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Abstract
Beyond mere prognostication, optimal biomarkers of aging provide insights into quali-
tative and quantitative features of biological aging and might, therefore, offer useful 
information	for	the	testing	and,	ultimately,	clinical	use	of	gerotherapeutics.	We	aimed	
to	develop	a	proteomic	aging	clock	 (PAC)	 for	all-	cause	mortality	 risk	as	a	proxy	of	
biological	age.	Data	were	from	the	UK	Biobank	Pharma	Proteomics	Project,	including	
53,021	participants	aged	between	39	and	70 years	and	2923	plasma	proteins	assessed	
using	the	Olink	Explore	3072	assay®.	10.9%	of	the	participants	died	during	a	mean	
follow-	up	of	13.3	years,	with	the	mean	age	at	death	of	70.1	years.	The	Spearman	cor-
relation	between	PAC	proteomic	age	and	chronological	age	was	0.77.	PAC	showed	
robust	age-	adjusted	associations	and	predictions	for	all-	cause	mortality	and	the	onset	
of	various	diseases	in	general	and	disease-	free	participants.	The	proteins	associated	
with	PAC	proteomic	age	deviation	were	enriched	in	several	processes	related	to	the	
hallmarks	of	biological	aging.	Our	results	expand	previous	findings	by	showing	that	
biological	age	acceleration,	based	on	PAC,	strongly	predicts	all-	cause	mortality	and	
several	incident	disease	outcomes.	Particularly,	it	facilitates	the	evaluation	of	risk	for	
multiple	conditions	in	a	disease-	free	population,	thereby,	contributing	to	the	preven-
tion of initial diseases, which vary among individuals and may subsequently lead to 
additional comorbidities.
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1  |  INTRODUC TION

The geroscience hypothesis (Kennedy et al., 2014)	posits	that	tar-
geting aging may prevent or delay the onset of multiple diseases, 
where	chronological	age	is	a	major	risk	factor.	Human	trials	to	test	
interventions for a geroscience indication are challenging due to 
the lengthy duration needed to observe the effects of interven-
tions	 on	 aging	 outcomes.	 Alternatively,	 biomarkers	 of	 aging,	 re-
flective of aging processes and their consequences, can serve as 
surrogate endpoints for assessing the risk and progression of sev-
eral major diseases (Justice et al., 2018;	Moqri	et	al.,	2023).	Recent	
biomarkers	 of	 aging	 focus	 on	 prediction	 of	 biological	 age	 (BA)	
(Moqri	et	al.,	2023; Rutledge et al., 2022),	which	reflects	the	level	
of	age-	dependent	biological	changes,	such	as	molecular	and	cellu-
lar	damage	accumulation	(Moqri	et	al.,	2023).	Biological	age	(BA)	
acceleration,	indicated	by	a	positive	biological	age	deviation	(BA	-		
chronological age >0),	has	been	linked	with	various	adverse	health	
outcomes	(Moqri	et	al.,	2023; Rutledge et al., 2022).	Due	to	their	
prognostic	value	in	predicting	age-	related	conditions	and	sensitiv-
ity	to	interventions,	BA	measures	have	become	increasingly	pop-
ular	 as	 intermediate	 phenotypes	 in	 randomized	 controlled	 trials	
(Lohman et al., 2023;	Waziry	et	al.,	2023).

The	 most	 common	 quantification	 of	 BA	 relies	 on	 DNA	
methylation-	based	measurements	known	as	epigenetic	clocks.	First-	
generation	epigenetic	clocks	(Hannum	et	al.,	2013;	Horvath,	2013; 
Levine, 2013,	 p.201)	 were	 initially	 developed	 using	 chronological	
age	as	a	surrogate	of	BA.	These	measures	are	now	being	surpassed	
by	 second-	generation	 epigenetic	 clocks,	which	 use	 an	 age-	related	
outcome or the pace of aging to improve predictions of morbidity 
and mortality (Belsky et al., 2022; Levine et al., 2018; Lu et al., 2019).	
While	 epigenetic	 clocks	 are	widely	 recognized,	 proteins	 and	 their	
signatures	 provide	 direct	 links	 to	 aging-	related	 pathology,	making	
them	 more	 relevant	 for	 disease	 prognosis	 in	 the	 clinical	 context	
(Moaddel	et	al.,	2021).

Previous	studies	have	 identified	circulating	proteins	associated	
with	chronological	age	(Moaddel	et	al.,	2021;	Sathyan	et	al.,	2020; 
Tanaka et al., 2018),	 mortality	 (Eiriksdottir	 et	 al.,	 2021; Orwoll 
et al., 2018),	 and	 chronic	 diseases	 (Carrasco-	Zanini	 et	 al.,	 2023; 
Gadd	et	al.,	2023).	Several	proteomic	clocks	have	been	developed	
to	predict	chronological	age	(Sathyan	et	al.,	2020;	Sayed	et	al.,	2021; 
Tanaka et al., 2018)	or	mortality	(Unterhuber	et	al.,	2021).	 In	addi-
tion,	 a	proteomic	 composite,	 known	as	 the	 senescence-	associated	
secretory	 phenotype	 (SASP)	 index	 (Diniz	 et	 al.,	 2017),	was	 devel-
oped	 incorporating	22	preselected	SASP	proteins.	This	 index	 indi-
cates a phenotypic manifestation of cellular senescence, a hallmark 
of	biological	aging	(López-	Otín	et	al.,	2013).	Elevated	SASP	index	lev-
els have been associated with aging outcomes in older adults with 
major depression, such as cognitive impairment, increased medical 
burden—particularly in cardiovascular disease—and compromised 
brain health, including neuroinflammation and cortical atrophy 
(Seitz-	Holland	et	al.,	2023).	Consistently,	other	composite	SASP	bio-
markers	have	shown	high	predictive	value	for	all-	cause	mortality	in	
healthy	older	adults	(St	Sauver	et	al.,	2023).

Despite	 their	 relevance,	 these	proteomic	clocks	exhibit	 signifi-
cant limitations. They were mostly trained to predict chronological 
age	(i.e.,	first-	generation	clocks)	or	trained	in	a	small	sample	with	a	
small set of proteins, which may be preselected to reflect a specific 
biological	aging	process	(e.g.,	cellular	senescence).	In	this	study,	we	
aimed to develop a proteomic clock, referred to as the proteomic 
aging	clock	(PAC),	to	predict	all-	cause	mortality.	Data	included	2923	
plasma	 proteins,	 assessed	 using	 the	 Olink	 Explore	 3072	 assay®,	
from	 a	 UK	 Biobank	 (UKB)	 baseline	 cohort	 of	 53,021	 participants	
aged	between	39	and	70 years.	We	validated	the	PAC	for	its	asso-
ciations	and	predictions	of	all-	cause	mortality	and	age-	related	con-
ditions,	 during	a	 follow-	up	exceeding	a	decade.	Biological	 insights	
into	PAC	proteomic	age	deviation	were	 investigated	 through	gene	
set analysis and gene property analysis for tissue specificity.

2  |  METHODS

2.1  |  UK Biobank Pharma Proteomics Project

The	UK	Biobank	 (UKB)	 recruited	more	 than	500,000	participants,	
aged	 between	 40	 and	 70 years,	 between	 2006	 and	 2010	 (Allen	
et al., 2024;	Sudlow	et	al.,	2015).	At	recruitment	(baseline),	partici-
pants completed online questionnaires, cognitive function tests, 
verbal	 interviews,	 and	 physical	measurements.	Additionally,	 blood	
samples	were	collected	for	future	biological	assays.	Since	then,	dis-
ease diagnoses and death status have been updated through link-
ages to electronic health records.

Participants	who	 supplied	 blood	 samples	 at	 baseline	were	 se-
lected	for	 inclusion	 in	the	UK	Biobank	Pharma	Proteomics	Project	
(UKB-	PPP)	(Sun	et	al.,	2023).	Of	the	included	samples	(n = 53,021),	
the majority (n = 46,792,	 88.3%)	 were	 a	 random	 sample	 from	 the	
UKB	baseline	cohort.	Others	(n = 6229,	11.7%)	included	participants	
who	attended	the	first	imaging	visit	and	COVID-	19	repeat	imaging	
study and those selected by the consortium of 13 biopharmaceutical 
companies for their research interests.

2.2  |  Data

The	normalized	protein	expression	 (NPX)	data	encompassed	2923	
proteins (Table S1).	Three	proteins	with	high	 rates	of	missing	data	
were	 removed	 from	 the	 analysis:	 GLIPR1	 (99.7%),	 NPM1	 (74.0%),	
and	PCOLCE	 (63.6%).	 For	 the	 remaining	 proteins,	we	 applied	 a	 k-	
nearest neighbors approach (Torgo, 2011)	 to	 impute	missing	prot-
eomic data (k = 10).

All-	cause	mortality	risk	was	used	as	an	indicator	for	BA.	Death	
data	 were	 provided	 by	 the	 UK	 National	 Health	 Service	 (NHS)	
England,	NHS	Central	Register,	 and	National	Records	of	 Scotland.	
Participants	with	no	recorded	date	of	death	were	assumed	to	remain	
alive until the censoring date of 11/30/2022. Regarding incident 
disease	outcomes,	participants	free	of	a	disease	at	baseline	(2006–
2010)	 were	 followed	 up	 until	 the	 first	 disease	 diagnosis,	 death	
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(censoring	date	11/30/2022),	or	the	 last	 follow-	up	date	 (censoring	
dates:	11/30/2022	[England],	7/31/2021	[Scotland],	and	2/28/2018	
[Wales])	 depending	 on	which	 occurred	 first.	 First	 diagnosis	 dates	
were	 identified	using	the	UKB	hospital	 inpatient	data	and	first	oc-
currence data, which linked data from different sources based on 
3-	character	 ICD-	10	 codes:	 longitudinal	 primary	 care	 (45%	 of	 the	
UK	 Biobank	 cohort),	 hospital	 inpatient,	 death	 registry	 data,	 and	
self-	reported	medical	conditions	at	baseline	(Table S2).	Data	on	the	
covariates	were	collected	by	UKB	through	online	surveys,	physical	
measurements, and linkages to electronic health records (Table S2).	
All	the	data	were	extracted	using	the	field	IDs	in	Table S2.

2.3  |  PAC development

The	NPX	data	and	chronological	age	at	baseline	in	the	training	set	
were	used	to	train	a	LASSO	penalized	Cox	regression	model	for	the	
risk	of	all-	cause	mortality.	The	selected	proteins	and	chronological	
age	were	used	to	fit	Gompertz	proportional	hazards	models	and	for-
mulate	PAC	to	estimate	the	proteomic	age	based	on	the	input	data	
(Supplementary	Methods	[Appendix	S1]).

2.4  |  PAC validation

2.4.1  |  Correlations	of	PAC	proteomic	age	with	
aging-	related	traits	at	baseline

We	evaluated	the	correlations	of	PAC	proteomic	age	with	chrono-
logical	 age,	 BioAge,	 PhenoAge,	 short	 leukocyte	 telomere	 length	
(LTL),	 physiological,	 or	 cognitive	 measures	 (Table S3),	 a	 49-	item	
frailty	 (Williams	 et	 al.,	 2019),	 and	 disease-	associated	 biomark-
ers (Table S3)—all	 measured	 at	 baseline—using	 the	 test	 set	 data.	
Additionally,	we	investigated	the	correlations	between	the	residuals	
of	PAC	proteomic	age	and	those	of	BioAge,	PhenoAge,	and	leuko-
cyte telomere length, with adjustments made for chronological age.

2.4.2  |  Associations	of	PAC	proteomic	age	deviation	
with	all-	cause	mortality	and	incident	diseases

Next,	 we	 tested	 if	 PAC	 proteomic	 age	 deviation	 was	 linked	 with	
mortality and incident diseases (hypertension, myocardial infarction, 
heart	 failure,	 stroke,	 type	 2	 diabetes,	 COPD,	 pneumonia,	 chronic	
kidney	disease,	dementia,	delirium,	Parkinson's	disease,	any	cancer	
excluding	nonmelanoma	skin	cancer,	and	common	cancers	including	
breast cancer [females only], prostate cancer [males only], lung can-
cer,	and	colorectal	cancer).

Using	 the	 test	 set	 data,	we	 applied	Cox	 regression	models	 for	
all-	cause	 mortality	 and	 Fine-	Gray	 subdistribution	 hazard	 models	
for incident diseases to account for the effect of death. The mod-
els above were adjusted for each of the three sets of covariates at 
baseline:	 (1)	 age- adjusted models:	 age	 only,	 (2)	 partially adjusted 

models:	 sociodemographic	 factors	 (age,	 self-	reported	 sex,	 ethnic-
ity	 [White,	Black,	Asian,	 and	Other],	 and	education	 [from	none	 to	
college	 or	 university	 degree],	 Townsend	 deprivation	 index	 [higher	
values	indicating	higher	levels	of	material	deprivation])	and	lifestyle	
factors (smoking status [current, former, and never], body mass 
index	[BMI]),	and	(3)	fully adjusted models: covariates in the partially 
adjusted	model	and	pre-	existing	diseases	(hypertension,	myocardial	
infarction, heart failure, stroke, type 2 diabetes, chronic obstructive 
pulmonary	disease	[COPD],	pneumonia,	chronic	kidney	disease,	de-
mentia,	delirium,	Parkinson's	disease,	and	any	cancer	excluding	non-
melanoma	skin	cancer).

We	also	carried	out	a	subgroup	analysis	stratifying	the	sample	by	
sex.	The	p-	values	from	the	age-	adjusted,	partially	adjusted,	and	fully	
adjusted	models	for	all-	cause	mortality	and	incident	diseases	were	
adjusted	 for	 multiple	 testing	 using	 the	 Benjamini–Hochberg	 false	
discovery	rate	(FDR)	method.

2.4.3  |  PAC	versus	other	BA	measures	in	
associations	of	biological	age	deviation	with	all-	cause	
mortality and incident diseases

Using	the	test	set	data,	the	associations	of	PAC	proteomic	age	with	
all-	cause	mortality	and	incident	diseases	were	compared	with	those	
of	other	BA	measures,	namely	BioAge,	PhenoAge,	and	LTL,	adjust-
ing	for	the	full	set	of	covariates.	BioAge	(Levine,	2013)	was	trained	
for	 chronological	 age,	 while	 PhenoAge	 (Levine	 et	 al.,	 2018)	 was	
trained	for	all-	cause	mortality,	both	using	routine	clinical	biomark-
ers	from	blood	samples	in	the	National	Health	and	Nutrition	Survey	
(NHANES)	 III	 (detailed	 in	 Supplementary	Methods	 [Appendix	S1]).	
Further	validation	of	both	measures	was	performed	in	additional	co-
horts,	including	UKB	(Kuo	et	al.,	2021; Liu et al., 2018),	confirming	
their	robustness.	LTL	was	assessed	using	a	multiplex	qPCR	technique	
as	T/S	ratio,	which	compares	the	telomere	amplification	product	(T)	
to	that	of	a	single-	copy	gene	(S),	adjusting	for	technical	parameters	
(Codd et al., 2022).	The	rank-	based	 inverse	normal	 transformation	
was	applied	to	each	BA	measure	to	convert	the	data	to	z-	scores	to	
standardize	 the	 scales	of	different	BA	measures.	 Short	 LTL	by	 re-
versing	the	signs	of	LTL	was	compared	with	other	BA	measures	so	
the association direction tended to be consistent across measures.

For	sensitivity	analysis,	the	associations	above	were	investigated	in	
participants	without	any	pre-	existing	diseases	at	baseline.	The	primary	
fully adjusted models were simplified to the partially adjusted models 
as none of the included participants had developed any of the diseases.

2.4.4  |  PAC	versus	other	BA	measures	in	predictions	
for	all-	cause	mortality	and	incident	diseases

Harrell's	 C-	statistic,	 a	 concordance	 probability	 within	 the	 range	
from 0.5 to 1, compares individuals in a pair that the individual who 
has a shorter time to a disease also has a higher risk for the disease 
based	on	the	model	during	the	follow-	up	time.	Harrell's	C-	statistic	
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serves	as	a	standard	output	to	quantify	discriminative	power	for	Cox	
regression	models,	 yet	 it	 demands	 an	 extended	 computation	 time	
for	 Fine-	Gray	 subdistribution	 hazard	 models.	 Although	 we	 used	
Fine-	Gray	subdistribution	hazard	models	to	 link	BA	deviation	with	
incident diseases to account for the competing event of death, cor-
responding	Cox	regression	models,	which	censored	individuals	who	
died before disease diagnosis yielded similar associations (results 
not	 shown).	Without	 losing	 the	 generalization	 of	 our	 findings,	we	
opted	 for	Cox	 regression	models	 to	assess	 the	predictions	of	PAC	
proteomic	age	against	other	BA	estimates	for	all-	cause	mortality	and	
incident diseases using the test set data.

2.4.5  |  Functional	analysis

To	unravel	the	biological	processes	underlying	BA	deviation,	proteins	
after	 the	 inverse	 normal	 transformation	 were	 associated	 with	 PAC	
proteomic	age,	BioAge,	PhenoAge,	or	short	LTL	in	the	fully	adjusted	
linear	 regression	models	using	 the	 test	 set	data.	Significant	proteins	
(Bonferroni-	corrected	 p < 0.05)	 were	 carried	 forward	 to	 perform	
a gene set analysis and a gene property analysis for tissue specific-
ity	 using	 the	 Functional	Mapping	 and	Annotation	 of	Genome-	Wide	
Association	 Studies	 (FUMA	 version	 1.6.0)	 (Watanabe	 et	 al.,	 2017).	
Similar	analyses	were	conducted	for	BioAge,	PhenoAge,	and	short	LTL.

In	the	gene	set	analysis,	genes	associated	with	BA	deviation	were	
compared	with	the	background	genes	(20,260	protein-	coding	genes)	
for the presence in a hallmark gene set using a hypergeometric test. 
Enriched hallmark gene sets with at least five genes overlapped with 
the	input	genes	were	identified	at	the	Bonferroni-	corrected	level	of	
5%	(50	hallmark	gene	sets	in	total).

In the gene property analysis for tissue specificity, the input 
genes	were	 compared	with	 the	background	genes	 (protein-	coding	
genes	with	mean	normalized	log2	expression	value	>1 in at least one 
of	30	general	tissues)	using	a	hypergeometric	test	for	the	presence	
in	a	tissue-	specific	differentially	expressed	gene	set	(genes	with	p-	
value	≤0.05	after	Bonferroni	correction	and	absolute	log	fold	change	
≥0.58	 in	GTEx	v8).	Bonferroni-	corrected	p-	values	smaller	 than	5%	
were considered statistically significant.

3  |  RESULTS

3.1  |  Training and test datasets

Participants	 with	 complete	 NPX	 and	 chronological	 age	 data	 from	
baseline	 (recruitment),	 and	mortality	 data	 throughout	 the	 follow-	up	
period	were	included	in	the	PAC	development.	The	included	samples	
(n = 53,021)	were	split	 into	a	training	set	(70%,	n = 37,115)	and	a	test	
set	 (30%,	 n = 15,906).	 In	 the	 training	 set,	 4034	 participants	 (10.9%)	
died	at	 the	mean	age	of	70.1 years	 (SD = 8.1)	over	a	mean	follow-	up	
of	13.3 years	(SD = 2.2).	Within	the	test	set,	1731	participants	(10.9%)	
died,	with	the	mean	age	at	death	70.1 years	(SD = 8.1)	during	a	mean	
follow-	up	of	13.3 years	(SD = 2.2).	A	baseline	summary	for	participants	

in	the	training	and	test	sets	versus	others	in	the	UKB	baseline	cohort	
is presented in Table S3. The training and test samples showed com-
parable	baseline	characteristics	to	the	rest	of	the	UKB	baseline	cohort	
(Table S3).	The	disease	prevalence	was	slightly	higher	within	the	UKB-	
PPP	than	 the	 rest	of	 the	baseline	cohort,	which	 is	expected,	due	 to	
the	enrichment	of	diseases	in	the	UKB-	PPP	samples	(Sun	et	al.,	2023).

3.2  |  Development of the proteomic aging clock 
(PAC)

Using	the	training	set	data,	a	Least	Absolute	Shrinkage	and	Selection	
Operator	 (LASSO)	 penalized	 Cox	 regression	 model	 was	 applied	 to	
2920	proteins	and	chronological	age	at	baseline	to	predict	the	time-	to-	
event	outcome	of	death.	Chronological	age	and	128	proteins	remained	
in	the	model	(lambda	0.004543)	(Table S4)	and	were	carried	forward	
to	fit	a	Gompertz	model.	Additionally,	another	Gompertz	model	was	
fitted	to	predict	death	solely	using	chronological	age.	We	calculated	
the	PAC	proteomic	age	based	on	the	shape	and	rate	parameters,	and	
the regression coefficients associated with individual proteins from the 
models above (Table S5).	The	mean	PAC	proteomic	age	was	53.4 years,	
3.4 years	younger	than	the	mean	chronological	age	in	the	training	set.	
In	the	test	set	sample,	the	mean	PAC	proteomic	age	and	chronological	
age	were	53.4	and	56.9 years,	respectively.

3.3  |  Correlations between chronological age, 
PAC proteomic age, PhenoAge, BioAge, LTL, plus a 
selection of aging phenotypes at baseline

A	 total	 of	 10,451	 participants	 had	 complete	 data	 for	 chronologi-
cal	age,	PAC	proteomic	age,	BioAge,	PhenoAge,	and	LTL	in	the	test	
set.	The	Spearman	correlation	(r)	between	PAC	proteomic	age	and	
chronological	age	was	0.77,	 lower	 than	 the	correlations	of	BioAge	
(r  = 0.98)	and	PhenoAge	(r  = 0.87)	with	chronological	age	(Figure S1).	
Short	 LTL	demonstrated	weak	 correlations	with	 chronological	 age	
and	 other	 BA	 measures	 (r  ≈ 0.2)	 (Figure S1).	 Single	 physiological	
or	 cognitive	 measures,	 frailty,	 and	 disease-	associated	 biomarkers	
showed	 a	 weak-	to-	moderate	 association	 with	 chronological	 age,	
PAC	 proteomic	 age,	 BioAge,	 and	 PhenoAge	 (Figures S1 and S2).	
Additionally,	 the	 correlations	 between	 the	 age-	adjusted	 residuals	
of	 PAC	 proteomic	 age	 and	 those	 of	 BioAge	 (r = 0.07),	 PhenoAge	
(r = 0.37),	and	short	LTL	(r = 0.12),	varied	from	low	to	moderate.	This	
suggests that these biological age measures may represent distinct 
facets of biological aging.

3.4  |  Associations of PAC proteomic age 
acceleration with all- cause mortality and 
incident diseases

The	PAC	proteomic	 age	 acceleration	 showed	 significant	 associa-
tions	with	all-	cause	mortality	and	various	incident	diseases	in	the	
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test	set	sample	adjusting	for	chronological	age	only	(age-	adjusted	
model).	 These	 associations	 were	 attenuated	 in	 the	 partially	 ad-
justed (sociodemographic factors including age and lifestyle fac-
tors)	and	fully	adjusted	models	(covariates	in	the	partially	adjusted	
model	 and	 pre-	existing	 diseases),	 though	 remaining	 statistically	
significant (Figure 1; Table S6).	For	instance,	the	HR	for	all-	cause	
mortality	was	1.097	per	year	increase	in	PAC	proteomic	age	(95%	
CI	 1.091–1.103,	 padj = 3.83 × 10

−232)	 in	 the	 fully	 adjusted	 model,	
versus	1.104	in	the	age-	adjusted	model,	and	1.102	in	the	partially	
adjusted	 model.	 For	 sensitivity	 analysis,	 we	 included	 an	 indica-
tor	 for	 participants	 selected	 by	 the	UKB-	PPP	 consortium	 in	 the	
fully adjusted models. The indicator was assigned a value of 1 for 
individuals chosen by the consortium due to specific diseases of 
interest and 0 for those not chosen by the consortium, selected 
randomly	from	the	UK	Biobank	baseline	cohort.	The	results	were	
similar to the fully adjusted model results, likely attributable to 
the overlap in effects between the selection and baseline disease 
states.	Similar	results	were	also	found	in	males	and	females	sepa-
rately (Figures S3 and S4).

3.5  |  PAC versus other BA measures in associations 
with all- cause mortality and incident diseases

PAC	 outperformed	 PhenoAge,	 BioAge,	 and	 short	 LTL	 for	 most	
outcomes,	showing	the	strongest	associations	with	all-	cause	mor-
tality,	 heart	 failure,	 pneumonia,	 delirium,	 COPD,	 dementia,	 lung	
cancer,	 myocardial	 infarction,	 osteoporosis,	 Parkinson's	 disease,	
any cancer, and colorectal cancer (Figure 2).	 In	 contrast,	 the	 as-
sociations with type 2 diabetes and chronic kidney disease were 
strongest	with	PhenoAge.	BioAge	 showed	 the	 strongest	 associa-
tions with stroke and hypertension (Figure 2).	Similar	associations	
were	observed	 in	 the	age-	adjusted	and	partially	 adjusted	models	
(Figures S5 and S6).	 Sensitivity	 analyses,	 including	 only	 disease-	
free	 participants	 at	 baseline,	 showed	 similar	 associations	 of	 BA	
acceleration	with	 all-	cause	mortality	 and	 incident	diseases,	 high-
lighting the robustness of our findings (Figure 3).	Interestingly,	the	
associations	of	PAC	proteomic	 age	 acceleration	with	 lung	 cancer	
and	dementia	were	stronger	 in	the	disease-	free	participants	than	
in the test set sample.

F I G U R E  1 Associations	of	PAC	proteomic	age	acceleration	with	all-	cause	mortality	and	incident	diseases	in	the	test	set	sample.	CKD,	
chronic	kidney	disease;	COPD,	chronic	obstructive	pulmonary	disease;	HF,	heart	failure;	MI,	myocardial	infarction;	T2D,	type	2	diabetes.	
N	(Full):	sample	size	with	complete	data	for	the	fully	adjusted	model,	after	excluding	participants	diagnosed	with	the	disease	at	or	prior	to	
baseline.	iCases	(Full):	number	of	incident	cases	of	N	samples.	Cox	regression	model	for	all-	cause	mortality	and	Fine-	Gray	subdistribution	
hazard	models	to	account	for	the	effect	of	death	on	the	risk	for	incident	diseases,	adjusting	for	different	sets	of	covariates	at	baseline	
(age-	adjusted,	partially	adjusted,	and	fully	adjusted	models).	AgeAdj:	chronological	age;	Partial:	chronological	age,	sex,	ethnicity,	education,	
Townsend	deprivation	index,	smoking	status,	and	body	mass	index;	Full:	covariates	in	the	partially	adjusted	model,	and	pre-	existing	diseases	
(hypertension,	myocardial	infarction,	heart	failure,	stroke,	type	2	diabetes,	COPD,	pneumonia,	chronic	kidney	disease,	any	cancer	excluding	
nonmelanoma	skin	cancer,	dementia,	and	Parkinson's	disease,	without	delirium	as	there	were	only	two	samples	with	a	history	of	delirium	
at	baseline	in	the	test	set	sample).	Padj	(Full):	p-	values	adjusted	for	multiple	testing	(tests	based	on	age-	adjusted,	partially	adjusted,	and	fully	
adjusted	models	for	all-	cause	mortality	and	incident	diseases).	Disease/all-	cause	mortality	highlighted	with	asterisk	(*)	if	padj <0.05.
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3.6  |  PAC versus other BA measures in predictions 
for all- cause mortality and incident diseases

Using	 the	 test	 set	 data	 only,	 we	 compared	 the	 C-	statistics	 for	
all-	cause	 mortality	 and	 incident	 diseases	 of	 four	 models:	 (1)	
chronological	 age	 only	 (M-	Age),	 (2)	 PAC	 proteomic	 age	 only	
(M-	PAC),	 (3)	 BioAge	 only	 (M-	BioAge),	 and	 (4)	 PhenoAge	 only	
(M-	PhenoAge).	M-	PAC	 outperformed	 other	models	 based	 on	 C-	
statistics,	particularly	all-	cause	mortality,	COPD,	pneumonia,	and	
heart failure (Figure 4).	The	M-	PAC	C-	statistics	for	dementia	and	
delirium were the highest across diseases and models but not sig-
nificantly	different	 from	 those	of	M-	Age	 (Figure 4).	Models	with	
multiple	 BA	 measures	 showed	 minimally	 improved	 C	 statistics	
(Figure S7).

3.7  |  Functional analysis

A	total	of	1001	significant	proteins	coded	by	1008	genes	were	se-
lected	for	significant	associations	with	PAC	proteomic	age	deviation	
to	initiate	a	functional	analysis	by	FUMA	(Table S7).	Genes	associ-
ated	with	PAC	proteomic	age	deviation	were	enriched	in	25	hallmark	
gene	sets	(Bonferroni-	corrected	p < 0.05)	(Figure 5, Table S11).	These	
hallmark gene sets include a wide range of biological processes and 
signaling	pathways,	particularly	epithelial–mesenchymal	 transition,	
coagulation,	 inflammatory	 response,	 allograft	 rejection,	 IL-	6-	JAK-	
STAT3	 signaling,	 complement,	 and	 IL2-	STAT5	 signaling	 (Figure 5).	
Additionally,	 genes	 associated	 with	 PAC	 proteomic	 age	 deviation	
were	overrepresented	in	the	differentially	expressed	genes	in	multi-
ple tissues, topped by lung and adipose tissues (Figure S6).

F I G U R E  2 Associations	of	biological	age	acceleration	based	on	different	biological	age	measures	with	all-	cause	mortality	and	
incident	diseases	in	the	test	set	sample	using	the	fully	adjusted	models.	SD:	standard	deviation	of	each	measure	after	the	inverse	normal	
transformation	in	the	combined	training	and	test	set	to	convert	the	original	measurements	to	z-	scores	(approximately	1	across	measures).	
CKD,	chronic	kidney	disease;	COPD,	chronic	obstructive	pulmonary	disease;	HF,	heart	failure;	MI,	myocardial	infarction;	T2D,	type	2	
diabetes. N:	sample	size	with	complete	data	for	the	fully	adjusted	models	of	PAC,	BioAge,	PhenoAge,	and	short	LTL,	after	excluding	
participants diagnosed with the disease at or prior to baseline. ICases: number of incident cases of N	samples.	Cox	regression	model	for	
all-	cause	mortality	and	Fine-	Gray	subdistribution	hazard	models	to	account	for	the	effect	of	death	for	the	risk	of	incident	diseases.	The	full	
covariate	adjustment	included	chronological	age,	sex,	ethnicity,	education,	Townsend	deprivation	index,	smoking	status,	body	mass	index,	
and	pre-	existing	diseases	(hypertension,	myocardial	infarction,	heart	failure,	stroke,	type	2	diabetes,	COPD,	pneumonia,	chronic	kidney	
disease,	any	cancer	excluding	non-	melanoma	skin	cancer,	dementia,	and	Parkinson's	disease).	Delirium	was	not	included	as	there	were	only	
two samples with a history of delirium at baseline. padj: p-	values	adjusted	for	multiple	testing	per	BA	measure	(tests	based	on	age-	adjusted,	
partially	adjusted,	and	fully	adjusted	models	for	all-	cause	mortality	and	incident	diseases).	Disease/all-	cause	mortality	highlighted	with	
asterisk	(*)	if	padj<0.05.
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In	contrast,	proteins	significantly	associated	with	PhenoAge	de-
viation (Table S8)	were	 significantly	 enriched	 in	 30	 hallmark	 gene	
sets (Table S12)	versus	27	hallmark	gene	sets	with	BioAge	deviation	
(Tables S9 and S13),	 and	 seven	hallmark	 gene	 sets	with	 short	 LTL	
(Tables S10 and S14).	Significant	gene	sets	among	Kyoto	Encyclopedia	
of	Genes	and	Genomes	(KEGG)	pathways	or	gene	oncology	(GO)	re-
sources,	for	example,	were	also	reported	in	Tables S11–S14. These 
findings	were	 conserved	across	BA	measures	 (Figures S8 and S9),	
suggesting the presence of conserved biology underlying the aging 
processes.

4  |  DISCUSSION

We	 developed	 a	 proteomic	 clock	 (PAC)	 for	 all-	cause	 mortality	
as	 a	 surrogate	 of	 BA.	 PAC	 proteomic	 age	 acceleration	 was	 ro-
bustly	 associated	 with	 all-	cause	 mortality	 and	 age-	related	 dis-
eases after controlling for sociodemographic, lifestyle factors, 
and	pre-	existing	diseases,	in	the	test	set	sample	and	disease-	free	

participants.	 PAC	proteomic	 age	 showed,	 in	 general,	 better	 per-
formance	 in	 predicting	 all-	cause	mortality	 and	 incident	 diseases	
than	 chronological	 age	 and	 other	BA	measures.	 Proteins	 associ-
ated	with	PAC	proteomic	age	deviation	were	enriched	 in	various	
hallmarks of biological aging, including immunoinflammatory re-
sponses,	 cellular	 senescence,	 extracellular	 matrix	 remodeling,	
cellular response to stressors, and vascular biology. Interestingly, 
these	 processes	 are	 conserved	 over	multiple	BA	measures,	 sug-
gesting that such biological abnormalities are conserved regard-
less	 of	 how	BA	measures	 are	developed	or	 trained.	Overall,	 our	
findings demonstrate the robustness of this proteomic aging clock 
in predicting different adverse health outcomes and reflect the 
current understanding of the perturbations in multiple biological 
pathways in the aging process.

Previous	 studies	 evaluated	 the	 proteomic	 correlates	 of	
chronological age using different proteomic platforms and as-
says	 (e.g.,	 SOMAscan	 assays®	 or	 mass	 spectrometry)	 (Sathyan	
et al., 2020;	Sayed	et	al.,	2021; Tanaka et al., 2018).	Proteins	as-
sociated with chronological age showed significant associations 

F I G U R E  3 Associations	of	biological	age	acceleration	based	on	different	biological	age	measures	with	all-	cause	mortality	and	incident	
diseases	using	disease-	free	participants	in	the	combined	training	and	test	set,	and	fully	adjusted	models.	SD:	standard	deviation	of	each	
measure	after	the	inverse	normal	transformation	in	the	combined	training	and	test	set	to	convert	the	original	measurements	to	z-	scores	
(approximately	1	across	measures).	CKD,	chronic	kidney	disease;	COPD,	chronic	obstructive	pulmonary	disease;	HF,	heart	failure;	MI,	
myocardial infarction; T2D, type 2 diabetes; N:	sample	size	with	complete	data	for	partially	adjusted	models	of	PAC,	BioAge,	PhenoAge,	
and	short	LTL,	after	excluding	participants	diagnosed	with	any	of	the	diseases	at	or	prior	to	baseline.	ICases:	number	of	incident	cases	of	N 
samples.	Cox	regression	model	for	all-	cause	mortality	and	Fine-	Gray	subdistribution	hazard	models	to	account	for	the	effect	of	death	on	
the	risk	for	incident	diseases.	The	partial	covariate	adjustment	included	chronological	age,	sex,	ethnicity,	education,	Townsend	deprivation	
index,	smoking	status,	and	body	mass	index.	padj: p-	values	adjusted	for	multiple	testing	per	biological	age	measure	(n = 19).	Disease/all-	cause	
mortality	highlighted	with	asterisk	(*)	if	padj<0.05.
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with	age-	related	clinical	outcomes:	walking	speed,	grip	strength,	
frailty,	multimorbidity,	 and	all-	cause	mortality.	A	 recent	preprint	
(Argentieri	 et	 al.,	 2023)	 used	 a	 smaller	 protein	 panel	 (n = 1459)	
from	 the	 initial	 release	 of	 UKB-	PPP	 (n = 31,581)	 and	 data	 from	
China Kadoorie Biobank (n = 1418)	 to	 train	 a	 proteomic	 clock	
(ProtAge)	 to	predict	chronological	age.	The	trained	ProtAge	was	
associated	with	all-	cause	mortality	and	several	diseases,	for	exam-
ple,	Alzheimer's	disease.	However,	 there	are	marked	differences	
between	 the	 two	studies.	First,	we	used	a	 larger	 set	of	proteins	
to	 train	 a	 proteomic	 clock	 (2920	 vs.	 1459	 proteins),	 providing	 a	
broader	coverage	of	 the	human	proteome.	Second,	we	 trained	a	
proteomic clock to predict mortality instead of chronological age, 
a	 shift	 from	 a	 “first-	generation”	 to	 a	 “second-	generation”	 clock.	
To	 the	 best	 of	 our	 knowledge,	 PAC	 is	 the	 first	 proteomic	 aging	
clock	developed	for	all-	cause	mortality	risk	as	a	surrogate	of	BA,	
using the largest dataset of proteins and individuals in the world. 
Lastly,	we	went	beyond	 the	ProtAge	analyses	and	also	 reported	
C-	statistics	to	show	the	predictive	power	of	PAC	versus	other	BA	
measures.	Although	the	PAC	and	ProtAge	are	not	directly	compa-
rable,	PAC	consistently	showed	high	predictive	power	for	multiple	
aging	outcomes.	Overall,	our	results	expand	previous	findings	by	

showing	 that	 PAC	 proteomic	 age	 acceleration	 strongly	 predicts	
all-	cause	 mortality	 and	 several	 incident	 disease	 outcomes,	 with	
a	 follow-	up	exceeding	a	decade	and	a	substantial	 sample	size	 to	
ensure adequate statistical power.

PAC	proteomic	age	acceleration	showed	the	strongest	associa-
tions with mortality risk and several disease outcomes (e.g., heart 
failure,	pneumonia,	delirium,	COPD,	and	dementia).	On	the	contrary,	
BioAge	 showed	 the	 strongest	 associations	with	 hypertension	 and	
stroke,	whereas	PhenoAge	showed	the	strongest	associations	with	
type 2 diabetes and chronic kidney disease. This pattern of associ-
ations remained similar among individuals who had no medical co-
morbidity	at	baseline,	except	the	associations	of	PAC	proteomic	age	
acceleration with lung cancer and dementia became stronger. These 
findings	 suggest	 that	 different	BA	measures	may	be	 implemented	
depending	on	the	study	context	or	the	outcomes	of	interest	and	that	
PAC	is	particularly	valuable	in	identifying	high-	risk	individuals	years	
before the earliest manifestations of chronic conditions.

We	found	that	genes	associated	with	proteomic	age	deviation	
are enriched in various hallmarks of biological aging, including im-
munoinflammatory	 responses,	 cellular	 senescence,	 extracellular	
matrix	 remodeling,	 cellular	 response	 to	 stressors,	 and	 vascular	

F I G U R E  4 Discriminative	power	of	biological	age	based	on	different	measures	for	all-	cause	mortality	and	incident	diseases	using	Cox	
models	and	the	test	set	data:	(1)	model	with	chronological	age	only	(M-	Age),	(2)	model	with	PAC	proteomic	age	only	(M-	PAC),	(3)	model	
with	BioAge	only	(M-	BioAge),	and	(4)	model	with	PhenoAge	only	(M-	PhenoAge).	CKD,	chronic	kidney	disease;	COPD,	chronic	obstructive	
pulmonary	disease;	HF,	heart	failure;	MI,	myocardial	infarction;	T2D,	type	2	diabetes.	N:	sample	size	with	complete	data	for	chronological	
age,	PAC	proteomic	age,	BioAge,	and	PhenoAge,	after	excluding	participants	diagnosed	with	the	disease	at	or	prior	to	baseline.	iCases:	
number of incident cases of N samples.
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biology.	 Additionally,	 several	 hallmark	 gene	 sets	 are	 conserved	
across	 BA	 measures,	 including	 inflammatory	 response,	 allograft	
rejection,	 IL-	6-	JAK-	STAT3	 signaling,	 IL2-	STAT5	 signaling,	 TNG	
alpha	signaling	via	NF-	κB,	and	apoptosis.	Regardless	of	BA	mea-
sures used, our findings indicate consistent manifestations of 
biological	 processes	 and	 pathways	 in	 BA	 acceleration.	 The	mul-
tifaced biological influence on aging phenotypes reinforces the 
potential	 for	geroscience-	guided	 interventions	to	target	multiple	
age-	related	outcomes.

It is crucial to validate a biomarker of aging by comparing it 
with	alternative	measures	using	external	cohorts.	While	we	have	
validated	 the	 PAC,	 including	 a	 comparison	 with	 other	 BA	 mea-
sures using an internal independent sample, there has yet to be 
any	 external	 validation	 or	 incorporation	 of	 previous	 proteome-	
based measures. Other cohorts with proteomic data, like the 
Cardiovascular	Health	Study,	Atherosclerosis	Risk	in	Communities	
(ARIC)	 study,	 and	 Framingham	Heart	 Study	 (FHS),	 use	 different	
assays	 (e.g.,	 SOMASCAN	 assays)	 with	 significant	 variations	 in	

F I G U R E  5 Hallmark	gene	sets	enriched	with	genes	associated	with	BA	deviation	based	on	different	BA	measures.	The	colored	bars	
represent	−log10	(p)	for	different	biological	age	measures	after	Bonferroni	correction	(n = 50)	and	those	greater	than	15	are	truncated	at	15.	
EMT:	Epithelial	Mesenchymal	Transition.
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the	protein	coverage	(Austin	et	al.,	2022;	Ngo	et	al.,	2016;	Norby	
et al., 2021).	These	technical	differences	across	platforms	(Eldjarn	
et al., 2023)	prevent	the	interchangeable	use	of	assays	for	external	
model	validation	and	a	direct	comparison	of	results.	For	example,	
Tanaka et al. (2018)	and	Sathyan	et	al.	(2020)	developed	predictors	
for chronological age using elastic net regression models. Their 
models	 require	 76	 and	 162	 proteins	 to	 estimate	 biological	 ages	
accurately.	However,	only	a	 subset	of	 these	proteins	 is	 available	
in	the	UK	Biobank	 (59	and	76,	respectively),	 thus	preventing	the	
derivation	of	their	measures	in	the	UK	Biobank.	Additional	efforts	
are warranted to reconcile these differences and assess the ro-
bustness	 and	generalizability	of	 such	predictors	 across	different	
datasets	and	populations	(Moqri	et	al.,	2024).

This study has additional limitations that need to be considered 
when interpreting our findings. First,	we	did	not	exclude	deaths	un-
related to biological aging, such as those resulting from accidents. 
However,	such	incidents	are	rare	in	the	UKB	cohort	and	unlikely	to	
impact our findings significantly. Second,	we	could	not	compare	PAC	
with	 commonly	 used	 epigenetic	 clocks	 since	 UKB	 does	 not	 have	
data	 on	DNA	methylation.	However,	 PhenoAge	was	 used	 to	 train	
DNAm	PhenoAge,	 thus	providing	an	 indirect	comparison	between	
PAC	 and	DNAm	PhenoAge	 clock.	Third,	while	 PAC	 is	 robustly	 as-
sociated	with	mortality	and	major	chronic	diseases,	disease-	specific	
(You et al., 2023)	or	organ-	specific	clocks	 (Oh	et	al.,	2023;	Sehgal	
et al., 2023)	address	heterogeneity	within	individuals	and	may	thus	
be	more	relevant	in	certain	contexts.

In conclusion, we have developed a novel proteomic aging clock 
termed	PAC,	which	 demonstrated	 robust	 associations	 and	 predic-
tions for mortality and the onset of various diseases. The proteins 
associated	with	PAC	proteomic	age	deviaion	were	enriched	in	sev-
eral	processes	related	to	the	hallmarks	of	biological	aging.	Further	
validation	 is	essential	 to	ascertain	 the	use	of	PAC	across	different	
settings.

AUTHOR CONTRIBUTIONS
CLK	and	BSD	designed	the	study.	CLK,	LCP,	and	JLA	processed	the	
data while CLK conducted the statistical analyses. The initial manu-
script	was	drafted	by	CLK	and	BSD,	with	contributions	from	ZC	and	
PL.	All	the	authors	reviewed	and	approved	the	final	version.

ACKNOWLEDG MENTS
Access	to	UK	Biobank	data	was	granted	under	application	no.	92647	
“Research	to	Inform	the	Field	of	Precision	Gerontology”	(PI:	Richard	H.	
Fortinsky).	This	research	used	data	assets	made	available	by	National	
Safe	Haven	as	part	of	the	Data	and	Connectivity	National	Core	Study,	
led	by	Health	Data	Research	UK	 in	partnership	with	 the	Office	 for	
National	 Statistics	 and	 funded	 by	UK	Research	 and	 Innovation	 (re-
search	which	commenced	between	1	October	2020–31	March	2021	
grant	ref	MC_PC_20029;	1	April	2021–30	September	2022	grant	ref	
MC_PC_20058).	This	research	also	used	data	provided	by	patients	and	
collected	by	the	NHS	as	part	of	their	care	and	support.	Copyright	©	
(year),	NHS	England.	Reused	with	the	permission	of	the	NHS	England	
[and/or	UK	Biobank].	All	rights	reserved.

FUNDING INFORMATION
Access	 to	 UK	 Biobank	 data	 was	 granted	 under	 application	 no.	
92647	 “Research	 to	 Inform	 the	 Field	 of	 Precision	 Gerontology”	
(PI:	 Richard	H.	 Fortinsky),	 funded	 by	 the	Claude	D.	 Pepper	Older	
American	 Independence	 Centers	 (OAIC)	 program:	 P30AG067988	
(MPIs:	George	A.	Kuchel	and	Richard	H.	Fortinsky).	CLK,	BSD,	RHF,	
and	GAK	are	partially	 supported	by	P30AG067988.	 JLA	has	a	UK	
National	 Institute	 for	Health	and	Care	Research	 (NIHR)	Advanced	
Fellowship	(NIHR301844).

CONFLIC T OF INTERE S T S TATEMENT
We	have	no	conflicting	interests	to	disclose.

DATA AVAIL ABILIT Y S TATEMENT
Data	access	 is	granted	upon	application	to	the	UK	Biobank.	The	R	
code	 (Chen	&	Kuo,	n.d.)	 for	computing	PAC	proteomic	age	can	be	
obtained	from	the	GitHub	repository	at	https://	github.	com/	kuo-		lab-		
uchc/	PAC.

ORCID
Chia- Ling Kuo  https://orcid.org/0000-0003-4452-2380 
Janice L. Atkins  https://orcid.org/0000-0003-4919-9068 
George A. Kuchel  https://orcid.org/0000-0001-8387-7040 

R E FE R E N C E S
Allen,	N.	E.,	Lacey,	B.,	Lawlor,	D.	A.,	Pell,	J.	P.,	Gallacher,	J.,	Smeeth,	L.,	

Elliott,	P.,	Matthews,	P.	M.,	Lyons,	R.	A.,	Whetton,	A.	D.,	Lucassen,	
A.,	Hurles,	M.	E.,	Chapman,	M.,	Roddam,	A.	W.,	Fitzpatrick,	N.	K.,	
Hansell,	A.	L.,	Hardy,	R.,	Marioni,	R.	E.,	O'Donnell,	V.	B.,	…	Collins,	R.	
(2024).	Prospective	study	design	and	data	analysis	in	UK	biobank.	
Science Translational Medicine, 16,	eadf4428.

Argentieri,	M.	A.,	Xiao,	S.,	Bennett,	D.,	Winchester,	L.,	Nevado-	Holgado,	
A.	 J.,	Albukhari,	A.,	Yao,	P.,	Mazidi,	M.,	 Lv,	 J.,	 Li,	 L.,	Adams,	C.	 J.,	
Clarke,	R.,	Amin,	N.,	Chen,	Z.,	&	Van	Duijn,	C.	M.	(2023).	Proteomic	
aging	clock	predicts	mortality	and	risk	of	common	age-	related	dis-
eases in diverse populations, Geriatric Medicine. https:// doi. org/ 10. 
1101/	2023.	09.	13.	23295486

Austin,	T.	R.,	McHugh,	C.	P.,	Brody,	J.	A.,	Bis,	J.	C.,	Sitlani,	C.	M.,	Bartz,	
T.	M.,	Biggs,	M.	L.,	Bansal,	N.,	Buzkova,	P.,	Carr,	S.	A.,	deFilippi,	C.	
R.,	Elkind,	M.	S.	V.,	Fink,	H.	A.,	Floyd,	J.	S.,	Fohner,	A.	E.,	Gerszten,	
R.	E.,	Heckbert,	S.	R.,	Katz,	D.	H.,	Kizer,	J.	R.,	…	Psaty,	B.	M.	(2022).	
Proteomics	 and	 population	 biology	 in	 the	 cardiovascular	 health	
study	 (CHS):	Design	of	 a	 study	with	mentored	 access	 and	 active	
data sharing. European Journal of Epidemiology, 37,	755–765.

Belsky,	 D.	 W.,	 Caspi,	 A.,	 Corcoran,	 D.	 L.,	 Sugden,	 K.,	 Poulton,	 R.,	
Arseneault,	 L.,	 Baccarelli,	 A.,	 Chamarti,	 K.,	 Gao,	 X.,	 Hannon,	 E.,	
Harrington,	H.	L.,	Houts,	R.,	Kothari,	M.,	Kwon,	D.,	Mill,	J.,	Schwartz,	
J.,	 Vokonas,	 P.,	Wang,	C.,	Williams,	 B.	 S.,	&	Moffitt,	 T.	 E.	 (2022).	
DunedinPACE,	a	DNA	methylation	biomarker	of	the	pace	of	aging.	
eLife, 11,	e73420.

Carrasco-	Zanini,	 J.,	 Pietzner,	 M.,	 Davitte,	 J.,	 Surendran,	 P.,	 Croteau-	
Chonka,	D.	C.,	Robins,	C.,	Torralbo,	A.,	Tomlinson,	C.,	Fitzpatrick,	
N.,	Ytsma,	C.,	Kanno,	T.,	Gade,	S.,	Freitag,	D.,	Ziebell,	F.,	Denaxas,	
S.,	 Betts,	 J.	 C.,	 Wareham,	 N.	 J.,	 Hemingway,	 H.,	 Scott,	 R.	 A.,	 &	
Langenberg,	 C.	 (2023).	 Proteomic	 prediction	 of	 common	 and	
rare diseases, Epidemiology. https://	doi.	org/	10.	1101/	2023.	07.	18.	
23292811

Chen,	 Z.,	 &	 Kuo,	 C.-	L.	 Proteomic	 aging	 clock	 R	 code.	GitHub. https:// 
github.	com/	kuo-		lab-		uchc/	PAC

https://github.com/kuo-lab-uchc/PAC
https://github.com/kuo-lab-uchc/PAC
https://orcid.org/0000-0003-4452-2380
https://orcid.org/0000-0003-4452-2380
https://orcid.org/0000-0003-4919-9068
https://orcid.org/0000-0003-4919-9068
https://orcid.org/0000-0001-8387-7040
https://orcid.org/0000-0001-8387-7040
https://doi.org/10.1101/2023.09.13.23295486
https://doi.org/10.1101/2023.09.13.23295486
https://doi.org/10.1101/2023.07.18.23292811
https://doi.org/10.1101/2023.07.18.23292811
https://github.com/kuo-lab-uchc/PAC
https://github.com/kuo-lab-uchc/PAC


    |  11 of 12KUO et al.

Codd,	V.,	Denniff,	M.,	Swinfield,	C.,	Warner,	S.	C.,	Papakonstantinou,	M.,	
Sheth,	S.,	Nanus,	D.	E.,	Budgeon,	C.	A.,	Musicha,	C.,	Bountziouka,	
V.,	Wang,	Q.,	Bramley,	R.,	Allara,	E.,	Kaptoge,	S.,	Stoma,	S.,	 Jiang,	
T.,	Butterworth,	A.	S.,	Wood,	A.	M.,	Di	Angelantonio,	E.,	…	Samani,	
N.	J.	(2022).	Measurement	and	initial	characterization	of	leukocyte	
telomere	 length	 in	 474,074	 participants	 in	 UK	 biobank.	 Nature 
Aging, 2,	170–179.

Diniz,	B.	 S.,	 Reynolds,	C.	 F.,	 Sibille,	 E.,	 Lin,	C.-	W.,	 Tseng,	G.,	 Lotrich,	
F.,	 Aizenstein,	 H.	 J.,	 &	 Butters,	M.	 A.	 (2017).	 Enhanced	molec-
ular	 aging	 in	 late-	life	 depression:	 The	 senescent-	associated	 se-
cretory phenotype. The American Journal of Geriatric Psychiatry, 
25,	64–72.

Eiriksdottir,	 T.,	 Ardal,	 S.,	 Jonsson,	 B.	 A.,	 Lund,	 S.	 H.,	 Ivarsdottir,	 E.	 V.,	
Norland,	 K.,	 Ferkingstad,	 E.,	 Stefansson,	 H.,	 Jonsdottir,	 I.,	 Holm,	
H.,	Rafnar,	T.,	Saemundsdottir,	J.,	Norddahl,	G.	L.,	Thorgeirsson,	G.,	
Gudbjartsson,	D.	F.,	Sulem,	P.,	Thorsteinsdottir,	U.,	Stefansson,	K.,	
&	Ulfarsson,	M.	O.	(2021).	Predicting	the	probability	of	death	using	
proteomics. Communications Biology, 4,	758.

Eldjarn,	G.	H.,	Ferkingstad,	E.,	Lund,	S.	H.,	Helgason,	H.,	Magnusson,	O.	
T.,	Gunnarsdottir,	K.,	Olafsdottir,	T.	A.,	Halldorsson,	B.	V.,	Olason,	
P.	I.,	Zink,	F.,	Gudjonsson,	S.	A.,	Sveinbjornsson,	G.,	Magnusson,	M.	
I.,	Helgason,	A.,	Oddsson,	A.,	Halldorsson,	G.	H.,	Magnusson,	M.	
K.,	Saevarsdottir,	S.,	Eiriksdottir,	T.,	…	Stefansson,	K.	(2023).	Large-	
scale plasma proteomics comparisons through genetics and disease 
associations. Nature, 622,	348–358.

Gadd	D.	A.,	Hillary	R.	F.,	Kuncheva	Z.,	Mangelis	T.,	Cheng	Y.,	Dissanayake	
M.,	 Admanit	 R.,	 Gagnon	 J.,	 Lin	 T.,	 Ferber	 K.,	 Runz	 H.,	 Biogen	
Biobank	Team,	Marioni	R.	E.,	Foley	C.	N.	&	Sun	B.	B.	(2023)	Blood	
protein levels predict leading incident diseases and mortality in 
UK	 biobank,	 Epidemiology. https:// doi. org/ 10. 1101/ 2023. 05. 01. 
23288879.

Hannum,	 G.,	 Guinney,	 J.,	 Zhao,	 L.,	 Zhang,	 L.,	 Hughes,	 G.,	 Sadda,	 S.,	
Klotzle,	B.,	Bibikova,	M.,	Fan,	J.-	B.,	Gao,	Y.,	Deconde,	R.,	Chen,	M.,	
Rajapakse,	 I.,	 Friend,	 S.,	 Ideker,	 T.,	 &	 Zhang,	 K.	 (2013).	 Genome-	
wide methylation profiles reveal quantitative views of human aging 
rates. Molecular Cell, 49,	359–367.

Horvath,	S.	(2013).	DNA	methylation	age	of	human	tissues	and	cell	types.	
Genome Biology, 14, R115.

Justice,	 J.	 N.,	 Niedernhofer,	 L.,	 Robbins,	 P.	D.,	 Aroda,	 V.	 R.,	 Espeland,	
M.	 A.,	 Kritchevsky,	 S.	 B.,	 Kuchel,	 G.	 A.,	 &	 Barzilai,	 N.	 (2018).	
Development	 of	 clinical	 trials	 to	 extend	 healthy	 lifespan.	
Cardiovascular Endocrinology & Metabolism, 7,	80–83.

Kennedy,	B.	K.,	Berger,	S.	L.,	Brunet,	A.,	Campisi,	J.,	Cuervo,	A.	M.,	Epel,	
E.	 S.,	 Franceschi,	 C.,	 Lithgow,	G.	 J.,	Morimoto,	 R.	 I.,	 Pessin,	 J.	 E.,	
Rando,	T.	A.,	Richardson,	A.,	Schadt,	E.	E.,	Wyss-	Coray,	T.,	&	Sierra,	
F.	 (2014).	Geroscience:	Linking	aging	to	chronic	disease.	Cell, 159, 
709–713.

Kuo,	C.-	L.,	Pilling,	L.	C.,	Liu,	Z.,	Atkins,	J.	L.,	&	Levine,	M.	E.	(2021).	Genetic	
associations for two biological age measures point to distinct aging 
phenotypes. Aging Cell, 20,	e13376.

Levine,	M.	E.	 (2013).	Modeling	 the	 rate	of	 senescence:	Can	estimated	
biological age predict mortality more accurately than chronologi-
cal age? The Journals of Gerontology. Series A, Biological Sciences and 
Medical Sciences, 68,	667–674.

Levine,	M.	E.,	Lu,	A.	T.,	Quach,	A.,	Chen,	B.	H.,	Assimes,	T.	L.,	Bandinelli,	
S.,	 Hou,	 L.,	 Baccarelli,	 A.	 A.,	 Stewart,	 J.	 D.,	 Li,	 Y.,	Whitsel,	 E.	 A.,	
Wilson,	J.	G.,	Reiner,	A.	P.,	Aviv,	A.,	Lohman,	K.,	Liu,	Y.,	Ferrucci,	L.,	
&	Horvath,	S.	(2018).	An	epigenetic	biomarker	of	aging	for	lifespan	
and healthspan. Aging (Albany NY), 10,	573–591.

Liu,	 Z.,	 Kuo,	 P.-	L.,	Horvath,	 S.,	Crimmins,	 E.,	 Ferrucci,	 L.,	&	 Levine,	M.	
(2018).	A	new	aging	measure	captures	morbidity	and	mortality	risk	
across	diverse	 subpopulations	 from	NHANES	 IV:	A	cohort	 study.	
PLoS Medicine, 15,	e1002718.

Lohman,	 T.,	 Bains,	G.,	 Cole,	 S.,	 Gharibvand,	 L.,	 Berk,	 L.,	 &	 Lohman,	 E.	
(2023).	HigH- intensity interval training reduces transcriptomic age: 
A	randomized	controlled	trial.	Aging Cell, 22,	e13841.

López-	Otín,	C.,	Blasco,	M.	A.,	Partridge,	L.,	Serrano,	M.,	&	Kroemer,	G.	
(2013).	The	hallmarks	of	aging.	Cell, 153,	1194–1217.

Lu,	A.	T.,	Quach,	A.,	Wilson,	 J.	G.,	Reiner,	A.	P.,	Aviv,	A.,	Raj,	K.,	Hou,	
L.,	Baccarelli,	A.	A.,	 Li,	Y.,	 Stewart,	 J.	D.,	Whitsel,	 E.	A.,	Assimes,	
T.	L.,	Ferrucci,	L.,	&	Horvath,	S.	(2019).	DNA	methylation	GrimAge	
strongly predicts lifespan and healthspan. Aging, 11,	303–327.

Moaddel,	 R.,	 Ubaida-	Mohien,	 C.,	 Tanaka,	 T.,	 Lyashkov,	 A.,	 Basisty,	 N.,	
Schilling,	B.,	Semba,	R.	D.,	Franceschi,	C.,	Gorospe,	M.,	&	Ferrucci,	
L.	 (2021).	 Proteomics	 in	 aging	 research:	 A	 roadmap	 to	 clinical,	
translational research. Aging Cell, 20, e13325.

Moqri,	M.,	Herzog,	C.,	Poganik,	J.	R.,	Biomarkers	of	Aging	Consortium,	
Justice,	J.,	Belsky,	D.	W.,	Higgins-	Chen,	A.,	Moskalev,	A.,	Fuellen,	
G.,	 Cohen,	 A.	 A.,	 Bautmans,	 I.,	 Widschwendter,	 M.,	 Ding,	 J.,	
Fleming,	A.,	Mannick,	J.,	Han,	J.-	D.	J.,	Zhavoronkov,	A.,	Barzilai,	N.,	
Kaeberlein,	M.,	…	Gladyshev,	V.	N.	(2023).	Biomarkers	of	aging	for	
the identification and evaluation of longevity interventions. Cell, 
186,	3758–3775.

Moqri,	M.,	Herzog,	C.,	Poganik,	J.	R.,	Ying,	K.,	Justice,	J.	N.,	Belsky,	D.	W.,	
Higgins-	Chen,	A.	T.,	Chen,	B.	H.,	Cohen,	A.	A.,	Fuellen,	G.,	Hägg,	
S.,	Marioni,	R.	E.,	Widschwendter,	M.,	Fortney,	K.,	Fedichev,	P.	O.,	
Zhavoronkov,	A.,	 Barzilai,	N.,	 Lasky-	Su,	 J.,	 Kiel,	D.	 P.,	…	 Ferrucci,	
L.	 (2024).	Validation	of	 biomarkers	of	 aging.	Nature Medicine, 30, 
360–372.

Ngo,	D.,	Sinha,	S.,	Shen,	D.,	Kuhn,	E.	W.,	Keyes,	M.	J.,	Shi,	X.,	Benson,	
M.	D.,	O'Sullivan,	 J.	 F.,	 Keshishian,	H.,	 Farrell,	 L.	 A.,	 Fifer,	M.	 A.,	
Vasan,	R.	 S.,	 Sabatine,	M.	 S.,	 Larson,	M.	G.,	Carr,	 S.	A.,	Wang,	 T.	
J.,	&	Gerszten,	R.	E.	(2016).	Aptamer-	based	proteomic	profiling	re-
veals novel candidate biomarkers and pathways in cardiovascular 
disease. Circulation, 134,	270–285.

Norby,	 F.	 L.,	 Tang,	W.,	 Pankow,	 J.	 S.,	 Lutsey,	P.	 L.,	Alonso,	A.,	 Steffen,	
B.	 T.,	 Chen,	 L.	 Y.,	 Zhang,	 M.,	 Shippee,	 N.	 D.,	 Ballantyne,	 C.	 M.,	
Boerwinkle,	E.,	Coresh,	J.,	&	Folsom,	A.	R.	(2021).	Proteomics	and	
risk of atrial fibrillation in older adults (from the atherosclerosis risk 
in	 communities	 [ARIC]	 study).	The American Journal of Cardiology, 
161,	42–50.

Oh,	H.	S.-	H.,	Rutledge,	 J.,	Nachun,	D.,	Pálovics,	R.,	Abiose,	O.,	Moran-	
Losada,	P.,	Channappa,	D.,	Urey,	D.	Y.,	Kim,	K.,	Sung,	Y.	J.,	Wang,	L.,	
Timsina,	J.,	Western,	D.,	Liu,	M.,	Kohlfeld,	P.,	Budde,	J.,	Wilson,	E.	
N.,	Guen,	Y.,	Maurer,	T.	M.,	…	Wyss-	Coray,	T.	(2023).	Organ	aging	
signatures in the plasma proteome track health and disease. Nature, 
624,	164–172.

Orwoll,	E.	S.,	Wiedrick,	J.,	Jacobs,	J.,	Baker,	E.	S.,	Piehowski,	P.,	Petyuk,	V.,	
Gao,	Y.,	Shi,	T.,	Smith,	R.	D.,	Bauer,	D.	C.,	Cummings,	S.	R.,	Nielson,	
C.	M.,	Lapidus,	J.,	&	Osteoporotic	Fractures	in	Men	Study	(MrOS)	
Research	 Group.	 (2018).	 High-	throughput	 serum	 proteomics	 for	
the identification of protein biomarkers of mortality in older men. 
Aging Cell, 17,	e12717.

Rutledge,	J.,	Oh,	H.,	&	Wyss-	Coray,	T.	(2022).	Measuring	biological	age	
using omics data. Nature Reviews. Genetics, 23,	715–727.

Sathyan,	S.,	Ayers,	E.,	Gao,	T.,	Weiss,	E.	F.,	Milman,	S.,	Verghese,	 J.,	&	
Barzilai,	N.	 (2020).	 Plasma	 proteomic	 profile	 of	 age,	 health	 span,	
and	all-	cause	mortality	in	older	adults.	Aging Cell, 19, e13250.

Sayed,	N.,	Huang,	Y.,	Nguyen,	K.,	Krejciova-	Rajaniemi,	Z.,	Grawe,	A.	P.,	
Gao,	T.,	Tibshirani,	R.,	Hastie,	T.,	Alpert,	A.,	Cui,	L.,	Kuznetsova,	T.,	
Rosenberg-	Hasson,	Y.,	Ostan,	R.,	Monti,	D.,	Lehallier,	B.,	Shen-	Orr,	
S.	S.,	Maecker,	H.	T.,	Dekker,	C.	L.,	Wyss-	Coray,	T.,	…	Furman,	D.	
(2021).	An	inflammatory	aging	clock	(iAge)	based	on	deep	learning	
tracks multimorbidity, immunosenescence, frailty and cardiovascu-
lar aging. Nature Aging, 1,	598–615.

Sehgal,	R.,	Meer,	M.,	Shadyab,	A.	H.,	Casanova,	R.,	Manson,	J.	E.,	Bhatti,	
P.,	Crimmins,	E.	M.,	Assimes,	T.	L.,	Whitsel,	E.	A.,	Higgins-	Chen,	A.	
T.,	&	Levine,	M.	 (2023).	Systems	Age:	A	single	blood	methylation	
test to quantify aging heterogeneity across 11 physiological sys-
tems. https://	doi.	org/	10.	1101/	2023.	07.	13.	548904

Seitz-	Holland,	 J.,	Mulsant,	B.	H.,	Reynolds	 Iii,	C.	F.,	Blumberger,	D.	M.,	
Karp,	J.	F.,	Butters,	M.	A.,	Mendes-	Silva,	A.	P.,	Vieira,	E.	L.,	Tseng,	G.,	

https://doi.org/10.1101/2023.05.01.23288879
https://doi.org/10.1101/2023.05.01.23288879
https://doi.org/10.1101/2023.07.13.548904


12 of 12  |     KUO et al.

Lenze,	E.	J.,	&	Diniz,	B.	S.	(2023).	Major	depression,	physical	health	
and molecular senescence markers abnormalities. Nature Mental 
Health, 1,	200–209.

St	Sauver,	J.	L.,	Weston,	S.	A.,	Atkinson,	E.	J.,	Mc	Gree,	M.	E.,	Mielke,	M.	
M.,	White,	T.	A.,	Heeren,	A.	A.,	Olson,	J.	E.,	Rocca,	W.	A.,	Palmer,	
A.	K.,	Cummings,	S.	R.,	Fielding,	R.	A.,	Bielinski,	S.	J.,	&	LeBrasseur,	
N.	K.	(2023).	Biomarkers	of	cellular	senescence	and	risk	of	death	in	
humans. Aging Cell, 22,	e14006.

Sudlow,	 C.,	 Gallacher,	 J.,	 Allen,	 N.,	 Beral,	 V.,	 Burton,	 P.,	 Danesh,	 J.,	
Downey,	P.,	Elliott,	P.,	Green,	J.,	Landray,	M.,	Liu,	B.,	Matthews,	P.,	
Ong,	G.,	Pell,	J.,	Silman,	A.,	Young,	A.,	Sprosen,	T.,	Peakman,	T.,	&	
Collins,	R.	(2015).	UK	biobank:	An	open	access	resource	for	identi-
fying	the	causes	of	a	wide	range	of	complex	diseases	of	middle	and	
old age. PLoS Medicine, 12,	e1001779.

Sun,	B.	B.,	Chiou,	J.,	Traylor,	M.,	Benner,	C.,	Hsu,	Y.-	H.,	Richardson,	T.	G.,	
Surendran,	P.,	Mahajan,	A.,	Robins,	C.,	Vasquez-	Grinnell,	S.	G.,	Hou,	
L.,	Kvikstad,	E.	M.,	Burren,	O.	S.,	Davitte,	J.,	Ferber,	K.	L.,	Gillies,	C.	
E.,	Hedman,	Å.	K.,	Hu,	S.,	Lin,	T.,	…	Whelan,	C.	D.	 (2023).	Plasma	
proteomic	associations	with	genetics	and	health	in	the	UK	biobank.	
Nature, 622,	329–338.

Tanaka,	 T.,	 Biancotto,	 A.,	 Moaddel,	 R.,	 Moore,	 A.	 Z.,	 Gonzalez-	Freire,	
M.,	Aon,	M.	A.,	Candia,	 J.,	Zhang,	P.,	Cheung,	F.,	Fantoni,	G.,	CHI	
consortium,	Semba,	R.	D.,	&	Ferrucci,	L.	(2018).	Plasma	proteomic	
signature of age in healthy humans. Aging Cell, 17,	e12799.

Torgo,	L.	(2011).	Data mining with R 0 ed.	Chapman	and	Hall/CRC.	https:// 
www.	taylo	rfran	cis.	com/	books/		97814	39876404

Unterhuber,	M.,	Kresoja,	K.-	P.,	Rommel,	K.-	P.,	Besler,	C.,	Baragetti,	A.,	
Klöting,	N.,	 Ceglarek,	U.,	 Blüher,	M.,	 Scholz,	M.,	Catapano,	A.	 L.,	
Thiele,	H.,	&	Lurz,	P.	(2021).	Proteomics-	enabled	deep	learning	ma-
chine algorithms can enhance prediction of mortality. Journal of the 
American College of Cardiology, 78,	1621–1631.

Watanabe,	K.,	Taskesen,	E.,	Van	Bochoven,	A.,	&	Posthuma,	D.	 (2017).	
Functional	 mapping	 and	 annotation	 of	 genetic	 associations	 with	
FUMA.	Nature Communications, 8,	1826.

Waziry,	R.,	 Ryan,	C.	P.,	Corcoran,	D.	 L.,	Huffman,	K.	M.,	Kobor,	M.	 S.,	
Kothari,	M.,	Graf,	G.	H.,	Kraus,	V.	B.,	Kraus,	W.	E.,	Lin,	D.	T.	S.,	Pieper,	
C.	F.,	Ramaker,	M.	E.,	Bhapkar,	M.,	Das,	S.	K.,	Ferrucci,	L.,	Hastings,	
W.	J.,	Kebbe,	M.,	Parker,	D.	C.,	Racette,	S.	B.,	…	Belsky,	D.	W.	(2023).	
Effect	 of	 long-	term	 caloric	 restriction	 on	DNA	methylation	mea-
sures	of	biological	aging	in	healthy	adults	from	the	CALERIE	trial.	
Nature Aging, 3,	248–257.

Williams,	D.	M.,	Jylhävä,	J.,	Pedersen,	N.	L.,	&	Hägg,	S.	(2019).	A	frailty	
index	 for	 UK	 biobank	 participants.	 The Journals of Gerontology. 
Series A, Biological Sciences and Medical Sciences, 74,	582–587.

You,	J.,	Guo,	Y.,	Zhang,	Y.,	Kang,	J.-	J.,	Wang,	L.-	B.,	Feng,	J.-	F.,	Cheng,	W.,	
&	Yu,	J.-	T.	(2023).	Plasma	proteomic	profiles	predict	individual	fu-
ture health risk. Nature Communications, 14,	7817.

SUPPORTING INFORMATION
Additional	 supporting	 information	 can	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	this	article.

How to cite this article: Kuo,	C.-L.,	Chen,	Z.,	Liu,	P.,	Pilling,	L.	
C.,	Atkins,	J.	L.,	Fortinsky,	R.	H.,	Kuchel,	G.	A.,	&	Diniz,	B.	S.	
(2024).	Proteomic	aging	clock	(PAC)	predicts	age-	related	
outcomes	in	middle-	aged	and	older	adults.	Aging Cell, 23, 
e14195. https://doi.org/10.1111/acel.14195

https://www.taylorfrancis.com/books/9781439876404
https://www.taylorfrancis.com/books/9781439876404
https://doi.org/10.1111/acel.14195

	Proteomic aging clock (PAC) predicts age-related outcomes in middle-aged and older adults
	Abstract
	1|INTRODUCTION
	2|METHODS
	2.1|UK Biobank Pharma Proteomics Project
	2.2|Data
	2.3|PAC development
	2.4|PAC validation
	2.4.1|Correlations of PAC proteomic age with aging-related traits at baseline
	2.4.2|Associations of PAC proteomic age deviation with all-cause mortality and incident diseases
	2.4.3|PAC versus other BA measures in associations of biological age deviation with all-cause mortality and incident diseases
	2.4.4|PAC versus other BA measures in predictions for all-cause mortality and incident diseases
	2.4.5|Functional analysis


	3|RESULTS
	3.1|Training and test datasets
	3.2|Development of the proteomic aging clock (PAC)
	3.3|Correlations between chronological age, PAC proteomic age, PhenoAge, BioAge, LTL, plus a selection of aging phenotypes at baseline
	3.4|Associations of PAC proteomic age acceleration with all-cause mortality and incident diseases
	3.5|PAC versus other BA measures in associations with all-cause mortality and incident diseases
	3.6|PAC versus other BA measures in predictions for all-cause mortality and incident diseases
	3.7|Functional analysis

	4|DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


