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Background: The automated classification of histological images is crucial for the diagnosis of cancer. The 
limited availability of well-annotated datasets, especially for rare cancers, poses a significant challenge for 
deep learning methods due to the small number of relevant images. This has led to the development of few-
shot learning approaches, which bear considerable clinical importance, as they are designed to overcome the 
challenges of data scarcity in deep learning for histological image classification. Traditional methods often 
ignore the challenges of intraclass diversity and interclass similarities in histological images. To address this, 
we propose a novel mutual reconstruction network model, aimed at meeting these challenges and improving 
the few-shot classification performance of histological images.
Methods: The key to our approach is the extraction of subtle and discriminative features. We introduce a 
feature enhancement module (FEM) and a mutual reconstruction module to increase differences between 
classes while reducing variance within classes. First, we extract features of support and query images using a 
feature extractor. These features are then processed by the FEM, which uses a self-attention mechanism for 
self-reconstruction of features, enhancing the learning of detailed features. These enhanced features are then 
input into the mutual reconstruction module. This module uses enhanced support features to reconstruct 
enhanced query features and vice versa. The classification of query samples is based on weighted calculations 
of the distances between query features and reconstructed query features and between support features and 
reconstructed support features. 
Results: We extensively evaluated our model using a specially created few-shot histological image dataset. 
The results showed that in a 5-way 10-shot setup, our model achieved an impressive accuracy of 92.09%. 
This is a 23.59% improvement in accuracy compared to the model-agnostic meta-learning (MAML) method, 
which does not focus on fine-grained attributes. In the more challenging, 5-way 1-shot setting, our model 
also performed well, demonstrating a 18.52% improvement over the ProtoNet, which does not address this 
challenge. Additional ablation studies indicated the effectiveness and complementary nature of each module 
and confirmed our method’s ability to parse small differences between classes and large variations within 
classes in histological images. These findings strongly support the superiority of our proposed method in the 
few-shot classification of histological images.
Conclusions: The mutual reconstruction network provides outstanding performance in the few-shot 
classification of histological images, successfully overcoming the challenges of similarities between classes and 
diversity within classes. This marks a significant advancement in the automated classification of histological 
images.
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Introduction

Cancer has become a major cause of mortality worldwide, 
and the number of cancer-related deaths increases annually. 
Recent data show that over 19.3 million new cancer 
cases were diagnosed and reported in 2020 , leading to 
approximately 10 million deaths (1,2). Histologically, 
there are hundreds of histology image categories, adding 
complexity and challenge to classification (3). Whole slide 
image (WSI) scanners, which provide comprehensive 
views of histological slides, are crucial for the diagnosis 
and staging of  cancer,  thus informing treatment 
decisions. However, the primary diagnosis of cancer still 
predominantly relies on pathologists, a process that is time-
consuming and depends heavily on experience. Additionally, 
the task of tissue classification varies across different cancer 
sites, and even within the same site, there may be different 
levels of category granularity. Hence, the automated 
classification of histological images is of immense value 
in cancer diagnosis. The concept of using computers for 
disease diagnosis was first introduced by Lusted in 1955 (4). 
Following this, Lodwick et al. pioneered the digitization 
of chest X-rays for developing a computer-aided diagnosis 
(CAD) system, which was later used to detect lung cancer (5).

The advent of deep learning methods has fundamentally 
changed this field. Researchers are now actively exploring 
different learning approaches, such as deep learning, for 
cancer diagnosis. For instance, Phankokkruad and colleagues 
used deep learning models including ResNet50V2, VGG16, 
and DenseNet201, along with transfer learning ensemble 
methods, to classify lung cancer (6). Mohalder et al. adopted 
deep learning-based approaches to predict colon cancer (7), 
while additionally Adu et al. proposed a new dual horizontal 
squash capsule network (DHS-CapsNet) for classifying 
lung and colon cancers (8). These studies demonstrate the 
potential and promising applications of deep learning in the 
field of cancer diagnosis.

Deep learning has advanced significantly in classification 
tasks, but its reliance on extensive, labeled data sets limits 
its generalizability when there is an insufficient amount of 

labeled data. Given the challenges associated with acquiring 
ample labeled data across a diversity of scenarios, this 
dependency restricts the advancement of deep learning 
technologies. Few-shot learning has emerged in recent 
years as a potent solution to this issue, yielding a plethora 
of new methods and research directions, primarily related 
to evaluating natural image-related datasets. Human beings 
possess the ability to comprehend new concepts with only a 
few samples. For instance, a child can recognize dogs after 
observing just a few images of them. Emulating this learning 
ability in machines to reduce the reliance on extensive 
annotated data has become a pivotal research direction. To 
address scenarios with limited samples, researchers have 
proposed few-shot learning, which involves using problem-
solving approaches with only a small amount of annotated 
data. Few-shot learning initially emerged in the field of 
computer vision and subsequently gained traction in areas 
such as natural language processing. In medical image 
analysis tasks, both the acquisition and annotation of image 
data pose significant challenges. One of the reasons for this 
is that the collection of such images requires specialized 
equipment such as magnetic resonance imaging (MRI) and 
computed tomography (CT) scanners. Additionally, aside 
from the costly equipment, issues related to patient privacy 
also need to be considered. Another challenge arises due 
to the unique characteristics of certain diseases, which may 
impede the data collection process. For instance, some rare 
diseases have a limited number of patients, resulting in a 
scarcity of available images. In scenarios with extremely 
sparse data, conventional deep learning methods often 
struggle to perform effectively. Few-shot learning can be 
categorized into two main approaches: optimization-based 
methods (9,10) and metric-based methods (11-14). The 
concept of optimization-based methods was first introduced 
in model-agnostic meta-learning (MAML) (9), whose 
function is to train models on well-initialized parameters. 
Meta-learning long short-term memory (MetaLSTM) (15) 
represents an effective fine-tuning approach, while the 
meta-learning optimization network (MetaOptNet) (16) 
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offers an end-to-end differentiated learning method. On 
the other hand, metric-based methods leverage predefined 
or online-trained metrics to learn deep representations, 
classifying new categories of images by measuring distances 
between support and query sets. Metric-based approaches 
have proven to be a superior choice for solving few-shot 
classification challenges. These can be further divided into 
three categories: global feature metric methods (11), local 
feature metric methods (13,14,17), and attention feature 
metric methods (12).

Due to the high cost and specialized expertise required for 
annotating histopathological images, there is a scarcity of 
labeled data in this domain, underscoring how critical few-
shot learning is for the analysis of histopathological images. 
For the few-shot learning of histopathological images, 
there is a focus on classification tasks. In the domain of 
optimization-based methods, Chao and Belanger introduced 
an optimization-based learning approach, applying 
MAML to classify whole-genome doubling (WGD) in 
histopathological images (18). Another meta-learning-
based method, MetaMed, was employed by Titoriya et al.  
for the classification of medical tumor images (19). 
Another team (20) applied the MAML method to classify 
histopathological images from different microscopes, as it 
should be noted that images scanned by different scanners 
may exhibit variable staining characteristics. Additionally, 
the MetaHistoSeg framework is worth mentioning; 
MAML was applied to a meta-dataset of histopathological 
image segmentation and was compared with a baseline of 
instance-based transfer learning (21). Moreover, in terms 
of metric-based methods, Shaikh et al. applied multiple-
instance learning prototype networks to classify artifacts in 
histopathological images stained with hematoxylin and eosin 
(HE) or immunohistochemistry (22). Other authors (23)  
employed a deep Siamese network to address the knowledge 
transfer problem from specific to more general domains 
in histopathological image classification. The histology 
Siamese network model was first trained on a source domain 
dataset, Ds, which contains colon tissue, and was then fine-
tuned on a target domain dataset, Dt, which contains colon, 
breast, and lung tissues. In other study, the performance of 
models trained with different loss functions in obtaining 
histopathological image embeddings was evaluated (24).  
The compared loss functions included triplet loss, 
multiclass-N-pair loss, and the proposed constellation loss. 
Prototype networks represent another example of metric 
learning methods. An intriguing extension of prototype 
networks using k-means was proposed that allows for the 

prediction of the category of unseen WSI based on a few 
examples (22). This method can also manage variations in 
image color and resolution caused by different microscopes 
and preprocessing steps in clinical settings.

Despite the significant clinical potential of the few-
shot classification of histological images, current research 
methodologies do not fully meet the demands of clinical 
applications. For instance, the work by Chao et al. using 
MAML for few-shot classification of histological images 
achieved an area under the curve (AUC) of only 0.6944 (18). 
This limitation is partly due to the insufficient consideration 
of the fine-grained attributes of histological images leading 
to an ineffective capture of fine-grained information specific 
to certain tasks. In Figure 1, samples A–E belong to the 
tumor category of colorectal cancer yet exhibit significant 
differences in cell color and shape. However, sample F, 
representing the inflammatory category of colorectal cancer, 
shares similarities in color and cell morphology with sample 
E yet belongs to a different category. It is important to note 
that the preparation, fixation, and staining processes of 
histological images are subject to variations due to different 
operators, potentially leading to heterogeneity in image 
appearance. Consequently, the task of few-shot classification 
of histological images faces challenges of small interclass 
variance and large intraclass variance, presenting a complex 
scenario for accurate categorization. Several studies in 
traditional deep learning classification tasks for histological 
images have recognized this challenge and proposed models 
to address it. For instance, Jiang et al. introduced a fine-
grained classification model named Breast TransFG Plus, 
based on the Transformer model, to classify breast HE-
stained pathological images specifically for grading invasive 
ductal carcinoma of the breast (26). Liu et al. proposed a 
deep learning approach based on bilinear convolutional 
neural networks (BCNNs) for the fine-grained classification 
of breast cancer histopathological images (27). Li et al. 
sought to solve the challenging issue of small interclass 
variance and large intraclass variance in histological images 
by embedding prior knowledge into the feature extraction 
process (28). Several other studies have also focused on the 
fine-grained attributes of histological images (29-34).

In overcoming the challenges in the few-shot classification 
of histological images, it is crucial to discern and capture 
subtle and discriminative features. Current few-shot 
learning methods used for fine-grained natural images 
primarily focus on reconstructing query features from 
support features or employing attention mechanisms to 
manage interclass similarity. However, these solutions fail 
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to effectively address the challenge of intraclass diversity 
(14,35-37). In response to this, we developed a mutual 
reconstruction network, designed to address small interclass 
variance and large intraclass variance simultaneously. This 
model initially uses a feature extractor to derive support 
and query features, which are then sequentially processed 
through a feature enhancement module (FEM) and a mutual 
reconstruction module for reconstruction. Finally, the task 
of few-shot classification of histological images is completed 
using a Euclidean metric module to calculate distances. This 
method was designed to overcome the issue of fine-grained 
features faced by the existing methods that manage the few-
shot classification tasks of histological images, particularly 
for intraclass diversity and interclass similarity. By 
introducing the mutual reconstruction network, we sought 
to enhance the performance of few-shot classification tasks 

and provide new perspectives and methodologies for further 
research in the field of histological image processing.

The primary contributions of our research can be 
summarized as follows:

(I)	 We developed a mutual reconstruction network 
designed to address the challenges of small interclass 
variance and large intraclass variance in the few-
shot classification tasks of histological images.

(II)	 We created a dedicated public dataset for the few-
shot classification of histological images. For this 
dataset, our method demonstrated outstanding 
performance, achieving an accuracy of 91.12%. 
The mutual reconstruction network significantly 
outperformed other few-shot methods, and our 
findings offer new research directions and insights for 
few-shot classification tasks in histological imaging.

Figure 1 Colorectal cancer histopathology images. (A-E) Tumor samples. (F) Inflammation. The images are from the CRC-TP database 
and have been reprinted with permission from Javed et al. (25). Samples were stained with hematoxylin and eosin and images obtained at 20× 
magnification. CRC-TP, Colorectal Cancer Tissue Phenotyping.
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Methods

Problem statement

In the realm of few-shot classification, we aimed to train 
a model capable of leveraging knowledge acquired from a 
large, labeled example dataset, baseD , often referred to as 
the source dataset. This model was trained to learn from a 
minimal number of examples in a new class set, baseD , and 
successfully perform classification tasks. baseD  represents a 
dataset with a label space, baseY , where the initial pretraining 
phase occurs. The subsequent phase, meta-testing, takes 
place on testD , which comprises a novel set of classes with a 
distinct label space, baseY , characterized by a lack of overlap 
with baseY . During the meta-testing phase, we employ 
episodic sampling, where a series of tasks are constructed 
from testD . Each task consists of two critical components: 
a support set and a query set. In these tasks, N categories 
are randomly selected, and then sample K examples from 
each chosen category are used to construct a support set 
of N K×  samples. The query set comprises M unlabeled 
query samples randomly drawn from these N categories 
within testY . Consequently, a series of N-way K-shot 
classification tasks is generated, where N is the number of 
selected categories, K is the number of examples chosen 
per category, and M is the number of samples in the query 
set. The objective of this approach is to test the model’s 
generalization capability through the examples in the 
support set and query set, enabling effective classification 
in the presence of new categories. The key to this strategy 
is the effective utilization of the knowledge from baseD  
and its transfer to new categories in testD , which enhances 
classification performance. This study was conducted in 
accordance with the Declaration of Helsinki (as revised  
in 2013).

Overview

The primary challenge in few-shot classification tasks of 
histological images lies in addressing intraclass diversity and 
interclass similarity, with the key to success being the ability 
of the model to learn subtle and discriminative features. 
The current approaches to this challenge primarily focus 
on resolving interclass similarity by reconstructing query 
features from support features. However, these methods 
often fall short of adequately addressing the challenge of 
intraclass diversity. In response, we devised an innovative 
solution: the mutual reconstruction network. This approach 
is designed to manage both intraclass diversity and 

interclass similarity simultaneously, thereby enhancing the 
performance in few-shot classification tasks for histological 
imaging. Our method takes into account the variations 
within categories and the similarities between categories in 
histological images, allowing for the more effective capture 
and utilization of feature information and thus more 
accurate classification.

Our proposed model, as illustrated in Figure 2, begins 
with the utilization of a feature extractor fθ  to process 
features from both support and query images. The 
choice of the feature extractor can range from traditional 
convolutional neural networks, such as Conv4, to more 
advanced residual networks, such as ResNet. Following this, 
the extracted features are fed into a FEM gϕ . This module 
employs a self-attention mechanism to self-reconstruct 
the extracted features, thereby accentuating the nuanced 
characteristics of each image category while minimizing 
the interference of irrelevant features. This step is crucial 
in better capturing and expressing the differences between 
images, ultimately enhancing classification performance. 
Subsequently, the enhanced features are introduced into a 
mutual reconstruction module hγ . This module not only 
uses the enhanced features of the support set to reconstruct 
those of the query set but also employs the query set’s 
enhanced features to reconstruct the support set’s enhanced 
features. This bidirectional reconstruction strategy not only 
increases the interclass variance of features but also reduces 
intraclass variance, effectively addressing challenge of fine-
grained features in histological image classification. Finally, 
a Euclidean metric module calculates the distances between 
the query features and reconstructed query features and 
those between the support features and reconstructed 
support features. Classification of the query samples is then 
conducted based on the weighted results of these distances.

FEM 

The architecture of the FEM we have constructed is 
depicted in Figure 3. For the few-shot c-way k-shot 
classification task, we use a feature extractor to process 
features from C K M× +  samples ix , yielding feature 
representations ( )ˆ = d h w

i ix F x Rθ
× ×∈ , where h, w, and d 

represent the height, width, and number of channels of 
the features, respectively. Subsequently, these features ˆix  
are reorganized into local feature sequences with r spatial 
locations 1 2ˆ ˆ ˆ, , , r

i i ix x x   , where r h w= × . In the next step, 

we combine the local feature sequence ˆ j
ix  with spatially 
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Figure 2 The proposed mutual reconstruction network. FEM, feature enhancement module; MRM, mutual reconstruction module. 

Figure 3 FEM. FEM, feature enhancement module; MLP, multilayer perceptron.
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embedded position encoding r d
posE R ×∈ , resulting in 

1 2ˆ ˆ ˆ, , , r
i i i i posz x x x E = +  . Here, iz  serves as the input to the 

FEM, with posE  employing a sinusoidal position-encoding 
method (38). The output of the FEM module is obtained 
through self-attention computation as follows:

	 [1]( ), ,
T

k

QKAttention Q K V Softmax V
d

 
=   

 

( )ˆ , ,Q K V
i i i iz Attention z W z W z Wρ ρ ρ= 	 [2]

( )ˆ ˆi i iz MLP LN z z = +  	 [3]

where QWρ , KWρ , and KWρ  represent a set of learnable weight 
parameters, each with dimensions d d× . Subsequently, 
ˆiz  is computed through consecutive operations of layer 

normalization (LN) and multilayer perceptron (MLP), in 
which ˆ r d

iz R ×∈  serves as the output of the FEM.

Mutual reconstruction module 

The structure of the intraclass-interclass dual awareness 
module is illustrated in Figure 4 and comprises two key 
steps. First, it involves the reconstruction of query features 
based on support features, addressing the challenge of 
interclass similarity in few-shot classification tasks of 
histological images. Second, it focuses on the reconstruction 
of the support features of a class based on query features, 

addressing the challenge of intraclass diversity in few-shot 
classification tasks of histological images.

Following the processing by the FEM, the enhanced 
support features for the thc  class are obtained, denoted 
a s  ˆ c kr d

C kS Z R × = ∈  ,  w h e r e  [ ]1, ,k k∈  ,  [ ]1, ,c C∈ 
. 

Simultaneously, the enhanced query features are acquired, 
represented as ˆ r d

i iQ z R ×= ∈ , where [ ]1, ,i M∈  . The 
subsequent step involves using the weight parameters QWγ , 

KWγ , and VWγ  to reconstruct the enhanced support features 
and enhanced query features for each category. This process 
includes multiplying cS  with the weight matrices QWγ ,  

KWγ , and VWγ  to obtain Q
cS , K

cS , and V
cS , respectively, and 

similarly multiplying iQ  with QWγ , KWγ , and VWγ  to obtain 
Q
iQ , K

iQ , and V
iQ , respectively, where QWγ , KWγ , and VWγ  

have dimensions d d× . Finally, the derived Q
cS , K

cS , and 
V
cS , Q

iQ , K
iQ , and V

iQ  values are used to compute the 
reconstructed query feature ( ),

ˆ
c iQ  from the support feature 

V
cS  of the thc  class and the reconstructed support feature 

( ),
ˆ

i cS  from the query feature V
iQ  of the thi  class. The 

computation formula is as follows:

( ) ( ) ( ), ,
ˆ ˆ, , ,Q K V r d

i c ci c i cQ Attention Q S S Q R ×= ∈ 	 [4]

( ) ( ) ( ), ,
ˆ ˆ, , ,Q K V kr d

c i ii c i cS Attention S Q Q S R ×= ∈ 	 [5]

Euclidean metric module

After the mutual reconstruction module processing, 

Figure 4 MRM. MRM, mutual reconstruction module.
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Euclidean metrics are used to compute the distances 
between query sample iQ  and support samples cS  of the 

thc  class, denoted as 
i cQ Sd → , as well as the distances from 

the support samples cS  in the thc  class to the query sample 

iQ , represented as 
i cQ Sd → . This is followed by the weighted 

summation of these two distances to obtain the total 
distance c

id . The computation formula is as follows:

( )
2

,
ˆ

i c

V
Q S i c id Q Q→ = − 	 [6]

( )
2

,
ˆ

c i

V
S Q c i cd S S→ = − 	 [7]

( )1
i c c i

c
i Q S S Qd d dτ λ λ→ → = + −  	 [8]

In this equation, λ  is a learnable weight parameter, 
initially set to 0.5 (39,40), and τ  represents a learnable 
temperature factor.

Loss function

The distance c
id  is normalized to obtain ˆc

id . Based on ˆc
id , 

the loss function for the task can be calculated as follows:

1

ˆ =
c
i

c
i

d
c
i C d

c

ed
e

−

−
=∑		

[9]

( ) ( )
0 1

1 ˆlog
M C C

c
i i

i c
L l y c d

M C

×

= =

= − ==
× ∑ ∑ 	 [10]

In this context, ( )il y c==  is an indicator function, which 
takes the value of 1 when iy  equals c , and 0 otherwise.

Results

Dataset

To evaluate the effectiveness of our proposed method in 
few-shot classification tasks of histological images, we 
selected image samples from six distinct histological datasets, 
compiling them into a comprehensive few-shot histological 
image dataset. These six datasets include the Colorectal 
Cancer Tissue Phenotyping Dataset (CRC-TP) (25),  
Lung and Colon Cancer Histopathological Image Dataset 
(LC25000) (41), Breast Cancer Histopathological Image 
Classification Dataset (BreakHis) (42), National Center 
for Tumor Diseases and Colorectal Cancer Dataset (NCT-
CRC) (43), The Cancer Genome Atlas (TCGA) dataset (44),  
and Malignant Lymphoma Classi f icat ion Dataset  
(MLC) (45). Our amalgamated dataset encompassed a 
variety of tissue types and organs, comprising 34 tissue 
categories. We randomly selected 14,686 images for 
training, validation, and evaluation purposes. Table 1 
displays the specific composition of the dataset.

In anticipation of future clinical applications, we opted to 
select cancer categories from the same anatomical site with 
similar appearances for the test set, rather than randomly 
choosing categories for the few-shot experiments. Our 
training set encompassed 20 categories, including those 
from the CRC-TP dataset (tumor, stroma, complex stroma 
muscle, debris, inflammatory, benign), the BreakHis dataset 
(adenosis, fibroadenoma, phyllodes tumor, tubular adenoma, 
carcinoma, lobular carcinoma, mucinous carcinoma, 
papillary carcinoma), TCGA dataset (microsatellite stable 
stomach tumor, mutated stomach tumor), and MLC dataset 
(chronic lymphocytic leukemia, follicular lymphoma, 
mantle cell lymphoma). The validation set comprised five 
categories from the LC25000 dataset (benign lung tissue, 
lung squamous cell carcinoma, lung adenocarcinoma, colon 
adenocarcinoma, and benign colonic tissue). Finally, the test 
set included nine categories from the NCT-CRC dataset 
(adipose, no tissue [background], debris, lymphocytes, 
mucus, smooth muscle, normal colon mucosa, cancer-
associated stroma, colorectal adenocarcinoma epithelium).

Table 1 Details of the few-shot histological image dataset, 
including the CRC-TP (25), LC25000 (41), BreakHis (42), NCT-
CRC (43), TCGA dataset (44), and MLC 

Dataset
Number of 

tissue classes 
Cancer type Source

Training set 8 Breast BreakHis

2 Stomach TCGA

7 Colorectum CRC-TP

3 Lymph nodes MLC

Validation set 5 Lung and colon LC25000

Evaluation set 9 Colorectum NCT

CRC-TP, Colorectal Cancer Tissue Phenotyping Dataset; 
LC25000, Lung and Colon Cancer Histopathological Image 
Dataset; BreakHis, Breast Cancer Histopathological Image 
Classification Dataset; NCT-CRC, National Center for Tumor 
Diseases and Colorectal Cancer Dataset; TCGA, The Cancer 
Genome Atlas; MLC, Malignant Lymphoma Classification 
Dataset.
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Experimental setup

For the n-way k-shot setting, each episode encompasses n 
categories, with each category comprising k support images. 
We conducted model training on a training set consisting 
of 15 categories, each with 10 support images, and set up 
15 query images for testing. The sizes of these images 
varied from 150×150 to 768×768 pixels, featuring a range 
of different aspect ratios. To facilitate model training, we 
preprocessed all images to a uniform size of 84×84 pixels. 
This adjustment was made due to considerations of future 
deployment on computationally constrained terminal 
medical devices and for facilitating comparison with existing 
research. In terms of data augmentation, we employed 
techniques such as cropping, horizontal flipping, and color 
jittering to enhance the training stability of the model  
(46-48). These operations contribute to increasing data 
diversity and enable the model to better adapt to various 
image variations.

Our experiments were conducted using the PyTorch 
framework on a GeForce RTX 3090 GPU (Nvidia Corp., 
Santa Clara, CA, USA) (49). We opted for Conv4 and 
ResNet12 as the image feature extractors and considered 
two primary factors. First, as we anticipated deploying 
the algorithm on terminal medical devices with limited 
computational resources in the future, we designed the 
feature extraction module to not excessively burden 
computational resources. Second, most research on few-
shot fine-grained image classification employs these two 
network models as feature extractors. To facilitate better 
comparison with existing studies, we selected feature 
extractors similar to those used in previous research. These 
two backbone networks both accept images of size 84×84 
as input; however, due to differences in their network 
structures, the size of the feature maps they generate 
varies. Specifically, Conv4 consists of four convolutional 
blocks, each comprising a convolutional layer with 64 
channels, batch normalization, a rectified linear unit (ReLU) 
activation function, and a max pooling layer, resulting 
in feature maps 64×5×5 in size. ResNet12, on the other 
hand, includes four residual blocks, each containing three 
convolutional layers, generating feature maps 640×5×5  
in size.

In our experiments, we used a stochastic gradient descent 
(SGD) optimizer with Nesterov momentum set to 0.9 and 
trained all Conv4 and ResNet12 models for 1,200 epochs. 
The initial learning rate was set to 0.1, with weight decay 
applied at a rate of 5e-4. The learning rate was decreased 

by a factor of 10% every 400 epochs. The best model was 
selected based on performance on the validation set, with 
evaluations conducted every 20 epochs. For all experiments, 
we report the average accuracy across 10,000 randomly 
generated tasks on the testD  dataset, under the 5-way, 1-shot, 
5-shot, and 10-shot settings, along with the 95% confidence 
intervals.

Evaluation metrics

For the few-shot multiclass tasks, we employed accuracy 
as the primary performance metric. Accuracy is defined as 
the proportion of correctly classified samples to the total 
number of samples. A higher accuracy indicates better 
performance, and the specific formula is as follows:

100%Number of Correctly Classified SamplesAccuracy
Total Number of Samples

= ×   [11]

Where “Number of Correctly Classified Samples” 
refers to the count of samples correctly classified by the 
model, and “Total Number of Samples” is the total number 
of samples in the evaluation or test set. Accuracy ranges 
from 0% to 100%, with higher values indicating superior 
performance of the model in multiclass classification tasks. 
This metric was used to objectively assess the model’s 
performance and effectiveness in few-shot multiclass 
problems. The data in Tables 2-4 are presented as the mean 
± standard deviation with 95% confidence intervals of 5-way 
classification accuracy for the few-shot histological image 
dataset.

Comparison with state-of-the-art methods

To rigorously evaluate the efficacy of our method in few-
shot classification tasks of histological images, we designed 
a series of experiments based on a meticulously constructed 
few-shot histological image dataset. In this process, we 
selected several classic few-shot learning methods as 
benchmarks for comparison, including the optimization-
based MAML and Reptile methods (9,10), the global 
feature metric-based ProtoNet method (11), the attention 
mechanism-based ReNet method (12), and the local feature 
metric-based DeepEMD and feature map reconstruction 
network (FRN) methods (13,14). The performance results 
of these models were obtained using publicly available 
code. Notably, the MAML, Reptile, and ProtoNet methods 
do not adequately address the challenges of fine-grained 
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features in images. In contrast, the ReNet, DeepEMD, and 
FRN methods are emerging approaches for fine-grained 
few-shot classification tasks in natural images. These 
approaches were analyzed and compared with our proposed 
method.

We conducted accuracy tests for 5-way 1-shot, 5-way 
5-shot, and 5-way 10-shot classification tasks using two 
different feature extractors, Conv4 and ResNet12. The 
detailed experimental results are presented in Table 2 and 
indicate that irrespective of the feature extractor used, 

our method possesses significant advantages in the 1-shot, 
5-shot, and 10-shot experimental settings. Particularly 
noteworthy is the performance with ResNet12 as the 
feature extractor, where our method achieved a classification 
accuracy of up to 92.09% in the 5-way 10-shot experiment. 
This outcome emphatically validates the effectiveness of 
our method in handling few-shot classification tasks of 
histological images.

In this study, we aimed to address the challenge of fine-
grained features present in few-shot classification tasks in 

Table 3 Ablation studies with only the FEM or MRM being used 

Backbone Method 5-way 1-shot 5-way 5-shot 5-way 10-shot

Conv4 Baseline (ProtoNet) 55.68%±0.43% 76.66%±0.65% 80.20%±0.21%

FEM 63.11%±0.79% 80.14%±0.77% 83.91%±0.29%

MRM 66.37%±0.19% 82.79%±0.59% 87.83%±0.34%

FEM + MRM 71.87%±0.64% 87.45%±0.31% 90.42%±0.28%

ResNet12 Baseline (ProtoNet) 56.85%±0.68% 72.96%±0.73% 76.86%±0.89%

FEM 63.14%±0.37% 80.84%±0.71% 83.91%±0.53%

MRM 70.20%±0.55% 86.13%±0.42% 89.97%±0.11%

FEM + MRM 75.37%±0.47% 90.08%±0.31% 92.09%±0.22%

The data are presented as mean ± standard deviation on 5-way classification accuracy for the few-shot histological image dataset. FEM, 
feature enhancement module; MRM, mutual reconstruction module. 

Table 2 Comparison with state-of-the-art methods with 95% confidence intervals for five-way classification accuracy in the few-shot histological 
image dataset using different backbones

Method Backbone 5-way 1-shot 5-way 5-shot 5-way 10-shot

MAML Conv4 52.34%±1.23% 59.13%±0.84% 63.41%±0.77%

Resnet12 65.22%±0.65% 67.69%±0.93% 68.50%±0.63%

Reptile Conv4 55.78%±0.84% 64.29%±0.74% 69.11%±0.28%

Resnet12 68.90%±0.53% 69.72%±0.78% 74.14%±0.37%

ProtoNet Conv4 55.68%±0.43% 76.66%±0.65% 80.20%±0.21%

Resnet12 56.85%±0.68% 72.96%±0.73% 76.86%±0.89%

DeepEMD Resnet12 66.44%±0.26% 78.10%±0.57% 81.34%±0.69%

ReNet Resnet12 68.27%±0.39% 85.58%±0.20% 89.07%±0.16%

FRN Conv4 65.34%±1.10% 80.82%±0.42% 84.69%±0.22%

Resnet12 64.19%±0.87% 81.89%±0.12% 84.99%±0.43%

Proposed Conv4 71.87%±0.64% 87.45%±0.31% 90.42%±0.28%

Resnet 75.37%±0.47% 89.97%±0.31% 92.09%±0.22%

The data are presented as mean ± standard deviation on the 5-way classification accuracy for the few-shot histological image dataset. 
MAML, model-agnostic meta-learning; FRN, feature map reconstruction network.
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histological imaging and compared our results with those of 
traditional few-shot methods such as MAML. Specifically, 
when using Conv4 as the backbone network, our method 
realized performance improvements of 19.53%, 28.32%, 
and 27.01% in the 1-shot, 5-shot, and 10-shot classification 
tasks, respectively. This significant enhancement in 
performance is attributed to our method’s effective capture 
and processing of fine-grained features.

For methods such as MAML, Reptile, and ProtoNet, 
which do not adequately consider the fine-grained 
features of histological images, the classification accuracy 
was generally poor. However,  the DeepEMD and 
FRN methods, which adopt an innovative strategy of 
reconstructing query images to obtain discriminative 
features, demonstrated a degree of improvement in the few-
shot classification tasks of histological images. Particularly 
noteworthy is the ReNet model, whose proposed dual-
relationship modules use attention mechanisms to 
effectively capture subtle regions in histological images, 
which led to an excellent performance in this task, especially 
in the 10-shot classification tasks, with accuracies reaching 
up to 89.07%.

Regarding feature extractors, as illustrated in Figure 5,  
most models exhibited performance improvements when 
switching from Conv4 to ResNet12. However, it is notable 
that only the ProtoNet model showed a decrease in 
performance when switching to ResNet12 as the feature 
extractor, suggesting potential limitations in its handling of 
high-dimensional features. This finding provides valuable 
insights for future research, highlighting the crucial 
importance of the choice and optimization of feature 
extractors in the design of few-shot learning methods.

We also evaluated the performance of ProtoNet, FRN, 
and our newly proposed method when using different 
feature extractors (specifically Conv4 and ResNet12) and 
varied numbers of training set categories. As illustrated 
in Figure 5, our experimental results indicate that only 
ProtoNet exhibited a gradually improving performance as 
the number of categories increased in the training set. In 
contrast, our method and FRN performed best in 5-way 
tasks and had a declining performance as the number of 
categories in the training set increased. This trend may 
stem from ProtoNet’s use of a global feature metric-
based approach, in which a greater amount of category 
information in each training round aids in prototype 
construction. On the other hand, the performance of the 
proposed method and FRN worsened with an increase 
number of training set categories, possibly due to 
overfitting. Notably, when the more complex ResNet12 
feature extractor was employed, the performance decline 
was relatively less pronounced, with slightly better 
performance compared to that achieved with the Conv4 
feature extractor. These results provide important insights 
into the problem of category induction in medical image 
processing and offer valuable guidance for model selection 
and training processes.

Ablation study

To further substantiate the efficacy and accuracy of our 
method and the design of its modules, we conducted 
ablation experiments on the few-shot histological image 
dataset using Conv4 and ResNet12 as feature extractors.

Initially, we assessed the effectiveness of the FEM and 

Table 4 Ablation study on the reconstruction designs of MRM 

Backbone Method 1-shot 5-shot 10-shot

Conv4 Baseline (ProtoNet) 55.68%±0.43% 76.66%±0.65% 80.20%±0.21%

Our (Q→S) 72.31%±0.35% 84.77%±0.51% 87.86%±0.53%

Our (S→Q) 63.76%±0.42% 82.98%±0.71% 86.59%±0.42%

Our (mutual) 71.87%±0.64% 87.45%±0.31% 90.42%±0.28%

ResNet12 Baseline (ProtoNet) 56.85%±0.68% 72.96%±0.73% 76.86%±0.89%

Our (Q→S) 75.72%±0.19% 86.12%±0.44% 89.21%±0.37%

Our (S→Q) 68.93%±0.39% 85.21%±0.45% 89.61%±0.39%

Our (mutual) 75.37%±0.47% 90.08%±0.31% 92.09%±0.22%

The data are presented as mean ± standard on five-way classification accuracy for the few-shot histological image dataset. MRM, mutual 
reconstruction module.
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mutual reconstruction module in medical image processing. 
We assessed their impact on the performance of our 
method by individually removing these two modules, 
effectively reducing them to equivalent baseline models (5).  
The results presented in Table 3 clearly show that each 
module positively influenced the performance relative to 
the baseline model. In the 5-shot experimental setting, 
the independent use of either the FEM or the mutual 
reconstruction module led to performance improvements 
of 3.48% and 6.13%, respectively, compared to the baseline 
model. This indicates that both modules provided benefit 
in learning the microfeatures and discriminative features of 
histological images. Notably, when both the FEM and the 
mutual reconstruction module were used simultaneously, 
our method’s performance further improved, with an 
enhancement of 10.79% in the 5-shot setting, indicating 
the value of their complementarity.

Furthermore, we investigated the effectiveness of mutual 
reconstruction. To evaluate this, we modified our method 

in two ways: (I) by removing the reconstruction of support 
samples from query samples in mutual reconstruction 
(setting λ  to 0 in Eq. [8]), denoted as “our (Q→S)”, and 
(II) by removing the reconstruction of query samples from 
support samples (setting λ  to 1 in Eq. [8]), denoted as 
“our (S→Q)”. As shown in Table 4, both unidirectional and 
bidirectional reconstruction methods significantly achieved 
a performance surpassing that of the baseline model, 
demonstrating the effectiveness of reconstruction.

However, outside the 1-shot tasks, we observed that both 
unidirectional reconstruction methods underperformed 
compared to the bidirectional reconstruction method. 
The reason our (Q→S) method performed better in the 
1-shot experiment is that each category only contained 
one sample, and hence there was no challenge of intraclass 
diversity. Therefore, addressing only the challenge posed 
by interclass similarity is most effective in this scenario. 
These results imply that the mutual reconstruction module 
not only addresses the challenge of interclass similarity in 

Figure 5 Effect of the feature extractor and the number of support ways in the training set. FRN, feature map reconstruction network. 
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few-shot classification tasks of histological images but also 
successfully overcomes the complexity of intraclass diversity. 
Thus, our design choice of employing a bidirectional 
reconstruction method is both rational and effective.

Discussion

Few-shot learning enables deep learning models to achieve 
good generalization performance and efficiency with 
limited data. Its mechanism allows models to effectively 
learn from a small number of samples, mimicking the 
process of natural human learning. Few-shot learning holds 
significant clinical relevance and is poised to become one of 
the key clinical applications in medical image analysis for 
several reasons. Firs, due to privacy concerns, the high costs 
associated with data collection, and the intricate process 
of expert annotation, medical datasets are often limited in 
scale. Few-shot learning enables models to achieve robust 
generalization with minimal labeled examples, even in 
scenarios with scarce data, facilitating the development 
of effective medical imaging solutions. Second, few-
shot learning alleviates the burden of manual annotation, 
requiring only a small number of labeled examples for 
each new task or medical condition. This functionality 
streamlines the annotation process and supports clinicians 
in completing time-consuming tasks. Additionally, few-shot 
learning demonstrates particular value in addressing rare 
medical conditions where traditional deep learning methods 
may struggle in conditions of sparse data. By leveraging 
knowledge from more common diseases, few-shot learning 
allows models to adapt to new instances with limited 
examples of both novel and rare cases. Moreover, the field 
of medicine constantly encounters new diseases, conditions, 
and imaging modalities. Few-shot learning enables medical 
imaging models to quickly adapt and learn from a few 
examples of these new tasks, facilitating their seamless 
integration into clinical practice. Despite the high clinical 
applicability of few-shot learning, it has not yet emerged as 
the optimal clinical solution, primarily due to constraints 
imposed by limited training data and specific challenges 
in medical image analysis. Further research is needed to 
overcome these challenges. To this end, we developed 
corresponding solutions to address the dual challenges of 
interclass similarity and intraclass diversity in few-shot 
classification tasks of histological images. More specifically, 
we adopted a bidirectional reconstruction strategy in the 
mutual reconstruction module.

The results of the ablation study indicate that both 

reconstruction tasks complemented each other. By 
reconstructing query features from support features, we 
could increase interclass variance, addressing the issue 
of inter-class similarity. In the ablation study, under the 
1-shot setting in which the impact of intraclass diversity 
was not considered, we found that when the reconstruction 
of support samples was removed from query samples, our 
(Q→S) method performed best. This further corroborates 
the notion that reconstructing query features from support 
features can increase interclass variance and address the 
issue of interclass similarity, a conclusion also supported 
by several other studies (14,35,37). Furthermore, we 
addressed the issue of high intraclass variance through the 
reconstruction of support samples from query samples. 
The results from the ablation study show that in the sole 
reconstruction of support samples from query samples, our 
(S→Q) provided significant improvement relative to the 
baseline model, especially when the number of samples per 
category increased, even surpassing our (Q→S) in the 10-
shot setting. This result further confirms that reconstructing 
support features from query features can reduce intraclass 
variance and address the issue of intra-class diversity. 
Although both unidirectional reconstruction methods, 
our (S→Q) and our (Q→S) significantly outperformed 
the baseline model and showed excellent performance in 
different experimental settings, almost all experimental 
results  indicate that bidirectional  reconstruction 
outperforms unidirectional reconstruction. Therefore, the 
combined strategy of bidirectional reconstruction and the 
reconstruction query features from support features, and 
vice versa, best fits future clinical application needs.

Considering the limitations of our study, we must 
explore methods that can enhance model performance, 
especially given the potential future increase in the variety 
of cancer categories in the source dataset. Moreover, further 
validation is needed to assess our model’s generalization 
and fitting capabilities across a broader range and different 
distribution conditions of data. The diversity and broader 
distribution of the source dataset data may significantly 
impact the results of our study, an issue we have not yet 
thoroughly examined.

In the comparison with other methods, our study not 
only revealed the potential of the mutual reconstruction 
network model to complete few-shot classification tasks 
of histological images but also provides new insights 
into managing fine-grained features in this context. We 
recognize the need for further research and exploration to 
fully realize the potential of this method, especially when 
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faced with more complex source datasets and a broader 
range of clinical application scenarios.

In future research, we plan to introduce more powerful 
feature extractors and to preprocess images to larger 
dimensions during training and testing to mitigate the risk 
of significant information loss and thus further enhance 
our model’s fitting capability. Figure 5 shows the impact 
of using different feature extractors and varying numbers 
of categories (way numbers) on model performance 
during training. The results indicate a gradual decline 
in performance with an increasing number of categories 
in the training set. However, the decline in performance 
was somewhat milder with the more complex ResNet12 
feature extractor than with the Conv4 feature extractor. We 
speculate that both feature extractors may have been subject 
to overfitting. In the future, with an increasing number of 
cancer categories in the source dataset and a broader data 
distribution, we plan to train our model using larger way 
numbers and more complex feature extractors (such as 
ResNet50 or Vision Transformer) to further enhance the 
performance of our proposed model. Additionally, we will 
continue to explore the potential applications of few-shot 
learning in the field of histological image processing. This 
series of explorations and improvements will help us better 
address complex medical image classification problems, 
providing more promising solutions for clinical practice.

Conclusions

To address the complex challenges of interclass similarity 
and intraclass diversity in few-shot classification tasks 
of histological images, we developed a novel mutual 
reconstruction network model. This model innovatively 
employs an FEM and a mutual reconstruction module for 
the bidirectional reconstruction of both support and query 
images. Rigorous ablation studies confirmed the synergistic 
effect of these modules. Our findings demonstrate that 
reconstructed query features using support features 
effectively increase inter-lass variance and that reconstructed 
support features using query features decrease intraclass 
variance. This dual reconstruction approach adeptly resolves 
the challenges of granularity encountered in histological 
image classification. When compared with existing few-
shot methods, our model achieved commendable results. 
In a 5-way 10-shot experimental setup, the model attained 
an impressive accuracy of 92.09%. This achievement 
represents a substantial contribution to the field of 

automated classification of histological images, particularly 
in clinical applications.
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