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apothicaires, 34298 Montpellier, France
b IRCM, Univ Montpellier, ICM, INSERM, 208 avenue des apothicaires, 34298 Montpellier, France
c Institut du Cancer de Montpellier, Service d’imagerie médicale, 208 avenue des apothicaires, 34298 Montpellier, France

A R T I C L E I N F O

Keywords:
Radiomics
Robustness
MR-guided radiotherapy

A B S T R A C T

Background and purpose: MR-guided radiotherapy adds the precision of magnetic resonance imaging (MRI) to the
therapeutic benefits of a linear accelerator. Prior to each therapeutic session, an MRI generates a significant
volume of imaging data ripe for analysis. Radiomics stands at the forefront of medical imaging and oncology
research, dedicated to mining quantitative imaging attributes to forge predictive models. However, the robust-
ness of these models is often challenged.
Materials and methods: To assess the robustness of feature extraction, we conducted reproducibility studies using
a 0.35 T MR-linac system, employing both a specialized phantom and patient-derived images, focusing on cases
of pancreatic cancer. We extracted shape-based, first-order and textural features from patient-derived images and
only first-order and textural features from phantom-derived images. The impact of the delay between simulation
and first fraction images was also assessed with an equivalence test.
Results: From 107 features evaluated, 58 (54 %) were considered as non-reproducible: 18 were uniformly
inconsistent across both phantom and patient images, 9 were specific to phantom-based analysis, and 31 to
patient-derived data.
Conclusion: Our findings show that a significant proportion of radiomic features extracted from this dual dataset
were unreliable. It is essential to discard these non-reproducible elements to refine and enhance radiomic model
development, particularly for MR-guided radiotherapy in pancreatic cancer.

1. Introduction

Magnetic Resonance-guided radiotherapy (MRgRT) represents a
groundbreaking advancement in the management of cancer, integrating
the diagnostic benefits of magnetic resonance imaging (MRI) to the
therapeutic power of a linear accelerator. This innovative merger is
embodied in the MR-linacs, which utilizes a 0.35 T or 1.5 T MRI scanner
to offer unprecedented precision in cancer treatment [1]. The system’s
design facilitates meticulous patient positioning through daily image
acquisition and enables real-time tracking of the target with continuous
cine-MRI during radiation delivery. This dynamic imaging allows for on-
the-fly adjustments, pausing the radiation if the target drifts beyond the
established safety margins, thereby optimizing treatment accuracy and

protecting surrounding healthy tissue.
Radiomics has emerged as a transformative field in medical imaging

and oncology, harnessing the power of advanced computing to extract a
plethora of quantitative imaging features. These features are the build-
ing blocks for sophisticated algorithms that aim to correlate image data
with biological characteristics and predict clinical outcome [2,3].
Radiomics studies should comply with several steps in a typical work-
flow [4,5]. One of these steps is to reduce the number of extracted
features by removing those that are not robust or those that are redun-
dant for the analysis. This approach, known as dimensionality reduction,
reduces the risk of overfitting during model training [6]. This step is
crucial for the integrity and applicability of the predictive models
generated through radiomic analysis.
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In the context of MR-linacs, the large volume of imaging data
generated daily offers a fertile ground for radiomic research. The images
could also be used to perform delta-radiomics analysis, which represents
a comparative longitudinal analysis that evaluates how radiomic fea-
tures evolve over the course of treatment, providing insights into the
biological effects of radiotherapy on tumor and normal tissues.

The focus of this study is to assess the reproducibility of radiomic
features derived from two sources: a specialized phantom, and actual
patient images from those undergoing treatment for pancreatic cancer
using the 0.35 T MRI scanner of an MR-linac system. By examining the
consistency of these features, we aim to identify which can be reliably
used to enhance the personalization and efficacy of MR-guided radio-
therapy. The implications of this research are vast, with the potential to
significantly refine radiomic models and ultimately, propel the evolu-
tion of patient-specific cancer therapy.

2. Materials and methods

We conducted a detailed investigation into the consistency of
radiomic features derived from MR images using a standardized phan-
tom, specifically the American College of Radiology (ACR) phantom,
which includes a diverse array of geometric configurations (as displayed
in Fig. 1). This phantom is routinely utilized for the calibration and
quality assurance of MR imaging systems. In addition, we extended our
analysis to a patient cohort undergoing treatment for pancreatic cancer,
comparing imaging data from pre-treatment simulations to those ob-
tained on the first day of therapy.

2.1. Patient criteria

Our study encompassed seventy-four patients treated either for
borderline or locally advanced pancreatic cancer with Stereotactic MR-
guided Adaptive Radiotherapy (SMART). Treatment regimens varied,
with three patients receiving a total dose of 40 Gy across five sessions,
and the remaining seventy-one receiving 50 Gy in the same number of
fractions. Prior to the SMART regimen, all patients had been treated
with induction chemotherapy. Crucially, no chemotherapy was admin-
istered in the interim between the simulation examination and the initial
fraction of SMART treatment. Participation in this study was contingent
upon informed consent, with the study’s protocol being duly recorded in
the Health Data Hub (registration number: #1802) and receiving the
endorsement of the COMERE local research committee (ICM-ART 2020/
01).

2.2. Image acquisition

Imaging for both the phantom and patient studies was conducted

using the standard MRIdian® protocol for pancreatic cancer: a balanced
steady-state gradient echo sequence (True FISP) with a flexible torso
phased array coil and characterized by a resolution of 1.63 × 1.63 × 3
mm3, a 276 × 276 matrix size, a TR/TE of 3.84/1.62 ms, a flip angle of
60◦ and a rapid 17-second acquisition period. For the phantom, eleven
sessions of five consecutive acquisitions were performed without repo-
sitioning the phantom over three weeks, culminating in a total of 55
acquisitions. The phantom was repositioned between each session. For
patients, six MRI scans were performed: one for each of the five SMART
fractions and an additional simulation scan conducted. This simulation
scan was classically performed from 5 to 14 days after the last chemo-
therapy injection. To avoid motion artefacts, a breath-hold technique at
physiological end-expiration was employed during the imaging process.

2.3. Image pre-processing

Prior to the feature extraction, images underwent a series of pre-
processing steps designed to mitigate artefacts and enhance the reli-
ability of subsequent feature calculations. These steps, executed using an
in-house python code and adhering to IBSI guidelines [7], included bias
field correction via the N4 algorithm [8], noise reduction through
anisotropic diffusion filtering (settings: number of iterations = 5; kappa
= 5; gamma = 3) [9,10], and image B-spline interpolation to achieve
isotropic voxel dimensions of 1.63× 1.63× 1.63 mm3.

2.4. Features extraction

The feature extraction was preceded by the application of a fixed bin
width of 7 for the gray-level discretisation, performed using the open
source software Pyradiomics v3.0.1 [11]. As all acquired images had a
minimum and maximum value of [0 455] which can be considered like
normalized images, this resulting in 65 bins. In total, 107 features were
extracted from each image, spanning shape-based metrics, first-order
and second-order statistics, as well as advanced textural features via
Gray Level Co-occurrence Matrix (GLCM), Gray Level Size Zone Matrix
(GLSZM), Gray Level Run Length Matrix (GLRLM), Neighbouring Gray
Tone Difference Matrix (NGTDM), and Gray Level Dependence Matrix
(GLDM). It is important to note that no filters were used on the images
prior to the extraction of these features. Texture features were aggre-
gated using the 3DAverage method (ITBB). For the phantom study, the
region of interest (ROI) was automatically outlined using custom in-
house code in Matlab and included the entire phantom. For the cohort
of pancreatic cancer patients, feature extraction was performed on the
gross tumor volume (GTV), which was identified by the treating radia-
tion oncologist on the simulation MRI and then rigidly aligned with the
MRI from the first fraction of treatment. If necessary, the radiation
oncologist could adjust the GTV contour on the first fraction MRI.

Fig. 1. ACR phantom and images of this phantom with a 0.35 T MRI.

M. Michalet et al.



Physics and Imaging in Radiation Oncology 31 (2024) 100613

3

Feature extraction commenced with the application of a consistent
bin width of 7 for gray-level discretization, facilitated by the open-
source software Pyradiomics v3.0.1. Given that all images were within
a value range of [0, 455]—effectively normalized—this process resulted
in the formation of 65 bins. Subsequently, 107 features were extracted
from each image, encompassing shape-based metrics, first-order and
second-order statistics, and advanced textural features. These textural
features included analysis through Gray Level Co-occurrence Matrix
(GLCM), Gray Level Size Zone Matrix (GLSZM), Gray Level Run Length
Matrix (GLRLM), Neighbouring Gray Tone Difference Matrix (NGTDM),
and Gray Level Dependence Matrix (GLDM). It’s critical to mention that
the images underwent no filtration prior to feature extraction. The
texture features were compiled using the 3DAverage method (ITBB). For
the phantom study, the region of interest (ROI) was precisely defined
using bespoke Matlab code and encompassed the entire phantom. In the
case of the pancreatic cancer patient cohort, feature extraction was
conducted on the gross tumor volume (GTV), which was delineated by
the treating radiation oncologist during the simulation MRI and subse-
quently aligned with the MRI from the initial treatment fraction.

2.5. Statistical analysis

In the phantom study, for each set of five consecutive acquisitions,
we calculated both the mean and the coefficient of variation (CoV) for
each feature. The CoV, defined as the standard deviation divided by the
mean, served as a gauge for the repeatability of the findings. Since the
phantom’s ROI was automatically segmented, ensuring an identical ROI
across all images, shape-based features were excluded from the repeat-
ability assessment. The CoV for each feature was then calculated across
all sessions based on each session’s average, effectively measuring the
phantom’s reproducibility. Features were divided into three groups as
excellent repeatability (CoV ≤ 5%), good repeatability (5 %< CoV ≤ 10
%) and poor repeatability (10 % < CoV).

For the patient cohort, reproducibility was evaluated by comparing
features extracted from the simulation scan and the first treatment
fraction. We calculated the intraclass correlation coefficient (ICC) for
each feature using Python (version 3.8.18), incorporating the libraries
Pandas (version 2.0.3) and Pingouin (version 0.5.4). The ICC is a sta-
tistical measure that determines the consistency of measurements by
comparing the variance of the same subject to the total variance across
all ratings and subjects. Features were subsequently categorized based
on their ICC values: excellent reproducibility (ICC ≥ 0.90), good
reproducibility (0.75 ≤ ICC < 0.90), and poor reproducibility (ICC ≤

0.75). The influence of the delay between the simulation MRI and the
first fraction MRI was assessed by comparing the mean variation of each
feature between two groups of patients based on the median delay be-
tween the two MRI. In addition, equivalence tests were performed to
evaluate the similarity of feature values between these groups. This
comprehensive analysis is poised to contribute significantly to the pre-
cision and effectiveness of radiomic research, particularly in the context
of MR-guided radiotherapy for pancreatic cancer.

3. Results

3.1. Analysis of phantom-derived radiomic features

For each imaging session of the ACR phantom, a comprehensive suite
of 93 radiomic features was extracted from the acquired data. All these
features are listed in supplementary material in Table S1. The Fig. 1
provides a representative image of the phantom used in this study as
well as its image using 0.35 T MRI. Shape features were deliberately
omitted from this phase of analysis due to the focus on other feature
categories.

Upon evaluation, 27 of these features (accounting for 29 % of the
total) were identified as having suboptimal reproducibility, evidenced
by a coefficient of variation (CoV) exceeding 10 % in at least one session

or across all sessions cumulatively. Conversely, a significant proportion
of the features, 44 in total (47 %), demonstrated high repeatability with
a CoV of less than 5 %. Furthermore, 22 features (24 %) displayed good
repeatability, falling into the CoV range of greater than 5 % but less than
10 %. The features with poor repeatability are listed in Table 1. The
features falling into other categories of repeatability—good, and high-
—are systematically catalogued in supplementary material in Tables S2
and S3.

To illustrate the concept of CoV and its application within our study,
the Fig. S1 in supplementary material provides a visual comparison of
this metric across four distinct radiomic features. This comparison un-
derscores the variability and potential reliability of each feature in the
context of repeated phantom imaging sessions.

3.2. Analysis of the patient-derived radiomic features

In our analysis of patient-derived data, we meticulously extracted
107 distinct radiomic features from the gross tumor volume (GTV)
delineated in each patient’s MRI scan, with the full list of these features
available in the Table S4 in supplementary material. The Fig. 2 provides
a visual representation in 3 plans of a patient’s MRI with the GTV clearly
marked. The Fig. 3 provides comparison of simulation and first fraction
images for two different patients. Out of these features, a significant
number—49 features, which equates to 46 %—demonstrated poor
reproducibility, as indicated by an intraclass correlation coefficient
(ICC) falling below the 75 % threshold. Conversely, we identified 28
features (26 % of the total) that exhibited high reproducibility, with an
ICC exceeding 90 %. The remaining 30 features (28 %) showed good
reproducibility, with their ICCs ranging between 75 % and 90 %. The
features with poor reproducibility are listed in Table 2. The features
falling into other categories of reproducibility— good, and high—are
systematically catalogued in supplementary material in Tables S5 and
S6.

The median delay between the two MRI was 17 days (range 5–33).
We did not find any differences of mean feature variation between the 2
groups for the different features, as indicated by the significant results of

Table 1
List of poorly-repeatable features on phantom images and their coefficient of
variation (CoV > 10 %).

Feature Coefficient of variation
(CoV)

original_firstorder_Minimum 30.7 %
original_firstorder_Variance 10.1 %
original_glcm_Autocorrelation 10.8 %
original_glcm_ClusterProminence 21.0 %
original_glcm_ClusterTendency 11,4%
original_glcm_SumSquares 10.8 %
original_gldm_GrayLevelVariance 10.2 %
original_gldm_HighGrayLevelEmphasis 10.8 %
original_gldm_LargeDependenceLowGrayLevelEmphasis 15.7 %
original_gldm_LowGrayLevelEmphasis 18.5 %
original_gldm_SmallDependenceHighGrayLevelEmphasis 16.1 %
original_gldm_SmallDependenceLowGrayLevelEmphasis 18.4 %
original_glrlm_HighGrayLevelRunEmphasis 10.9 %
original_glrlm_LongRunLowGrayLevelEmphasis 18.6 %
original_glrlm_LowGrayLevelRunEmphasis 19.1 %
original_glrlm_ShortRunHighGrayLevelEmphasis 11.6 %
original_glrlm_ShortRunLowGrayLevelEmphasis 19.4 %
original_glszm_HighGrayLevelZoneEmphasis 12.1 %
original_glszm_LargeAreaEmphasis 10.8 %
original_glszm_LargeAreaLowGrayLevelEmphasis 20.3 %
original_glszm_LowGrayLevelZoneEmphasis 20.3 %
original_glszm_SmallAreaHighGrayLevelEmphasis 12.4 %
original_glszm_SmallAreaLowGrayLevelEmphasis 20.5 %
original_glszm_ZoneVariance 10.8 %
original_ngtdm_Complexity 15.8 %
original_ngtdm_Strength 11.1 %
original_glcm_ClusterShade 16.0 %

CoV = Coefficient of variation
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the equivalence tests conducted, with different ICC results tested. The
Table S7 shows 4 examples of mean variation of features exhibiting low
reproducibility and 4 examples of features exhibiting high reproduc-
ibility between patients having less than 17 days and those having more
than 17 days between the two MRI.

3.3. Comparison between phantom and patient features

Fifty-eight features (54 %) were considered as poorly robust on the
whole study: 18 in common between phantom and patient data, 9 on the
phantom study and 31 on the patient study. These common poorly
robust features are outlined in Table 3.

4. Discussion

In this comprehensive study, we assessed the robustness of radiomic
features captured by a 0.35 T MRI scanner integrated within the MRI-
dian® system, using a standard protocol for pancreatic cancer. The
analysis focused on the reproducibility of these features extracted from
two distinct sets of images: those obtained from a dedicated phantom
and those from patients undergoing treatment. The study objective was
to determine the repeatability of various radiomic features, providing a
filter to remove those lacking robustness.

Dimensionality reduction is a critical phase in the process of radio-
mic analysis, aiming toreduce the risk of overfitting in predictive

Fig. 2. Example of patient images with 0.35 T MRI, GTV (ROI) delineated in red.

Fig. 3. Example of comparison between the simulation and first fraction im-
ages for two different patients, after bias field and noise corrections; GTV in red.

Table 2
List of poorly-reproducible GTV features on simulation vs first fraction images
and their interclass correlation (ICC < 75 %).

Feature Interclass Correlation
(ICC)

original_firstorder_RootMeanSquared 31.6 %
original_glcm_JointAverage 27.9 %
original_glcm_Contrast 11.8 %
original_gldm_HighGrayLevelEmphasis 8.3 %
original_firstorder_Range 26.1 %
original_gldm_DependenceNonUniformityNormalized 60.9 %
original_glszm_LargeAreaLowGrayLevelEmphasis 45.9 %
original_glcm_DifferenceEntropy 66.7 %
original_gldm_LargeDependenceHighGrayLevelEmphasis 29.3 %
original_ngtdm_Strength 28.6 %
original_glszm_GrayLevelVariance 11.0 %
original_glcm_SumAverage 27.9 %
original_glszm_ZoneVariance 74.1 %
original_firstorder_InterquartileRange 51.6 %
original_firstorder_Maximum 23.3 %
original_firstorder_90Percentile 35.0 %
original_firstorder_10Percentile 39.9 %
original_firstorder_Variance 14.5 %
original_glcm_ClusterTendency 16.3 %
original_glszm_SmallAreaHighGrayLevelEmphasis 7.7 %
original_glcm_DifferenceVariance 9.8 %
original_glszm_LargeAreaEmphasis 74.1 %
original_glszm_SmallAreaEmphasis 58.5 %
original_gldm_DependenceVariance 69.3 %
original_glcm_SumSquares 15.2 %
original_firstorder_Skewness 73.3 %
original_glszm_ZonePercentage 73.5 %
original_glrlm_GrayLevelVariance 14.2 %
original_glrlm_ShortRunHighGrayLevelEmphasis 8.3 %
original_firstorder_RobustMeanAbsoluteDeviation 50.0 %
original_firstorder_Mean 31.5 %
original_firstorder_Energy 22.8 %
original_firstorder_Median 31.4 %
original_gldm_SmallDependenceHighGrayLevelEmphasis 5.8 %
original_glszm_HighGrayLevelZoneEmphasis 9.1 %
original_glrlm_HighGrayLevelRunEmphasis 8.4 %
original_gldm_GrayLevelVariance 14.5 %
original_glcm_Autocorrelation 8.0 %
original_ngtdm_Contrast 52.6 %
original_gldm_SmallDependenceEmphasis 69.3 %
original_ngtdm_Complexity 2.9 %%
original_glcm_ClusterProminence 1.3 %
original_firstorder_MeanAbsoluteDeviation 44.3 %
original_glcm_ClusterShade 6.0 %
original_glrlm_LongRunHighGrayLevelEmphasis 8.8 %
original_glcm_DifferenceAverage 37.9 %
original_glszm_SizeZoneNonUniformity 69.0 %
original_glszm_SizeZoneNonUniformityNormalized 54.3 %
original_firstorder_TotalEnergy 22.8 %

ICC=Interclass correlation
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modeling. Overfitting can lead to models that perform exceptionally on
training data but fail to generalize to new, unseen data. While machine
and deep learning algorithms are commonly employed to perform this
reduction, they may not necessarily exclude features that are non-robust
under the conditions of acquisition, which is a significant consideration
for ensuring the reliability of radiomic studies [12].

Numerous studies have illuminated the profound impact that even
minor variations in MRI acquisition parameters can have on the values
of radiomic features [13–16]. Additionally, variations have been noted
when identical sequences are deployed on systems from different man-
ufacturers [17–19]. While post-processing steps have been shown to
mitigate some of this variability, they fall short of establishing robust-
ness across all radiomic features [20]. This underscores the necessity of
test–retest studies that can identify and exclude features whose vari-
ability is attributed not to pathological or therapeutic changes but to
inconsistencies in the imaging acquisition parameters themselves
[21,22].

In our analyses, we determined that 54 % of the radiomic features we
extracted could be deemed non-reproducible and thus unsuitable for
inclusion in subsequent analyses. The approach of dimensionality
reduction used in this study is grounded in transparent methodologies,
providing an explainable selection of features. This is in stark contrast to
the usual opaque nature of artificial intelligence, particularly with deep
learning algorithms, where the internal mechanics of feature selection
are not always accessible or interpretable.

In our phantom studies, we identified 27 features that were not
reproducible, and of these, a significant number were also found to be
non-reproducible in the patient image analyses, suggesting a consistency
in the feature behavior across different data sets. It was noted that most
of the commonly non-reproducible features pertained to texture..
Interestingly, most first-order features that exhibited non-
reproducibility in patient data analysis demonstrated good repeat-
ability in phantom data analysis, highlighting a potential discrepancy
between phantom and clinical scenarios.

There is a sparse yet growing body of literature exploring the
robustness of radiomics features within systems of MR-guided radio-
therapy like the MRIdian®.. Our findings align with some of these prior
studies, particularly with regard to the robustness of shape-based fea-
tures and specific textural features [23,24]. Some of the robust features
of the study of Ericsson-Szecsenyi et al. were also robust in our study (for
example shape-based features, GLCM sum entropy, GLRLM short-run
emphasis, GLRLM long-run emphasis, GLRLM run percentage, GLRLM
run length non-uniformity) [23].

The application of Stereotactic Adaptive MR-guided Radiotherapy
(SMART) for inoperable pancreatic cancers holds substantial promise,
demonstrated by the emerging clinical results [25,26]. However, with

the reality that many patients still face the prospect of recurrence, the
development of predictive tools is paramount. Various research groups
have ventured to develop and propose radiomic-based models with the
intent of predicting patient outcomes after SMART.t. Notably, some of
these predictive models have achieved promising levels of accuracy, as
evidenced by their reported Area Under the Curve (AUC) statistics
[27,28]. However, a common gap in these studies is the absence of a
thorough reproducibility analysis of the radiomic features used within
these predictive models.

The method of feature selection delineated in our study aims to
ensure that only reproducible features are carried forward into the final
radiomic models constructed by various machine learning algorithms.

While our study brings to light several important findings, it is not
without its limitations. A notable one is the absence of an inter-observer
segmentation analysis, a factor known to introduce variability in the
delineation of GTV. By not addressing this variability, we acknowledge a
potential source of error that could influence the reproducibility of the
radiomic features.

Additionally, our investigation was conducted in a single-center
setting, utilizing a singular MRIdian® system and a single imaging
protocol with the same coil, acquisition parameters and resolution. The
results would be different if any of the imaging parameters were
different (i.e. coil, field of view, TE/TR, etc.). This would require a new
test–retest study in order to select robust features. The results may also
differ when applied to other systems or within different institutional
protocols. To enhance the applicability of our findings, a multicentric
approach involving various MRIdian® systems, preferably across
different geographic locations and patient populations, would be
instrumental. Such an approach would allow for the comparison of
radiomic feature robustness in a broader context, potentially validating
the findings and ensuring that the models developed are more univer-
sally applicable. Moreover, the evolving field of radiomics in radio-
therapy demands ongoing dialogue between technological advancement
and clinical application. As such, the continuous integration of newer
imaging technologies and updated radiotherapy techniques will neces-
sitate constant re-evaluation of radiomic feature robustness.

In conclusion, the scope of this study serves not only to refine the
process of feature selection in radiomics but also to underscore the
importance of rigorous validation in the field of medical imaging and
oncology. By advancing methodologies that prioritize the reproduc-
ibility and reliability of data, we set a precedent for future research that
seeks to harness the power of radiomics in the pursuit of personalized
medicine.

Table 3
List of common poorly robust features.

Feature

original_firstorder_Variance
original_glcm_Autocorrelation
original_glcm_ClusterProminence
original_glcm_ClusterTendency
original_glcm_SumSquares
original_gldm_GrayLevelVariance
original_gldm_HighGrayLevelEmphasis
original_gldm_SmallDependenceHighGrayLevelEmphasis
original_glrlm_HighGrayLevelRunEmphasis
original_glrlm_ShortRunHighGrayLevelEmphasis
original_glszm_HighGrayLevelZoneEmphasis
original_glszm_LargeAreaEmphasis
original_glszm_LargeAreaLowGrayLevelEmphasis
original_glszm_SmallAreaHighGrayLevelEmphasis
original_glszm_ZoneVariance
original_ngtdm_Complexity
original_ngtdm_Strength
original_glcm_ClusterShade
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