ Uj

∂

∂ z

)

vrj = −

∂ pj

∂ r
−

µj

�
vrj +

µ′

j

�

[

∇
2vrj −

vrj

r2
+−

2

r2
∂vθ j

∂θ

]

,

(12)ρj

(

∂

∂t
+ Uj

∂

∂ z

)

vθ j = −

1

r

∂ pj

∂ θ
−

µj

�
vθ j +

µ′

j

�

[

∇
2vθ j −

vθ j

r2
++

2

r2
∂vrj

∂θ

]

,

(13)ρj

(

∂

∂t
+ Uj

∂

∂ z

)

vzj = −

∂ pj

∂ z
−

µj

�
vzj +

µ′

j

�
∇

2vzj ,

(14)∇
2pj = 0,

(15)and
1

r

[

∂

∂r

(

r
∂pj

∂r

)

+

1

r

∂2pj

∂θ2
+ r

∂2pj

∂z2

]

= 0

(16)r2
d2Pj

dr2
+ r

dPj

d r
− (k2r2 + n2)Pj = 0,

(17)P1(r) = C1In(k r) and P2(r) = B1Kn(k r)

(18)p1 = C1In(k r)Exp [i(kz + nθ)+ ωt]

(19)and p2 = B1Kn(k r)Exp [i(kz + nθ)+ ωt]

(20)r2
d2Vrj

d r2
+ r

d Vrj

dr
− (s21r

2
+ n2 + 1)Vrj =

r2�

µ′

j

dPj

dr
+ 2 i n Vθ j ,

(21)r2
d2Vθ j

d r2
+ r

d Vθ j

dr
− (s21r

2
+ n2 + 1)Vθ j =

inr�

µ′

j

Pj − 2 i n Vrj ,

(22)r2
d2Vzj

d r2
+ r

d Vzj

dr
− (s21r

2
+ n2)Vzj =

ikr2�

µ′

j

Pj ,
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By solving the previous Eqs. (20)–(22) and using Eq. (10), one obtains the solutions as follows:
For the inner fluid (Liquid Phase)

For the outer fluid (Gas Phase)

Correspondingly, by solving Eq. (6) and using Eq. (9), the solution of the EF takes the following form:

where Ci and Bi , i = 1, 2, 3, 4 are the integrating constants that can be derived from the applicable BCs in the 
following section, and the prime represents the derivative concerning the argument.

BCs and dispersion relation
The velocities and electric potential distributions are involved in the BCs and the stability hypothesis. These 
conditions can be classified at the perturbed interface at

where η0 is the surface’s initial amplitude.

•	 The kinematic BC gives44:

where S = r − R − η gives the equation of the disturbed surface.
•	 The continuity of speed at the separation surface gives44:

	   The stress tensor in case of the couple-stress model takes the form16,45

where δik is the Kronecker delta. Hence, the stress tensor’s tangential part should be continuous at the inter-
face, leading to the following BCs:

•	 The shear stresses must be continuous at the surface of the separation

and

(23)where s2j = k2 +
µj + � ρj(ω + i k Uj)

µ′

j

(24)vr1 =

[

k�C1I
′

n(k r)

µ′

1(k
2
− s21)

−

i k C2

s1
In−1(s1r)+

nC3

s1r
In(s1r)

]

Exp [i(kz + nθ)+ ωt],

(25)vθ1 = i

[

n�C1In(k r)

µ′

1(k
2
− s21)

−

i k C2

s1
In−1(s1r)+ C3I

′

n(s1r)

]

Exp [i(kz + nθ)+ ωt],

(26)and vz1 =

[

i k �C1In(k r)

µ′

1k
2
− s21)

+ C2In(s1r)

]

Exp [i(kz + nθ)+ ωt].

(27)vr2 =

[

k�B1K
′

n(k r)

µ′

2(k
2
− s22)

+

i k B2

s2
Kn−1(s2r)+

nB3

s2r
Kn(s2r)

]

Exp [i(kz + nθ)+ ωt],

(28)vθ2 = i

[

n�B1Kn(k r)

µ′

2(k
2
− s22)

+

i k B2

s2
Kn−1(s2r)+ B3K

′

n(s2r)

]

Exp [i(kz + nθ)+ ωt],

(29)and vz2 =

[

i k �B1Kn(k r)

µ′

2(k
2
− s22)

+ B2Kn(s2r)

]

Exp [i(kz + nθ)+ ωt].

(30)ψ1 = C4In(k r)Exp[i(kz + nθ)+ ωt],

(31)and ψ2 = B4Kn(k r)Exp[i(kz + nθ)+ ωt].

(32)η = η0Exp[i(kz + nθ)+ ωt].

(33)
dS

dt
= 0 ⇒ vrj =

∂η

∂t
+ Uj

∂η

∂z
at r = R + η.

(34)vθ1 = vθ2 at r = R + η

(35)and vz1 = vz2 at r = R + η

(36)τik = −pδik +
(

µ− µ′
∇

2
)

(

∂vi

∂xk
+

∂vk

∂xi

)

+ εEiEk −
1

2
εδikE

2

(37)τ (1)rz = τ (2)rz ⇒

(

µ1 − µ′

1∇
2
)

(

∂vr1

∂z
+

∂z1

∂r

)

=

(

µ2 − µ′

2∇
2
)

(

∂vr2

∂z
+

∂vz2

∂r

)

at r = R + η
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	   Following the BCs used before by Refs.14 for the electrostatic field, one discovers.
•	 The tangential part of EF is continuous at the separation surface

•	 The normal part of EF is continuous at the surface of separation, i.e.,

where N =
∇S
|∇S| is the unit vector normal to the perturbed surface.

Substituting from Eqs. (24)–(31) into the BCs in Eqs. (33)–(40), one gets

where �, �11 , ...,�62, are listed in the ESM Appendix, and σ refers to the ST.
Additionally, the normal stress BC is determined by12–14,16,44:

then we have the following condition to the first order terms12–14,16,44:

Substituting Eqs. (18), (19), (24), (27), and (30–32) into Eq. (50) yields the following dispersion relationship 
between k∗ and ω∗

where δ1, δ2 are listed in the ESM Appendix.
Equation (51) can be written in a dimensionless formula as

where

(38)τ
(1)
rθ = τ

(2)
rθ ⇒

(

µ1 − µ′

1∇
2
)

(

∂vθ1

∂r
−

vθ1

r
+

1

r

∂vr1

∂θ

)

=

(

µ2 − µ′

2∇
2
)

(

∂vθ2

∂r
−

vθ2

r
+

1

r

∂vr2

∂θ

)

at r = R + η

(39)N × E1 = N × E2 ⇒ ψ1 = ψ2 at r = R + η

(40)N .
(

ε1E1
)

= N .
(

ε2E2
)

⇒ ε1
∂ψ1

dr
− ε2

∂ψ2

dr
+ ikE0η(ε1 − ε2) = 0 at r = R + η

(41)C1 =

√

ρ1σR

R

[

(ω + i k U1)
�11

�
− (ω + i k U2)

�12

�

]

η0

(42)C2 =

[

−(ω + i k U1)
�21

�
+ (ω + i k U2)

�22

�

]

η0

(43)C3 =

[

(ω + i k U1)
�31

�
− (ω + i k U2)

�32

�

]

η0

(44)B1 =

√

ρ1σR

R

[

−(ω + i k U1)
�41

�
+ (ω + i k U2)

�42

�

]

η0

(45)B2 =

[

(ω + i k U1)
�51

�
− (ω + i k U2)

�52

�

]

η0

(46)B3 =

[

−(ω + i k U1)
�61

�
+ (ω + i k U2)

�62

�

]

η0

(47)C4 =
−i E0η0(ε1 − ε2)Kn(kR)

ε1I ′n(kR)Kn(kR)− ε2In(kR)K ′

n(kR)

(48)B4 =
−i E0η0(ε1 − ε2) In(kR)

ε1I ′n(kR)Kn(kR)− ε2I ′n(kR)K
′

n(kR)

(49)
(

τ
(1)
ik − τ

(2)
ik

)

. n+ σ∇ .N = 0 at r = R + η,

(50)

p1 − p2 − 2(µ1 − µ′

1 ∇
2)
∂vr1

∂r
+ 2(µ2 − µ′

2 ∇
2)
∂vr2

∂r
− E0

(

ε1
∂ψ1

∂z
− ε2

∂ψ2

∂z

)

+

σ

R2

(

1+ R2 ∂2

∂z2
+

∂2

∂θ2

)

η = 0.

(51)

(ω + i k U1)δ1 − (ω + i k U2)δ2 −
k R E2(ε1 − ε2)

2In(kR)Kn(kR)
√

ρ1σ R
[

ε1I ′n(kR)Kn(kR)− ε2In(kR)K ′

n(kR)
] +

σ

R
√

ρ1σ R
(1− k2R2

− n2) = 0,

(52)

(

ω∗
+ i k∗

√

we
)

δ1 −
(

ω∗
+ i k∗ Ũ

√

we
)

δ2 −
k∗ E∗20 (1− ε̃)2In(k

∗)Kn(k
∗)

[

I ′n(k
∗)Kn(k∗)− ε̃ In(k∗)K ′

n(k
∗)
] + (1− k∗2 − n2) = 0
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where ω∗
= ω∗

r + i
√

Weω∗

i  , ω∗
= ω

√

ρ1R3/σ  is a dimensionless growth level, ω∗

i = (R/U1)ωi is a disrupted 
frequency with no dimensions, k∗ = kR is the non-dimensional wave numeral, s∗j = sjR , ρ̃ = ρ2/ρ1 is the den-
sity ratio, Ũ = U2/U1 is the velocity ratio, µ̃ = µ2/µ1 is the viscosity ratio, µ̃′

= µ′

2/µ
′

1 is the viscoelasticity 
ratio, ε̃ = ε2/ε1 is the ratio of the dielectric constant, Da = �/R2 is the Darcy number, E∗0 = E0

√

ε1R/σ  is the 
non-dimensional electric field, We = ρ1U

2
1R/σ is the liquid Weber number, z = µ1/

√

ρ1σ R is the Ohnesorge 
number, � = µ′

1/µR
2 is the couple-stress parameter.

The calculations that follow mostly use Gaster’s technique46 to assess the impact of physical factors on the 
instability profile. Therefore, one may confirm these elements by applying Gaster’s approach46 and Mathematica 
Software (MS) Version 12.0.0.0 as a mathematical instrument.

The stability analysis at this point is dependent on the dispersion equation provided in Eq. (52). It truly lacks 
a precise solution. For this equation, numerical computations will be made. The next section provides examples 
of this process; for further information, see38,43,45.

Discussions of outcomes
As previously demonstrated, the dimensionless dispersion relationship is formed as given in Eq. (52). The angular 
frequency of waves is often of complex form in the backdrop of the time-dependent instability analysis, where 
the real part denotes the disruption growth level and the imaginary part signifies the disruption frequency. The 
system becomes unstable when the growth level is positive. It is not certain that a closed formula of the analytic 
solution will be achieved. Consequently, the MS can be used to adjust a numerical method. Equivalent outcomes 
have been made available45,47. In a vision of the Gaster way46, one may put ω∗

i = −k∗ , and take ω∗

r = 1000 by 
mode of a primary estimate the solution. A recurrence of the ordered pair solution (k∗,ω∗

r ) at various criteria of 
dissimilar factors is included in this examination. The next style displays a sequence of graphs for the relevant 
study that range from Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11. Over these graphs, growth levels are drawn vs. the wave 
numeral of the waves. For more simplicity, the next factors are selected:

          

The effect of the azimuthal wave numeral n
Figure 2 shows the relation between ω∗

r  and k∗ for dissimilar modes of disturbances n . By adjusting the azimuthal 
wave number ( n ), it is possible to control the flow dynamics and stability characteristics of the liquid jet. For 
example, selecting an appropriate n value may help mitigate instabilities and promote a more stable and con-
trolled flow behavior. It is clear that for n = 1 (asymmetric mode) the jet is more unstable than the other modes 
for a small wave number (actually at k∗ ≤ 1.5 for this particular case). Except for this variance, all the outcomes 
displayed have proven the general ideal theorem that 2-dimensional ( n = 0 ) disruptions are more unstable 
than 3-dimensional ones, as predicted by Squire’s theorem48. Nonetheless, for viscid and viscoelastic liquid jets, 
Squire’s theory is no longer effective. In addition, it is noticed from this figure that the extreme growth level 
becomes smaller as n increases, while the dominant wave numbers increase except as n = 1 . And the growth level 
of 2-dimensional surpasses those of 3-dimensional in the wave numerals range 1.5 ≤ k∗ ≤ 6. These results agree 
with those obtained earlier43. In addition, experimental studies can be conducted to validate the influence of n 

(53)s∗21 = k∗2 +
Da(ω∗

+ i k∗
√

we)+ z

z�
,

(54)s∗22 = k∗2 +
ρ̃ Da(ω∗

+ i k∗ Ũ
√

we)+ µ̃ z

µ̃′z�

We = 1000, Z = 0.5, � = 0.2, Da = 0.7, ρ̃ = 0.01, µ̃ = 0.8, µ̃′
= 0.5, Ũ = 0.7, ε̃ = 0.5, E∗0 = 10, and n = 0

Figure 2.   displays the growth level vs. the wave numeral of different values of n.
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on flow stability in liquid jets. Observations of flow patterns and disturbance growth rates can provide insights 
into the relationship between azimuthal wave number and flow stability, helping to refine theoretical models 
and predictive capabilities.

Impact of Weber numeral We

Figure 3 displays the relationship between ω∗

r  and k∗ of series values of the liquid Weber numeral for ( n = 0 ). 
In the context of flow stability, the Weber number plays a significant role in determining the behavior of the 
flow and its stability characteristics. It is evident that as the We rises, the growth levels seem weak until the wave 

Figure 3.   displays the growth level vs. the wave numeral of different values of We.

Figure 4.   displays the growth level vs. the wave numeral of different values of Z.

Figure 5.   displays the growth level vs. the wave numeral of different values of �.



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5686  | https://doi.org/10.1038/s41598-024-56143-w

www.nature.com/scientificreports/

numeral of k∗ = 2 . Then, the instability power implies that the extra growth level and the central wave numer-
als also rise. The development of the Weber numeral may be made by improving the liquid density and velocity, 
or by reducing the ST. Furthermore, as the liquid Weber numeral rises, the destabilizing zone also rises. So, the 
Weber numeral has instability power. These outcomes are well-matched with the results of the previous studies49.

Impact of Ohnesorge numeral Z
The viscosity effects of the porous media on the amount of disturbance growth are shown in Fig. 4. It is evident 
that when the Ohnesorge numeral grows, so does the growth level, which increases the instability zone. This 

Figure 6.   displays the growth level vs. the wave numeral of different values of Da.

Figure 7.   displays the growth level vs. the wave numeral of different values of E∗0.

Figure 8.   displays the growth level vs. the wave numeral of different values of ρ̃.
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demonstrates that the stability image is destabilized by the Ohnesorge numeral Z. It is important to remember 
that the Ohnesorge number represents the ratio of the viscous strength to the ST strength, and thus the lower 
Ohnesorge numeral results in a lower viscous force in contrast to the ST force. The growth level is smaller in this 
situation. One may claim that when the Ohnesorge numeral rises, the maximal growth also does. The Ohnesorge 
number normally has stabilizing effects because of viscosity, however, El-Sayed et al.44 have proven that the Ohne-
sorge numeral also shows a dual function by stabilizing and then destabilizing the stability picture. Also, keep in 
mind that the viscosity in this case is due to the porous media rather than the fluid’s characteristics, therefore its 
impact is weakened compared to that of the fluid’s viscosity. In summary, the Ohnesorge number plays a crucial 

Figure 9.   displays the growth level vs. the wave numeral of different values of Ũ.

Figure 10.   displays the growth level vs. the wave numeral of different values of µ̃.

Figure 11.   displays the growth level vs. the wave numeral of different values of µ̃′.
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role in determining flow stability, influencing the balance between viscous and surface tension forces. Higher 
Ohnesorge numbers are associated with increased instability, contributing to a wider range of flow conditions 
that promote flow destabilization. The identical outcomes have already been verified47.

Impact of the CSF parameter �
Figure 5 explains the viscoelastic effects resulting from the CSFs on the disruption growth level. The viscoelastic 
effects resulting from the couple stress fluid parameter impact the flow dynamics by introducing additional 
internal forces within the fluid. These internal forces counteract the growth of disturbances, leading to a sta-
bilization of the flow. It is also evident that when the couple-stress parameter increases, the growth level drops 
as well, reducing the instability zone. This shows that the couple-stress parameter stabilizes the system under 
consideration. Kumara Shiva et al.50 established the same result. Mathematically, it is worth noting that if we 
look at the equation of motion in Eq. (2), one can observe that the viscoelasticity µ′ is the dynamic viscosity in 
the original Navier–Stokes equation. Therefore, in the original research of the viscid liquid jet, the influence of 
this non-dimensional parameter (couple-stress parameters � ) is equivalent to the effect of viscosity; for example, 
see37,45. This result also concurs with Kumar51.

Effect of the Darcy numeral Da
The effect of permeability on the stability picture throughout the Darcy numeral Da is seen in Fig. 6. It is clear 
that increasing Da minimizes the level of growth interruptions, and as a result, the unstable area shrinks dramati-
cally. Conversely, in the unstable region, huge wave numerals result in a little destabilizing influence. The stability 
process is made more unstable by the Darcy number Da which agrees with Refs.14,45. According to Ref.52, Da has 
a stabilizing impact. As a result, the parameter Da gains twofold relevance. Furthermore, when Da grows, the 
central and lower cut-off wave numerals remain constant, but the higher cut-off wave numbers rise. Nonetheless, 
when Da grows, so does the maximum growth level. On the other hand, in porous media flows, such as those 
encountered in fiber-reinforced composite materials, the Darcy number plays a crucial role in determining the 
flow characteristics. It governs the flow resistance within the porous structure and affects the distribution of 
fluid velocities and pressures.

Effect of the EF E∗
0

In the case of a 2-dimensional setup, Fig. 7 displays the relationship between ω∗

r  and k∗ for numerous values of 
the EF factor. From this graph, it can be shown that the effect of the EF factor is the same as the CSF parameter. 
Additionally, it is evident that the values of the instability zone and the growth level of disruptions significantly 
decrease when E∗0 is raised. Additionally, as the EF parameter increases, the dominating wave numerals, upper 
cut-off, and maximal growth level all drop, while the wave numerals for the lower cut-off rise. Therefore, it may 
be said that the current system is stabilized by the applied EF. Many studies have already confirmed this result. 
For example, it agrees with the results reported in Ref.53. On the other hand, the tangential electric field applies 
EHD forces to the fluid, which can alter the flow behavior. These forces arise from how the electric field and the 
charges present in the fluid, leading to the generation of electrical stresses and potentially affecting the fluid flow. 
Electrokinetic events can also arise due to the existence of a tangential electric field, such as electroosmosis or 
electrophoresis, which further influences the flow stability. These phenomena involve the movement of charged 
particles or fluids when the electric field is at work and can significantly impact the flow behavior.

Effect of the Gas‑to‑Liquid (GTL) density relationship ρ̃
The role of the GTL density relationship ρ̃ is demonstrated in Fig. 8. The curves have been produced for serial 
values of ρ̃ as can be seen in this graph. According to this graph, increasing the GTL density ratio has a very 
mild destabilizing impact on tiny wave numbers (actually, k∗ ≤ 1.4 for this particular case). The impact is then 
mirrored to improve the stability zone. Furthermore, raising the GTL density ratio values results in a decrease in 
the maximal growth level, central, and upper cut-off wave numeral. By contrast, the lower cut-off wave numeral 
remains constant by increasing the GTL density ratio. The instability zone significantly shrinks as a result of the 
prior reasoning. This demonstrates that concerning the VPT in the permeable medium, the GTL ratio of density 
ρ̃ has a stabilizing impact. It is worth noting that this factor has a dual purpose in the context of the linear stability 
study. This outcome is consistent with the previously verified result by14. Correspondingly, changes in the GTL 
density relationship can significantly impact flow dynamics and stability. Alterations in the density relationship 
may arise from variations in gas and liquid properties, temperature, or pressure conditions, all of which can 
affect the stability characteristics of the flow system. As illustrated in Figs. 5 and 8, the couple-stress parameter 
and the GTL density relationship have a stabilizing impact for higher values of the wave numerals. This effect is 
caused by a rise in the viscoelasticity and inertia of CSF dampening. As a result, a rise in viscoelasticity and the 
GTL density ratio makes the free surface more stable.

Effect of the GTL velocity ratio Ũ
Understanding the GTL velocity relationship is crucial in various engineering applications involving liquid jets, 
such as fuel injection systems, chemical spray nozzles, and inkjet printing. Controlling the relative velocities 
between the gas and liquid phases is essential for optimizing the stability and performance of these systems. The 
impression of the GTL velocity relationship Ũ  for axisymmetric disruptions as seen in Fig. 9 must be explained. 
It makes sense that when the GTL velocity ratio Ũ  increases, the disruption growth level and the unstable zone 
fall sharply, and the maximal growth level and the unstable region also drop. This indicates that the interface is 
stabilized by the GTL velocity ratio. Additionally, the central and higher cut-off wave numerals are both decreased 
by the growth of the GTL velocity ratio, whereas the lower cut-off wave numeral is somewhat increased. Overall, 
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it can be said that the GTL velocity relationship opposes the atomization procedure. The ambient gas velocity is 
responsible for this influence because the Weber numeral is of a fixed value in this location, meaning that it has 
a stabilizing effect. Similar outcomes have recently been discovered49.

Effect of the GTL dynamic viscosity ratio µ̃
Figure 10 illustrates how the GTL dynamic viscosity ratio affects the growth level disruptions for a series of these 
parameter values. This graph clearly shows that when the GTL dynamic viscosity ratio rises, both the maxi-
mal growth level and the instability zone expand until a critical wave numeral, in this case, reaches k∗ = 5 . After 
that, the influence is redirected to a weakly stabilizing effect. By contrast, both the center wave numeral and the 
lower cut-off wave numeral decrease. This displays that the GTL dynamic viscosity ratio has a double effect on 
stability, first destabilizing and then stabilizing. It is worth noting that because the liquid Ohnesorge numeral is 
set here, this effect is attributable to the viscosity of the surrounding gas, i.e., the surrounding gas viscosity caused 
by the porous material has a dual effect on the system at issue. In applications such as fuel injection systems or 
spray coating processes, the viscosity ratio plays a crucial role in determining the atomization behavior of the 
liquid jet. A higher viscosity ratio can lead to finer atomization and improved spray characteristics due to the 
enhanced stability of the liquid jet. Comparable results have recently been discovered47.

Impact of the GTL viscoelasticity ratio µ̃′

To explore the impacts of the GTL viscoelasticity ratio µ̃′ on the stability requirements, four various values of 
µ̃′ are gathered in Fig. 11. Because the instability occurs from the positive sign of the real component of the 
frequency, we can see in this figure that increasing the GTL viscoelasticity ratio reduces the instability zone and 
so stabilizes the liquid jet. It has also been discovered that when the GTL viscoelasticity ratio grows, the maximal 
growth level, the dominating, and greater cut-off wave numerals rise, whereas raising the GTL viscoelasticity 
ratio raises the lower cut-off wave numbers. Because the couple-stress parameters are set here, this influence is 
attributable to the surrounding gas viscoelasticity, i.e., the CSF-induced surrounding gas viscosity has a stabilizing 
effect on the considered system. Understanding the influence of the GTL viscoelasticity ratio on flow stability is 
crucial in various engineering applications, such as atomization processes, coating technologies, and fuel injec-
tion systems. Optimizing the GTL viscoelasticity ratio can help control and enhance the stability of liquid jets, 
leading to improved performance and efficiency in these applications.

Concluding remarks
The CSF framework describes axisymmetric and asymmetric streaming flows, which are examined in this article. 
The CSF is a liquid that has been implanted with microfibers, similar to fiber-reinforced composite substances. It 
is a mechanism that divides the two CSF structures with an unending vertical cylindrical interface. The study’s 
impetus is explained as stemming from the CSFs’ increasing importance in contemporary industry and technol-
ogy, specifically in the creation of fiber-reinforced composite materials. In addition to the effect of CSF, an axial 
EF is applied across the cylindrical contact. To reduce mathematical complexity, the VPT is used for convenience. 
The main step in the linear technique is to combine the basic linear equations of motion with the appropriate 
linear-related BCs. A non-dimensional procedure generates a set of physically dimensionless numbers. The condi-
tions for hypothetical linear stability are then worked out. The MS is used to calculate the dispersion relationships 
with the help of Gaster’s theorem. It has been demonstrated that the presence of a porous material makes the 
system more unstable than it would be in the absence of one, after carefully studying several influences on the 
stability investigation of the system in question. More instability results in the axisymmetric disturbance situation. 
Several graphs show the linear approaches. It is discovered that increasing the gas-to-liquid viscoelasticity ratio, 
axial EF, and couple-stress parameters causes the system to become more stable. As the Weber and Ohnesorge 
numbers increase, the system may become unstable. Based on the critical wave number, the gas-to-liquid dynamic 
viscosity connection affects the system’s stability or instability. This means that the Darcy number can stabilize or 
destabilize the system based on specific conditions. Understanding these properties’ effects on stability is crucial 
for a variety of engineering applications and technological breakthroughs.

A variety of graphs have demonstrated the linear approaches. Therefore, the main keys to the outcomes may 
be listed as follows.

•	 The parameters of the azimuthal wave numeral n , couple-stress parameters � , EF E∗0 , GTL density ratio ρ̃ , 
GTL velocity ratio Ũ  , and GTL viscoelasticity ratio µ̃′ have a stabilizing impact on the stability profile.

•	 The Weber numeral and Ohnesorge numeral Z parameters destabilize the system.
•	 The GTL dynamic viscosity relation has a twofold purpose in the instability image, separating instability and 

stability from the crucial wave number. Furthermore, the Darcy numeral Da serves a converse dual role in 
that it both stabilizes and destabilizes the system at issue.

Here are some additional specific applications of the CSFs
The CSFs are a particular kind of non-Newtonian fluid that show more microstructural effects than what con-
ventional Newtonian fluid models can capture. These extra effects include the existence of internal couples or 
moments in the fluid, which results from material rotations or microstructural asymmetries. Potential uses of the 
CSFs in a range of physical structures where these microstructural effects are important have been investigated. 
In what follows, some sources demonstrate the applicability and significance of CSF models in many scientific 
and technical domains by offering instances of its application to particular physical systems and phenomena:
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•	 Microscale flows in biological systems
	   It was discovered in simulating blood flow in microcirculation, where non-Newtonian behavior might 

result from relationships with the walls of vessels and red blood cell deformation54.
•	 Emulsions and suspensions
	   It was found in investigating the stability and rheological characteristics of saturated formulations and 

suspensions, where flow behavior can be greatly influenced by internal microstructural influences55.
•	 Polymer processing
	   It was discovered by comprehending the viscoelastic polymer mixtures’ flow behavior and processing 

properties in extrusion and injection procedures56.
•	 Microfluidic device
	   It was used to create and refine microfluidic instruments for use in biomedical settings where exact com-

bining and fluid flow manipulation are crucial57.
•	 Soft matter rheology
	   It was found in examining the rheological characteristics of complex soft matter systems under shear and 

extensional deformations, such as gels and liquid crystals58.

Data availability
All data generated or analyzed during this study are included in this manuscript and its supplementary informa-
tion files.
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