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Abstract
Beyond mere prognostication, optimal biomarkers of aging provide insights into quali-
tative and quantitative features of biological aging and might, therefore, offer useful 
information for the testing and, ultimately, clinical use of gerotherapeutics. We aimed 
to develop a proteomic aging clock (PAC) for all-cause mortality risk as a proxy of 
biological age. Data were from the UK Biobank Pharma Proteomics Project, including 
53,021 participants aged between 39 and 70 years and 2923 plasma proteins assessed 
using the Olink Explore 3072 assay®. 10.9% of the participants died during a mean 
follow-up of 13.3 years, with the mean age at death of 70.1 years. The Spearman cor-
relation between PAC proteomic age and chronological age was 0.77. PAC showed 
robust age-adjusted associations and predictions for all-cause mortality and the onset 
of various diseases in general and disease-free participants. The proteins associated 
with PAC proteomic age deviation were enriched in several processes related to the 
hallmarks of biological aging. Our results expand previous findings by showing that 
biological age acceleration, based on PAC, strongly predicts all-cause mortality and 
several incident disease outcomes. Particularly, it facilitates the evaluation of risk for 
multiple conditions in a disease-free population, thereby, contributing to the preven-
tion of initial diseases, which vary among individuals and may subsequently lead to 
additional comorbidities.
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1  |  INTRODUC TION

The geroscience hypothesis (Kennedy et al., 2014) posits that tar-
geting aging may prevent or delay the onset of multiple diseases, 
where chronological age is a major risk factor. Human trials to test 
interventions for a geroscience indication are challenging due to 
the lengthy duration needed to observe the effects of interven-
tions on aging outcomes. Alternatively, biomarkers of aging, re-
flective of aging processes and their consequences, can serve as 
surrogate endpoints for assessing the risk and progression of sev-
eral major diseases (Justice et al., 2018; Moqri et al., 2023). Recent 
biomarkers of aging focus on prediction of biological age (BA) 
(Moqri et al., 2023; Rutledge et al., 2022), which reflects the level 
of age-dependent biological changes, such as molecular and cellu-
lar damage accumulation (Moqri et al., 2023). Biological age (BA) 
acceleration, indicated by a positive biological age deviation (BA - 
chronological age >0), has been linked with various adverse health 
outcomes (Moqri et al., 2023; Rutledge et al., 2022). Due to their 
prognostic value in predicting age-related conditions and sensitiv-
ity to interventions, BA measures have become increasingly pop-
ular as intermediate phenotypes in randomized controlled trials 
(Lohman et al., 2023; Waziry et al., 2023).

The most common quantification of BA relies on DNA 
methylation-based measurements known as epigenetic clocks. First-
generation epigenetic clocks (Hannum et al., 2013; Horvath, 2013; 
Levine,  2013, p.201) were initially developed using chronological 
age as a surrogate of BA. These measures are now being surpassed 
by second-generation epigenetic clocks, which use an age-related 
outcome or the pace of aging to improve predictions of morbidity 
and mortality (Belsky et al., 2022; Levine et al., 2018; Lu et al., 2019). 
While epigenetic clocks are widely recognized, proteins and their 
signatures provide direct links to aging-related pathology, making 
them more relevant for disease prognosis in the clinical context 
(Moaddel et al., 2021).

Previous studies have identified circulating proteins associated 
with chronological age (Moaddel et al., 2021; Sathyan et al., 2020; 
Tanaka et  al.,  2018), mortality (Eiriksdottir et  al.,  2021; Orwoll 
et  al.,  2018), and chronic diseases (Carrasco-Zanini et  al.,  2023; 
Gadd et al., 2023). Several proteomic clocks have been developed 
to predict chronological age (Sathyan et al., 2020; Sayed et al., 2021; 
Tanaka et al., 2018) or mortality (Unterhuber et al., 2021). In addi-
tion, a proteomic composite, known as the senescence-associated 
secretory phenotype (SASP) index (Diniz et  al.,  2017), was devel-
oped incorporating 22 preselected SASP proteins. This index indi-
cates a phenotypic manifestation of cellular senescence, a hallmark 
of biological aging (López-Otín et al., 2013). Elevated SASP index lev-
els have been associated with aging outcomes in older adults with 
major depression, such as cognitive impairment, increased medical 
burden—particularly in cardiovascular disease—and compromised 
brain health, including neuroinflammation and cortical atrophy 
(Seitz-Holland et al., 2023). Consistently, other composite SASP bio-
markers have shown high predictive value for all-cause mortality in 
healthy older adults (St Sauver et al., 2023).

Despite their relevance, these proteomic clocks exhibit signifi-
cant limitations. They were mostly trained to predict chronological 
age (i.e., first-generation clocks) or trained in a small sample with a 
small set of proteins, which may be preselected to reflect a specific 
biological aging process (e.g., cellular senescence). In this study, we 
aimed to develop a proteomic clock, referred to as the proteomic 
aging clock (PAC), to predict all-cause mortality. Data included 2923 
plasma proteins, assessed using the Olink Explore 3072 assay®, 
from a UK Biobank (UKB) baseline cohort of 53,021 participants 
aged between 39 and 70 years. We validated the PAC for its asso-
ciations and predictions of all-cause mortality and age-related con-
ditions, during a follow-up exceeding a decade. Biological insights 
into PAC proteomic age deviation were investigated through gene 
set analysis and gene property analysis for tissue specificity.

2  |  METHODS

2.1  |  UK Biobank Pharma Proteomics Project

The UK Biobank (UKB) recruited more than 500,000 participants, 
aged between 40 and 70 years, between 2006 and 2010 (Allen 
et al., 2024; Sudlow et al., 2015). At recruitment (baseline), partici-
pants completed online questionnaires, cognitive function tests, 
verbal interviews, and physical measurements. Additionally, blood 
samples were collected for future biological assays. Since then, dis-
ease diagnoses and death status have been updated through link-
ages to electronic health records.

Participants who supplied blood samples at baseline were se-
lected for inclusion in the UK Biobank Pharma Proteomics Project 
(UKB-PPP) (Sun et al., 2023). Of the included samples (n = 53,021), 
the majority (n = 46,792, 88.3%) were a random sample from the 
UKB baseline cohort. Others (n = 6229, 11.7%) included participants 
who attended the first imaging visit and COVID-19 repeat imaging 
study and those selected by the consortium of 13 biopharmaceutical 
companies for their research interests.

2.2  |  Data

The normalized protein expression (NPX) data encompassed 2923 
proteins (Table S1). Three proteins with high rates of missing data 
were removed from the analysis: GLIPR1 (99.7%), NPM1 (74.0%), 
and PCOLCE (63.6%). For the remaining proteins, we applied a k-
nearest neighbors approach (Torgo, 2011) to impute missing prot-
eomic data (k = 10).

All-cause mortality risk was used as an indicator for BA. Death 
data were provided by the UK National Health Service (NHS) 
England, NHS Central Register, and National Records of Scotland. 
Participants with no recorded date of death were assumed to remain 
alive until the censoring date of 11/30/2022. Regarding incident 
disease outcomes, participants free of a disease at baseline (2006–
2010) were followed up until the first disease diagnosis, death 
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(censoring date 11/30/2022), or the last follow-up date (censoring 
dates: 11/30/2022 [England], 7/31/2021 [Scotland], and 2/28/2018 
[Wales]) depending on which occurred first. First diagnosis dates 
were identified using the UKB hospital inpatient data and first oc-
currence data, which linked data from different sources based on 
3-character ICD-10 codes: longitudinal primary care (45% of the 
UK Biobank cohort), hospital inpatient, death registry data, and 
self-reported medical conditions at baseline (Table S2). Data on the 
covariates were collected by UKB through online surveys, physical 
measurements, and linkages to electronic health records (Table S2). 
All the data were extracted using the field IDs in Table S2.

2.3  |  PAC development

The NPX data and chronological age at baseline in the training set 
were used to train a LASSO penalized Cox regression model for the 
risk of all-cause mortality. The selected proteins and chronological 
age were used to fit Gompertz proportional hazards models and for-
mulate PAC to estimate the proteomic age based on the input data 
(Supplementary Methods [Appendix S1]).

2.4  |  PAC validation

2.4.1  |  Correlations of PAC proteomic age with 
aging-related traits at baseline

We evaluated the correlations of PAC proteomic age with chrono-
logical age, BioAge, PhenoAge, short leukocyte telomere length 
(LTL), physiological, or cognitive measures (Table  S3), a 49-item 
frailty (Williams et  al.,  2019), and disease-associated biomark-
ers (Table  S3)—all measured at baseline—using the test set data. 
Additionally, we investigated the correlations between the residuals 
of PAC proteomic age and those of BioAge, PhenoAge, and leuko-
cyte telomere length, with adjustments made for chronological age.

2.4.2  |  Associations of PAC proteomic age deviation 
with all-cause mortality and incident diseases

Next, we tested if PAC proteomic age deviation was linked with 
mortality and incident diseases (hypertension, myocardial infarction, 
heart failure, stroke, type 2 diabetes, COPD, pneumonia, chronic 
kidney disease, dementia, delirium, Parkinson's disease, any cancer 
excluding nonmelanoma skin cancer, and common cancers including 
breast cancer [females only], prostate cancer [males only], lung can-
cer, and colorectal cancer).

Using the test set data, we applied Cox regression models for 
all-cause mortality and Fine-Gray subdistribution hazard models 
for incident diseases to account for the effect of death. The mod-
els above were adjusted for each of the three sets of covariates at 
baseline: (1) age-adjusted models: age only, (2) partially adjusted 

models: sociodemographic factors (age, self-reported sex, ethnic-
ity [White, Black, Asian, and Other], and education [from none to 
college or university degree], Townsend deprivation index [higher 
values indicating higher levels of material deprivation]) and lifestyle 
factors (smoking status [current, former, and never], body mass 
index [BMI]), and (3) fully adjusted models: covariates in the partially 
adjusted model and pre-existing diseases (hypertension, myocardial 
infarction, heart failure, stroke, type 2 diabetes, chronic obstructive 
pulmonary disease [COPD], pneumonia, chronic kidney disease, de-
mentia, delirium, Parkinson's disease, and any cancer excluding non-
melanoma skin cancer).

We also carried out a subgroup analysis stratifying the sample by 
sex. The p-values from the age-adjusted, partially adjusted, and fully 
adjusted models for all-cause mortality and incident diseases were 
adjusted for multiple testing using the Benjamini–Hochberg false 
discovery rate (FDR) method.

2.4.3  |  PAC versus other BA measures in 
associations of biological age deviation with all-cause 
mortality and incident diseases

Using the test set data, the associations of PAC proteomic age with 
all-cause mortality and incident diseases were compared with those 
of other BA measures, namely BioAge, PhenoAge, and LTL, adjust-
ing for the full set of covariates. BioAge (Levine, 2013) was trained 
for chronological age, while PhenoAge (Levine et  al.,  2018) was 
trained for all-cause mortality, both using routine clinical biomark-
ers from blood samples in the National Health and Nutrition Survey 
(NHANES) III (detailed in Supplementary Methods [Appendix S1]). 
Further validation of both measures was performed in additional co-
horts, including UKB (Kuo et al., 2021; Liu et al., 2018), confirming 
their robustness. LTL was assessed using a multiplex qPCR technique 
as T/S ratio, which compares the telomere amplification product (T) 
to that of a single-copy gene (S), adjusting for technical parameters 
(Codd et al., 2022). The rank-based inverse normal transformation 
was applied to each BA measure to convert the data to z-scores to 
standardize the scales of different BA measures. Short LTL by re-
versing the signs of LTL was compared with other BA measures so 
the association direction tended to be consistent across measures.

For sensitivity analysis, the associations above were investigated in 
participants without any pre-existing diseases at baseline. The primary 
fully adjusted models were simplified to the partially adjusted models 
as none of the included participants had developed any of the diseases.

2.4.4  |  PAC versus other BA measures in predictions 
for all-cause mortality and incident diseases

Harrell's C-statistic, a concordance probability within the range 
from 0.5 to 1, compares individuals in a pair that the individual who 
has a shorter time to a disease also has a higher risk for the disease 
based on the model during the follow-up time. Harrell's C-statistic 
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serves as a standard output to quantify discriminative power for Cox 
regression models, yet it demands an extended computation time 
for Fine-Gray subdistribution hazard models. Although we used 
Fine-Gray subdistribution hazard models to link BA deviation with 
incident diseases to account for the competing event of death, cor-
responding Cox regression models, which censored individuals who 
died before disease diagnosis yielded similar associations (results 
not shown). Without losing the generalization of our findings, we 
opted for Cox regression models to assess the predictions of PAC 
proteomic age against other BA estimates for all-cause mortality and 
incident diseases using the test set data.

2.4.5  |  Functional analysis

To unravel the biological processes underlying BA deviation, proteins 
after the inverse normal transformation were associated with PAC 
proteomic age, BioAge, PhenoAge, or short LTL in the fully adjusted 
linear regression models using the test set data. Significant proteins 
(Bonferroni-corrected p < 0.05) were carried forward to perform 
a gene set analysis and a gene property analysis for tissue specific-
ity using the Functional Mapping and Annotation of Genome-Wide 
Association Studies (FUMA version 1.6.0) (Watanabe et  al.,  2017). 
Similar analyses were conducted for BioAge, PhenoAge, and short LTL.

In the gene set analysis, genes associated with BA deviation were 
compared with the background genes (20,260 protein-coding genes) 
for the presence in a hallmark gene set using a hypergeometric test. 
Enriched hallmark gene sets with at least five genes overlapped with 
the input genes were identified at the Bonferroni-corrected level of 
5% (50 hallmark gene sets in total).

In the gene property analysis for tissue specificity, the input 
genes were compared with the background genes (protein-coding 
genes with mean normalized log2 expression value >1 in at least one 
of 30 general tissues) using a hypergeometric test for the presence 
in a tissue-specific differentially expressed gene set (genes with p-
value ≤0.05 after Bonferroni correction and absolute log fold change 
≥0.58 in GTEx v8). Bonferroni-corrected p-values smaller than 5% 
were considered statistically significant.

3  |  RESULTS

3.1  |  Training and test datasets

Participants with complete NPX and chronological age data from 
baseline (recruitment), and mortality data throughout the follow-up 
period were included in the PAC development. The included samples 
(n = 53,021) were split into a training set (70%, n = 37,115) and a test 
set (30%, n = 15,906). In the training set, 4034 participants (10.9%) 
died at the mean age of 70.1 years (SD = 8.1) over a mean follow-up 
of 13.3 years (SD = 2.2). Within the test set, 1731 participants (10.9%) 
died, with the mean age at death 70.1 years (SD = 8.1) during a mean 
follow-up of 13.3 years (SD = 2.2). A baseline summary for participants 

in the training and test sets versus others in the UKB baseline cohort 
is presented in Table S3. The training and test samples showed com-
parable baseline characteristics to the rest of the UKB baseline cohort 
(Table S3). The disease prevalence was slightly higher within the UKB-
PPP than the rest of the baseline cohort, which is expected, due to 
the enrichment of diseases in the UKB-PPP samples (Sun et al., 2023).

3.2  |  Development of the proteomic aging clock 
(PAC)

Using the training set data, a Least Absolute Shrinkage and Selection 
Operator (LASSO) penalized Cox regression model was applied to 
2920 proteins and chronological age at baseline to predict the time-to-
event outcome of death. Chronological age and 128 proteins remained 
in the model (lambda 0.004543) (Table S4) and were carried forward 
to fit a Gompertz model. Additionally, another Gompertz model was 
fitted to predict death solely using chronological age. We calculated 
the PAC proteomic age based on the shape and rate parameters, and 
the regression coefficients associated with individual proteins from the 
models above (Table S5). The mean PAC proteomic age was 53.4 years, 
3.4 years younger than the mean chronological age in the training set. 
In the test set sample, the mean PAC proteomic age and chronological 
age were 53.4 and 56.9 years, respectively.

3.3  |  Correlations between chronological age, 
PAC proteomic age, PhenoAge, BioAge, LTL, plus a 
selection of aging phenotypes at baseline

A total of 10,451 participants had complete data for chronologi-
cal age, PAC proteomic age, BioAge, PhenoAge, and LTL in the test 
set. The Spearman correlation (r) between PAC proteomic age and 
chronological age was 0.77, lower than the correlations of BioAge 
(r  = 0.98) and PhenoAge (r  = 0.87) with chronological age (Figure S1). 
Short LTL demonstrated weak correlations with chronological age 
and other BA measures (r  ≈ 0.2) (Figure  S1). Single physiological 
or cognitive measures, frailty, and disease-associated biomarkers 
showed a weak-to-moderate association with chronological age, 
PAC proteomic age, BioAge, and PhenoAge (Figures  S1 and S2). 
Additionally, the correlations between the age-adjusted residuals 
of PAC proteomic age and those of BioAge (r = 0.07), PhenoAge 
(r = 0.37), and short LTL (r = 0.12), varied from low to moderate. This 
suggests that these biological age measures may represent distinct 
facets of biological aging.

3.4  |  Associations of PAC proteomic age 
acceleration with all-cause mortality and 
incident diseases

The PAC proteomic age acceleration showed significant associa-
tions with all-cause mortality and various incident diseases in the 
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test set sample adjusting for chronological age only (age-adjusted 
model). These associations were attenuated in the partially ad-
justed (sociodemographic factors including age and lifestyle fac-
tors) and fully adjusted models (covariates in the partially adjusted 
model and pre-existing diseases), though remaining statistically 
significant (Figure 1; Table S6). For instance, the HR for all-cause 
mortality was 1.097 per year increase in PAC proteomic age (95% 
CI 1.091–1.103, padj = 3.83 × 10

−232) in the fully adjusted model, 
versus 1.104 in the age-adjusted model, and 1.102 in the partially 
adjusted model. For sensitivity analysis, we included an indica-
tor for participants selected by the UKB-PPP consortium in the 
fully adjusted models. The indicator was assigned a value of 1 for 
individuals chosen by the consortium due to specific diseases of 
interest and 0 for those not chosen by the consortium, selected 
randomly from the UK Biobank baseline cohort. The results were 
similar to the fully adjusted model results, likely attributable to 
the overlap in effects between the selection and baseline disease 
states. Similar results were also found in males and females sepa-
rately (Figures S3 and S4).

3.5  |  PAC versus other BA measures in associations 
with all-cause mortality and incident diseases

PAC outperformed PhenoAge, BioAge, and short LTL for most 
outcomes, showing the strongest associations with all-cause mor-
tality, heart failure, pneumonia, delirium, COPD, dementia, lung 
cancer, myocardial infarction, osteoporosis, Parkinson's disease, 
any cancer, and colorectal cancer (Figure  2). In contrast, the as-
sociations with type 2 diabetes and chronic kidney disease were 
strongest with PhenoAge. BioAge showed the strongest associa-
tions with stroke and hypertension (Figure 2). Similar associations 
were observed in the age-adjusted and partially adjusted models 
(Figures  S5 and S6). Sensitivity analyses, including only disease-
free participants at baseline, showed similar associations of BA 
acceleration with all-cause mortality and incident diseases, high-
lighting the robustness of our findings (Figure 3). Interestingly, the 
associations of PAC proteomic age acceleration with lung cancer 
and dementia were stronger in the disease-free participants than 
in the test set sample.

F I G U R E  1 Associations of PAC proteomic age acceleration with all-cause mortality and incident diseases in the test set sample. CKD, 
chronic kidney disease; COPD, chronic obstructive pulmonary disease; HF, heart failure; MI, myocardial infarction; T2D, type 2 diabetes. 
N (Full): sample size with complete data for the fully adjusted model, after excluding participants diagnosed with the disease at or prior to 
baseline. iCases (Full): number of incident cases of N samples. Cox regression model for all-cause mortality and Fine-Gray subdistribution 
hazard models to account for the effect of death on the risk for incident diseases, adjusting for different sets of covariates at baseline 
(age-adjusted, partially adjusted, and fully adjusted models). AgeAdj: chronological age; Partial: chronological age, sex, ethnicity, education, 
Townsend deprivation index, smoking status, and body mass index; Full: covariates in the partially adjusted model, and pre-existing diseases 
(hypertension, myocardial infarction, heart failure, stroke, type 2 diabetes, COPD, pneumonia, chronic kidney disease, any cancer excluding 
nonmelanoma skin cancer, dementia, and Parkinson's disease, without delirium as there were only two samples with a history of delirium 
at baseline in the test set sample). Padj (Full): p-values adjusted for multiple testing (tests based on age-adjusted, partially adjusted, and fully 
adjusted models for all-cause mortality and incident diseases). Disease/all-cause mortality highlighted with asterisk (*) if padj <0.05.
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3.6  |  PAC versus other BA measures in predictions 
for all-cause mortality and incident diseases

Using the test set data only, we compared the C-statistics for 
all-cause mortality and incident diseases of four models: (1) 
chronological age only (M-Age), (2) PAC proteomic age only 
(M-PAC), (3) BioAge only (M-BioAge), and (4) PhenoAge only 
(M-PhenoAge). M-PAC outperformed other models based on C-
statistics, particularly all-cause mortality, COPD, pneumonia, and 
heart failure (Figure 4). The M-PAC C-statistics for dementia and 
delirium were the highest across diseases and models but not sig-
nificantly different from those of M-Age (Figure 4). Models with 
multiple BA measures showed minimally improved C statistics 
(Figure S7).

3.7  |  Functional analysis

A total of 1001 significant proteins coded by 1008 genes were se-
lected for significant associations with PAC proteomic age deviation 
to initiate a functional analysis by FUMA (Table S7). Genes associ-
ated with PAC proteomic age deviation were enriched in 25 hallmark 
gene sets (Bonferroni-corrected p < 0.05) (Figure 5, Table S11). These 
hallmark gene sets include a wide range of biological processes and 
signaling pathways, particularly epithelial–mesenchymal transition, 
coagulation, inflammatory response, allograft rejection, IL-6-JAK-
STAT3 signaling, complement, and IL2-STAT5 signaling (Figure  5). 
Additionally, genes associated with PAC proteomic age deviation 
were overrepresented in the differentially expressed genes in multi-
ple tissues, topped by lung and adipose tissues (Figure S6).

F I G U R E  2 Associations of biological age acceleration based on different biological age measures with all-cause mortality and 
incident diseases in the test set sample using the fully adjusted models. SD: standard deviation of each measure after the inverse normal 
transformation in the combined training and test set to convert the original measurements to z-scores (approximately 1 across measures). 
CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; HF, heart failure; MI, myocardial infarction; T2D, type 2 
diabetes. N: sample size with complete data for the fully adjusted models of PAC, BioAge, PhenoAge, and short LTL, after excluding 
participants diagnosed with the disease at or prior to baseline. ICases: number of incident cases of N samples. Cox regression model for 
all-cause mortality and Fine-Gray subdistribution hazard models to account for the effect of death for the risk of incident diseases. The full 
covariate adjustment included chronological age, sex, ethnicity, education, Townsend deprivation index, smoking status, body mass index, 
and pre-existing diseases (hypertension, myocardial infarction, heart failure, stroke, type 2 diabetes, COPD, pneumonia, chronic kidney 
disease, any cancer excluding non-melanoma skin cancer, dementia, and Parkinson's disease). Delirium was not included as there were only 
two samples with a history of delirium at baseline. padj: p-values adjusted for multiple testing per BA measure (tests based on age-adjusted, 
partially adjusted, and fully adjusted models for all-cause mortality and incident diseases). Disease/all-cause mortality highlighted with 
asterisk (*) if padj<0.05.
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In contrast, proteins significantly associated with PhenoAge de-
viation (Table S8) were significantly enriched in 30 hallmark gene 
sets (Table S12) versus 27 hallmark gene sets with BioAge deviation 
(Tables S9 and S13), and seven hallmark gene sets with short LTL 
(Tables S10 and S14). Significant gene sets among Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways or gene oncology (GO) re-
sources, for example, were also reported in Tables S11–S14. These 
findings were conserved across BA measures (Figures S8 and S9), 
suggesting the presence of conserved biology underlying the aging 
processes.

4  |  DISCUSSION

We developed a proteomic clock (PAC) for all-cause mortality 
as a surrogate of BA. PAC proteomic age acceleration was ro-
bustly associated with all-cause mortality and age-related dis-
eases after controlling for sociodemographic, lifestyle factors, 
and pre-existing diseases, in the test set sample and disease-free 

participants. PAC proteomic age showed, in general, better per-
formance in predicting all-cause mortality and incident diseases 
than chronological age and other BA measures. Proteins associ-
ated with PAC proteomic age deviation were enriched in various 
hallmarks of biological aging, including immunoinflammatory re-
sponses, cellular senescence, extracellular matrix remodeling, 
cellular response to stressors, and vascular biology. Interestingly, 
these processes are conserved over multiple BA measures, sug-
gesting that such biological abnormalities are conserved regard-
less of how BA measures are developed or trained. Overall, our 
findings demonstrate the robustness of this proteomic aging clock 
in predicting different adverse health outcomes and reflect the 
current understanding of the perturbations in multiple biological 
pathways in the aging process.

Previous studies evaluated the proteomic correlates of 
chronological age using different proteomic platforms and as-
says (e.g., SOMAscan assays® or mass spectrometry) (Sathyan 
et al., 2020; Sayed et al., 2021; Tanaka et al., 2018). Proteins as-
sociated with chronological age showed significant associations 

F I G U R E  3 Associations of biological age acceleration based on different biological age measures with all-cause mortality and incident 
diseases using disease-free participants in the combined training and test set, and fully adjusted models. SD: standard deviation of each 
measure after the inverse normal transformation in the combined training and test set to convert the original measurements to z-scores 
(approximately 1 across measures). CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; HF, heart failure; MI, 
myocardial infarction; T2D, type 2 diabetes; N: sample size with complete data for partially adjusted models of PAC, BioAge, PhenoAge, 
and short LTL, after excluding participants diagnosed with any of the diseases at or prior to baseline. ICases: number of incident cases of N 
samples. Cox regression model for all-cause mortality and Fine-Gray subdistribution hazard models to account for the effect of death on 
the risk for incident diseases. The partial covariate adjustment included chronological age, sex, ethnicity, education, Townsend deprivation 
index, smoking status, and body mass index. padj: p-values adjusted for multiple testing per biological age measure (n = 19). Disease/all-cause 
mortality highlighted with asterisk (*) if padj<0.05.
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with age-related clinical outcomes: walking speed, grip strength, 
frailty, multimorbidity, and all-cause mortality. A recent preprint 
(Argentieri et  al.,  2023) used a smaller protein panel (n = 1459) 
from the initial release of UKB-PPP (n = 31,581) and data from 
China Kadoorie Biobank (n = 1418) to train a proteomic clock 
(ProtAge) to predict chronological age. The trained ProtAge was 
associated with all-cause mortality and several diseases, for exam-
ple, Alzheimer's disease. However, there are marked differences 
between the two studies. First, we used a larger set of proteins 
to train a proteomic clock (2920 vs. 1459 proteins), providing a 
broader coverage of the human proteome. Second, we trained a 
proteomic clock to predict mortality instead of chronological age, 
a shift from a “first-generation” to a “second-generation” clock. 
To the best of our knowledge, PAC is the first proteomic aging 
clock developed for all-cause mortality risk as a surrogate of BA, 
using the largest dataset of proteins and individuals in the world. 
Lastly, we went beyond the ProtAge analyses and also reported 
C-statistics to show the predictive power of PAC versus other BA 
measures. Although the PAC and ProtAge are not directly compa-
rable, PAC consistently showed high predictive power for multiple 
aging outcomes. Overall, our results expand previous findings by 

showing that PAC proteomic age acceleration strongly predicts 
all-cause mortality and several incident disease outcomes, with 
a follow-up exceeding a decade and a substantial sample size to 
ensure adequate statistical power.

PAC proteomic age acceleration showed the strongest associa-
tions with mortality risk and several disease outcomes (e.g., heart 
failure, pneumonia, delirium, COPD, and dementia). On the contrary, 
BioAge showed the strongest associations with hypertension and 
stroke, whereas PhenoAge showed the strongest associations with 
type 2 diabetes and chronic kidney disease. This pattern of associ-
ations remained similar among individuals who had no medical co-
morbidity at baseline, except the associations of PAC proteomic age 
acceleration with lung cancer and dementia became stronger. These 
findings suggest that different BA measures may be implemented 
depending on the study context or the outcomes of interest and that 
PAC is particularly valuable in identifying high-risk individuals years 
before the earliest manifestations of chronic conditions.

We found that genes associated with proteomic age deviation 
are enriched in various hallmarks of biological aging, including im-
munoinflammatory responses, cellular senescence, extracellular 
matrix remodeling, cellular response to stressors, and vascular 

F I G U R E  4 Discriminative power of biological age based on different measures for all-cause mortality and incident diseases using Cox 
models and the test set data: (1) model with chronological age only (M-Age), (2) model with PAC proteomic age only (M-PAC), (3) model 
with BioAge only (M-BioAge), and (4) model with PhenoAge only (M-PhenoAge). CKD, chronic kidney disease; COPD, chronic obstructive 
pulmonary disease; HF, heart failure; MI, myocardial infarction; T2D, type 2 diabetes. N: sample size with complete data for chronological 
age, PAC proteomic age, BioAge, and PhenoAge, after excluding participants diagnosed with the disease at or prior to baseline. iCases: 
number of incident cases of N samples.
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biology. Additionally, several hallmark gene sets are conserved 
across BA measures, including inflammatory response, allograft 
rejection, IL-6-JAK-STAT3 signaling, IL2-STAT5 signaling, TNG 
alpha signaling via NF-κB, and apoptosis. Regardless of BA mea-
sures used, our findings indicate consistent manifestations of 
biological processes and pathways in BA acceleration. The mul-
tifaced biological influence on aging phenotypes reinforces the 
potential for geroscience-guided interventions to target multiple 
age-related outcomes.

It is crucial to validate a biomarker of aging by comparing it 
with alternative measures using external cohorts. While we have 
validated the PAC, including a comparison with other BA mea-
sures using an internal independent sample, there has yet to be 
any external validation or incorporation of previous proteome-
based measures. Other cohorts with proteomic data, like the 
Cardiovascular Health Study, Atherosclerosis Risk in Communities 
(ARIC) study, and Framingham Heart Study (FHS), use different 
assays (e.g., SOMASCAN assays) with significant variations in 

F I G U R E  5 Hallmark gene sets enriched with genes associated with BA deviation based on different BA measures. The colored bars 
represent −log10 (p) for different biological age measures after Bonferroni correction (n = 50) and those greater than 15 are truncated at 15. 
EMT: Epithelial Mesenchymal Transition.
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the protein coverage (Austin et al., 2022; Ngo et al., 2016; Norby 
et al., 2021). These technical differences across platforms (Eldjarn 
et al., 2023) prevent the interchangeable use of assays for external 
model validation and a direct comparison of results. For example, 
Tanaka et al. (2018) and Sathyan et al. (2020) developed predictors 
for chronological age using elastic net regression models. Their 
models require 76 and 162 proteins to estimate biological ages 
accurately. However, only a subset of these proteins is available 
in the UK Biobank (59 and 76, respectively), thus preventing the 
derivation of their measures in the UK Biobank. Additional efforts 
are warranted to reconcile these differences and assess the ro-
bustness and generalizability of such predictors across different 
datasets and populations (Moqri et al., 2024).

This study has additional limitations that need to be considered 
when interpreting our findings. First, we did not exclude deaths un-
related to biological aging, such as those resulting from accidents. 
However, such incidents are rare in the UKB cohort and unlikely to 
impact our findings significantly. Second, we could not compare PAC 
with commonly used epigenetic clocks since UKB does not have 
data on DNA methylation. However, PhenoAge was used to train 
DNAm PhenoAge, thus providing an indirect comparison between 
PAC and DNAm PhenoAge clock. Third, while PAC is robustly as-
sociated with mortality and major chronic diseases, disease-specific 
(You et al., 2023) or organ-specific clocks (Oh et al., 2023; Sehgal 
et al., 2023) address heterogeneity within individuals and may thus 
be more relevant in certain contexts.

In conclusion, we have developed a novel proteomic aging clock 
termed PAC, which demonstrated robust associations and predic-
tions for mortality and the onset of various diseases. The proteins 
associated with PAC proteomic age deviaion were enriched in sev-
eral processes related to the hallmarks of biological aging. Further 
validation is essential to ascertain the use of PAC across different 
settings.
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