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Background: Most primary bone tumors are often found in the bone around the knee joint. However, 
the detection of primary bone tumors on radiographs can be challenging for the inexperienced or junior 
radiologist. This study aimed to develop a deep learning (DL) model for the detection of primary bone 
tumors around the knee joint on radiographs.
Methods: From four tertiary referral centers, we recruited 687 patients diagnosed with bone tumors 
(including osteosarcoma, chondrosarcoma, giant cell tumor of bone, bone cyst, enchondroma, fibrous 
dysplasia, etc.; 417 males, 270 females; mean age 22.8±13.2 years) by postoperative pathology or clinical 
imaging/follow-up, and 1,988 participants with normal bone radiographs (1,152 males, 836 females; 
mean age 27.9±12.2 years). The dataset was split into a training set for model development, an internal 
independent and an external test set for model validation. The trained model located bone tumor lesions and 
then detected tumor patients. Receiver operating characteristic curves and Cohen’s kappa coefficient were 
used for evaluating detection performance. We compared the model’s detection performance with that of 
two junior radiologists in the internal test set using permutation tests.
Results: The DL model correctly localized 94.5% and 92.9% bone tumors on radiographs in the internal 
and external test set, respectively. An accuracy of 0.964/0.920, and an area under the receiver operating 
characteristic curve (AUC) of 0.981/0.990 in DL detection of bone tumor patients were for the internal and 
external test set, respectively. Cohen’s kappa coefficient of the model in the internal test set was significantly 
higher than that of the two junior radiologists with 4 and 3 years of experience in musculoskeletal radiology 
(Model vs. Reader A, 0.927 vs. 0.777, P<0.001; Model vs. Reader B, 0.927 vs. 0.841, P=0.033). 
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Introduction

Bone tumors are a group of primary or secondary bone 
neoplastic lesions with various tumor types and biological 
behaviors (1). Primary bone tumors, such as osteosarcomas 
and giant cell tumors of bone, are common around the 
knee joint, including the distal femur, proximal tibia, 
and proximal fibula (2-4). Malignant bone tumors are 
relatively rare, comprising 0.2% of human cancers overall 
and 5–6% in 15- to 24-year-old (5,6). Digital radiography 
(DR) is recognized as a first-line imaging modality for 
the evaluation of bone lesions owing to its ability to 
evaluate the location, internal matrix, and borders of bone 
lesions, and that it has fast acquisition and is cost-efficient 
compared with computed tomography (CT) and magnetic 
resonance imaging (MRI) (7,8). However, plain radiography 
is a two-dimensional imaging modality, and radiographs 
have relatively low contrast resolution compared with CT 
images (9). Thirty to 50% of trabecular bones may have 
been destroyed before a lesion is visible to the naked eye on 
plain radiographs (10). Therefore, some bone lesions are 
occluded on radiographs and can be incorrectly diagnosed 
by visual observation in daily clinical practice (11). Many 
junior radiologists and general practitioners may not have 
developed sufficient training experience to identify and 
assess bone tumors on radiographs.

Artificial intelligence has been applied in analyzing 
radiographs for computer-aided diagnosis of bone tumors 
(11-21). A recent meta-analysis showed that clinicians’ 
sensitivity in diagnosing bone tumors increased with AI 
assistance, and in certain cases, the machines outperformed 
human experts (22). von Schacky et al. (17) developed a 
multitask deep learning (DL) model for the simultaneous 
detection, segmentation, and classification of primary bone 
tumors on radiographs that correctly detected 59.5% (66 of 
111) of bone tumors with an intersection over union (IoU) 
>0.5 or 82.0% (91 of 111) if the threshold was set to IoU >0. 
Li et al. (18) developed a YOLO model for detection and 

classification of bone lesions on radiographs in several bones 
that correctly placed 86.36% (114 of 132) and 85.27% (191 
of 224) of the bounding boxes in the internal and external 
validation sets (IoU >0.5). Breden et al. (20) used X-rays of 
176 pediatric patients with bone tumor in a single center to 
develop a DL model for detection of bone tumors around 
the knee, with an accuracy of 89.1% in the internal test 
groups. Hinterwimmer et al. (21) developed an algorithm to 
link undiagnosed patients to previous patient histories based 
on radiographs and simultaneous classification of multiple 
bone tumors, which achieved the highest mean accuracy, 
precision and recall (92.86%, 92.86% and 34.08%). These 
studies have demonstrated the potential role of DL in 
bone tumor detection. The most common location of 
primary bone tumors is around the knee joint (23). To the 
best of our knowledge, no multicenter study of DL for the 
detection of knee primary bone tumors on radiographs in 
large series has been reported.

The purpose of this study was to develop a DL model 
for the localization of primary bone tumors on knee 
radiographs and differentiating bone tumor patients and 
from non-tumor patients. Moreover, we aimed to compare 
its detection performance with that of junior radiologists. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-23-1743/rc).

Methods 

Dataset

This study was performed in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 
approved by Ethics Committee of the First Affiliated 
Hospital,  Sun Yat-sen University (No. [2022]541) 
with a waiver for written informed consent due to the 
retrospective nature of the study. All participating hospitals/
institutions were informed and agreed with the study. In 

Conclusions: The DL model achieved good performance in detecting primary bone tumors around the 
knee joint. This model had better performance than those of junior radiologists, indicating the potential for 
the detection of bone tumors on radiographs.
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this multicenter study from four centers between January 
2003 and June 2022, we included 776 patients with bone 
tumors who were diagnosed by radiography combined with 
CT or MRI/clinical follow-up or proven by histopathology 
according to the 5th World Health Organization 
classification of bone tumors (24). We also included 2,145 
normal participants who were enrolled jointly by two senior 
radiologists (Z.G. and D.W.) with more than 10 years of 
experience in reading musculoskeletal radiographs. These 
four centers in this study are tertiary referral centers in our 
country.

Inclusion and exclusion criteria are shown in Figure 1.  
Two radiologists (Lixian Chen and Bingkun Guo, with 
five years and three years of experience in reading 
musculoskeletal radiographs, respectively) reviewed 
all images. Images were excluded if both radiologists 
considered there to be the presence of low image contrast, 
position errors, motion artifacts, or overlapping of foreign 
bodies on lesions. The final dataset in these four centers 
consisted of 687 tumor patients (417 males, 270 females; 
mean age 22.8±13.2 years) and 1,988 normal participants 
(1,152 males, 836 females; mean age 27.9±12.2 years). Each 
patient or participant contained an anteroposterior view 
and a lateral view of radiographs. These anteroposterior 
and lateral knee radiographs obtained from the Picture 
Archiving and Communication System (PACS, Shanghai 

Atlas Tiger Medical Information Systems Co., Ltd., China; 
Guangzhou Lijin Digital Medical Systems Co., Ltd., China; 
Shenzhen Annet Information System Co., Ltd., China) in 
Digital Imaging and Communication in Medicine (DICOM) 
format were analyzed.

The characteristics of all subjects are shown in Table 1. In 
this study, the maximum longitudinal diameter of a lesion in 
an affected bone on a radiograph was used to represent the 
tumor size.

For model development and internal testing in centers 1, 
2, 3, the dataset was split into a training dataset (including 
504 tumor patients and 1,693 normal participants) and an 
internal independent test set (including 127 tumor patients 
and 150 normal participants). The 127 tumor patients in 
the internal independent test set were composed of 20% 
of tumor patients in centers 1, 2, and 3, respectively, i.e., 
109 patients from center 1, 13 patients from center 2, 5 
patients from center 3. The 150 non-tumor participants in 
the independent test set consisted of 50 normal participants 
per center randomly selected from centers 1, 2, and 3. 
The remaining data from centers 1, 2, and 3 was used 
as the training set for model development. The internal 
independent test set was used to evaluate and compare the 
performance of the junior radiologists and DL model. The 
external independent test set including 56 tumor patients 
and 145 normal participants from center 4 was used to 

Figure 1 Inclusion and exclusion criteria. DR, digital radiography. 

Exclusion
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evaluate the performance of the DL model. 

Data annotation for tumors on radiographs

All original digital radiographs were downloaded in 
DICOM format from the PACS. All identifiable personal 
and sensitive information of the subjects on the radiographs 
was sufficiently anonymized. DICOM images were 
converted to 8-bit gray Joint Photographic Experts Group 
(JPEG) format at their original resolution and window 
width/level using MicroDicom software (Version 3.8.1.422, 
MicroDicom Ltd., Bulgarian). No further adjustment 
of the image window length/width was made during the 
image format conversion. The pixel values of the two-
dimensional array in each DICOM file were normalized 
by scaling values into the range (0–255). Normalized two-
dimensional arrays were converted to 3-channel JPEG 

images by repeating the two-dimensional array three times. 
Then the JPEG images were loaded into LabelImg software 
(Version 1.8.1, an open-source image labelling program 
based on Python, https://github.com/heartexlabs/labelImg). 
A senior radiologist (Z.G., with 16 years of experience in 
reading musculoskeletal radiographs) annotated all bone 
tumor lesions with bounding boxes, which constituted the 
reference standard for automatic bone tumor detection. 
Examples of the reference standard for bone tumor 
detection are shown in Figure 2. The rectangular bounding 
box encompassed the entirety of each lesion with reference 
to the corresponding CT or MR images, including some 
adjacent soft tissue and normal bone.

Development of the DL model 

All images in JPEG format were padded with zeros and 

Table 1 Characteristics of the subjects

Characteristics Center 1 Center 2 Center 3 Center 4

Number of subjects 1,060 977 437 201

Age (years)

<18 495 (46.7) 156 (16.0) 163 (37.3) 35 (17.4)

≥18 565 (53.3) 821 (84.0) 274 (62.7) 166 (82.6)

Average age (mean ± SD) in yearsa 22.0±12.4 30.8±11.1 26.1±14.4 30.2±1.6

Sex (male/female)b 625 (59.0)/435 (41.0) 586 (60.0)/391 (40.0) 265 (60.6)/172 (39.4) 93 (46.3)/108 (53.7)

Number of tumor patientsc 544 61 26 56

Age (years)

<18 294 (54.0) 12 (19.7) 7 (26.9) 9 (16.1)

≥18 250 (46.0) 49 (80.3) 19 (73.1) 47 (83.9)

Tumor size (mm)

<80 230 (42.3) 57 (93.4) 24 (92.3) 46 (82.1)

≥80 314 (57.7) 4 (6.6) 2 (7.7) 10 (17.9)

Malignant (osteosarcoma, chondrosarcoma) 428 (78.7) 3 (4.9) 2 (7.7) 14 (25.0)

Intermediate (giant cell tumor of bone) 116 (21.3) 1 (1.6) 0 (0.0) 42 (75.0)

Benign (bone cyst, enchondroma, fibrous 
dysplasia, etc.)

0 (0.0) 57 (93.4) 24 (92.3) 0 (0.0)

Average tumor size (mean ± SD) in mmd 97.3±47.2 32.6±23.4 44.4±27.9 66.1±25.7

The number in parentheses represents the percentage of cases in a particular class. a, the age of the subjects in different centers were 
statistically significant (P<0.001) by using the Kruskal-Wallis test; b, there were significant differences in sex among subjects in different 
centers by using the Chi-squared test; P=0.003; c, the ratio among tumor types in different centers was statistically significant by using the 
Chi-squared test; P<0.001; d, the tumor size of the tumor patients in different centers were statistically significant (P<0.001) by using the 
Kruskal-Wallis test. SD, standard deviation; mm, millimeters. 

https://github.com/heartexlabs/labelImg
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resized to 3 by 1,280 pixels. Then, the pixel values were 
normalized by scaling the values into the range (0–1) for 
input into the DL model. The output of the DL model is 
the tumor location and the predicted score of the tumor 
(confidence score).

DL models based on the YOLOv5 convolutional neural 
network (CNN) architecture (25) were constructed for 
bone tumor detection. Model weights were initialized with 
those pretrained with data from the common objects in 
context (COCO) database (26). The detailed architecture 
of YOLOv5 used was provided in Appendix 1. The data 
augmentation methods used during the training process 
included mosaic, affine transformation (image scaling, 
translation and flipping), image enhancement (hue, 
saturation and value transformation). The detailed training 
parameters are provided in Appendix 1. The training set for 
model development was further divided into five disjoint 
partitions of patients, and fivefold cross-validation was used 
to analyze the model performance. 

Independent testing 
The internal independent test set (554 radiographs from 
277 subjects) and external independent test set (402 
radiographs from 201 subjects) were used to evaluate 
the performance of the proposed method. The test-time 

augmentation method (27) was used for inference in the 
test set (see Appendix 1) to increase sample diversity and 
improve model generalization during independent testing. 
The results of the test set were obtained by non-maximum 
suppression across all boxes predicted by the five models 
selected in cross-validation. 

DL model evaluation

In the tumor localization task, the IoU was used to assess 
the model’s performance. In this study, true-positive (TP) 
tumor localization required the IoU between the bounding 
box localized by the DL model and the reference bounding 
box to be greater than 0.2 (28). 

For the patient detection task, the receiver operating 
characteristic (ROC) analysis was used to evaluate the 
binary discriminatory capacity with different prediction 
scores, and accuracy, sensitivity, and specificity were also 
calculated. Each patient contained an anteroposterior view 
and a lateral view of radiographs. If the model outputs at 
least one positive diagnostic result on both anteroposterior 
and lateral radiographs, the patient was considered to have 
tumor. The standard setting for determining the model 
diagnostic results was that tumoral bone radiograph was 
positive and normal bone radiograph was negative. The 

Figure 2 Examples of the diagnostic reference standard for automatic bone tumor detection. (A,B) Anteroposterior (A) and lateral (B) 
radiographs of the knee of a patient with a giant cell tumor of bone. (C,D) Anteroposterior (C) and lateral (D) radiographs of the knee of a 
patient with osteosarcoma. Note that the reference standard was placed to fit the margin of the tumor. L, left; R, right.

A B C D

https://cdn.amegroups.cn/static/public/QIMS-23-1743-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1743-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1743-Supplementary.pdf
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patient was considered a normal participant only when the 
model outputs were negative diagnostic results on both the 
anteroposterior and lateral radiographs.

Observer evaluation

Two junior radiologists (Readers A and B, with four years 
and three years of experience, respectively, in reading 
musculoskeletal radiographs) evaluated the radiographs 
of bone lesions in DICOM format and were blinded to 
the histopathologic and clinical data. The radiologists 
used DICOM Viewer 2.2.9 software (Medixant Company, 
Poland) to read the radiographs. Then, for each bone 
radiography, they used LabelImg software (Version 1.8.1) 
to place a bounding box in the area they considered as a 
bone tumor. No box was provided for a normal radiograph. 
At the same time, a stopwatch was used to record the time 
taken by each radiologist to evaluate all radiographs in the 
internal test set. They just have been timed for making the 
diagnosis when reading radiographs, not recording the time 
taken by radiologists to place a bounding box around the 
region of the tumor. Note that these two radiologists were 
unaware of this study.

The bone lesions were considered correctly localized 
(TP lesion) when the IoU between the bounding box 
localized by the radiologist and the reference bounding 
box was greater than or equal to 0.2. If at least one TP 
lesion was found on a patient’s anteroposterior or/and 
lateral radiographs, the patient was classified as a tumor 
patient (29). If no bounding boxes are found on a patient’s 
anteroposterior and lateral radiographs, the patient was 
classified as a normal participant.

Statistical analysis

The Kruskal-Wallis test was used to compare the age 
and tumor size of patients in different centers. The Chi-
squared test was used to compare the ratios of tumor 
types and sex among different centers and the accuracy 
of different subgroups. Cohen’s kappa coefficient was 
used to compare the detection performance of the DL 
model and two radiologists in the internal independent 
test set. Permutation tests were used to calculate P values. 
Among centers 1–3, subgroup analyses based on center, 
age (<18 and ≥18 years old), tumor size (less than median 
tumor size and greater than or equal to median tumor 
size), and imaging device were performed in the internal 

independent test set. All analyses were conducted using 
MedCalc statistical software (Version 20.0.9.0, MedCalc 
Software Ltd., Belgium) and Python 3.8.5. All tests 
were two-sided, and P<0.05 was considered statistically 
significant. 

Results

Subject characteristics

Table 1 summarizes the characteristics of the dataset used 
in this study. The study cohort consisted of 2,675 subjects. 
The age range of patients was 3–70 years. A total of 25.7% 
of the cohort were bone tumor patients (447 malignant, 
159 intermediate, and 81 benign tumors), while 74.3% 
were normal participants. There was only one tumor lesion 
in 681 patients and two tumor lesions in 6 patients. The 
median size of the bone tumors was 80 mm in centers 1, 2 
and 3.

DL model performance

For the tumor localization, the DL model correctly placed 
94.5% (242 of 256 tumor lesions) of the bounding boxes in 
the internal test set and 92.9% (104 of 112 tumor lesions) 
of the bounding boxes in the external test set (IoU >0.2). 
Only 3.5% (9 of 256) bone tumor lesions in the internal 
validation set and 5.4% (6 of 112) bone tumor lesions in 
the external validation set were not detected (IoU =0). Fifty 
and thirty-two false-positive lesions were detected in the 
internal and external test set, respectively. 

The detection performance of the DL model is shown in 
Table 2 and Figure 3. The area under the receiver operating 
characteristic curve (AUC), accuracy, sensitivity, and 
specificity of the DL model in the internal test set were 
0.981 [95% confidence interval (CI): 0.957–0.993], 0.964, 
0.976, and 0.953, respectively. The stratification analysis 
for different centers, age groups, and tumor sizes showed 
very close performance among subgroups with different 
centers, ages or tumor sizes. The AUC, accuracy, sensitivity, 
and specificity of the DL model in the external test set 
were 0.990 (95% CI: 0.964–0.999), 0.920, 0.982 and 0.897, 
respectively. Figure 3 depicts the ROC curves for classifying 
subjects into normal participants or tumor patients. No 
significant differences in the accuracy of the DL model 
for detecting bone tumors in the internal independent test 
set were shown among different X-ray imaging devices 
(P=0.183) in Table 3.
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Performance comparison between the DL model and 
observer assessments

Cohen’s kappa coefficient between the two radiologists’ 
scores was 0.748 (95% CI: 0.670–0.826), indicating 
substantial agreement between the two radiologists. The 
results for the DL model and two radiologists in the 
independent test set are shown in Table 4. The accuracies of 

Reader A, Reader B, and the DL model were 0.888, 0.921, 
and 0.964, respectively. The accuracy of the DL model 
was higher than that of junior radiologists. Cohen’s kappa 
coefficients between the DL model and the diagnostic 
reference standard in classifying a subject as a normal 
participant or a tumor patient was significantly higher than 
those of radiologists (DL model vs. Reader A: 0.927 vs. 
0.777, P<0.001; DL model vs. Reader B: 0.927 vs. 0.841, 
P=0.033). There were no significant differences in the 
accuracy of the DL model and two radiologists for detecting 
bone tumors between different subgroups based on age 
and tumor size (all P>0.100). The time taken by the two 
radiologists and the DL model to evaluate 554 radiographs 
from 277 subjects was 192, 204, and 2.7 min, respectively. 

The confusion matrices for the DL model and two junior 
radiologists are shown in Figure 4. Incorrect diagnoses 
include missed diagnoses and misinterpreted diagnoses. 
Of the 277 subjects in the test set, 31 and 22 subjects 
were diagnosed incorrectly by the two junior radiologists 
compared to 10 subjects diagnosed incorrectly by our 
DL model. Furthermore, 11 of 12 subjects with a missed 
diagnosis of bone tumor by both junior radiologists were 
found by the DL model (Figure 5). On the other hand, 34 of 
35 subjects with a misinterpreted diagnosis of bone tumor 
by both junior radiologists were interpreted correctly by 
the DL model (Figure 6). Examples with missed diagnosis 

Table 2 The detection performance of the DL model in the independent internal and external test set

Characteristics AUC (95% CI) Accuracy Sensitivity Specificity

Internal test set 0.981 (0.957–0.993) 0.964 (267/277) 0.976 (124/127) 0.953 (143/150)

Centersa

Center 1 1.000 (0.977–1.000) 0.981 (156/159) 1.000 (109/109) 0.940 (47/50)

Center 2 0.865 (0.755–0.938) 0.952 (60/63) 0.846 (11/13) 0.980 (49/50)

Center 3 0.884 (0.769–0.955) 0.927 (51/55) 0.800 (4/5) 0.940 (47/50)

Age (years)

<18 1.000 (0.955–1.000) 0.988 (79/80) 1.000 (63/63) 0.941 (16/17)

≥18 0.961 (0.924–0.984) 0.954 (188/197) 0.953 (61/64) 0.955 (127/133)

Tumor size (mm)

<80 – 0.967 (58/60) 0.967 (58/60) –

≥80 – 0.985 (66/67) 0.985 (66/67) –

External test set 0.990 (0.964–0.999) 0.920 (185/201) 0.982 (55/56) 0.897 (130/145)
a, there were no significant differences in the accuracy of the DL model (P=0.156) in different centers by using the Chi-squared test. AUC, 
area under the receiver operating characteristic curve; CI, confidence interval; mm, millimeters; DL, deep learning.

Figure 3 ROC curve of the DL model for detecting bone tumors. 
ROC, receiver operating characteristic; AUC, area under the 
receiver operating characteristic curve; DL, deep learning.
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Table 3 The classification performance of the DL model in the internal independent test set with different digital X-ray imaging devices

Type of equipment Accuracy Sensitivity Specificity

Overall 0.964 (267/277) 0.976 (124/127) 0.953 (143/150)

Devicesa (manufacturer information)

Digital Diagnost, Philips Medical Systems 0.963 (156/162) 0.971 (66/68) 0.957 (90/94)

YSIO, Siemens Healthineers 1.000 (40/40) 1.000 (36/36) 1.000 (4/4)

Definium 6000, GE Healthcare 0.867 (26/30) 0.667 (2/3) 0.889 (24/27)

AeroDR C50, Konica Minolta Holdings Inc. 1.000 (21/21) 1.000 (1/1) 1.000 (20/20)

DX-D600, AFGA Medical Systems 1.000 (11/11) 1.000 (11/11) –

Rad Speed Plus, Shimadzu Medical Systems 1.000 (7/7) 1.000 (7/7) –

ESSENTA DR Compact, Philips Medical Systems 1.000 (3/3) – 1.000 (3/3)

XGEO GC80, Samsung Electronics 1.000 (2/2) – 1.000 (2/2)

Rad Speed M,Shimadzu Medical Systems 1.000 (1/1) 1.000 (1/1) –
a, there was no significant difference in the accuracy of the DL model in different digital X-ray imaging devices by using the Chi-squared 
test (P=0.183). DL, deep learning.

Table 4 Detection performance comparison of the DL model with the two junior radiologists in the internal independent test set

Characteristics Readers Accuracy Sensitivity Specificity Kappa coefficient Pa

Overall Model 0.964 (267/277) 0.976 (124/127) 0.953 (143/150) 0.927 (0.883–0.972)

Reader A 0.888 (246/277) 0.961 (122/127) 0.827 (124/150) 0.777 (0.704–0.850) <0.001

Reader B 0.921 (255/277) 0.945 (120/127) 0.900 (135/150) 0.841 (0.777–0.901) 0.033

Ageb (years)

<18 Model 0.988 (79/80) 1.000 (63/63) 0.941 (16/17) 0.962 (0.888–1.000)

Reader A 0.900 (72/80) 0.968 (61/63) 0.647 (11/17) 0.673 (0.465–0.881) 0.008

Reader B 0.938 (75/80) 0.984 (62/63) 0.765 (13/17) 0.800 (0.633–0.968) 0.077

≥18 Model 0.954 (188/197) 0.953 (61/64) 0.955 (127/133) 0.897 (0.832–0.963)

Reader A 0.883 (174/197) 0.953 (61/64) 0.850 (113/133) 0.751 (0.657–0.845) 0.015

Reader B 0.914 (180/197) 0.906 (58/64) 0.917 (122/133) 0.807 (0.720–0.894) 0.110

Tumor sizec (mm)

<80 Model 0.967 (58/60) 0.967 (58/60) – – –

Reader A 0.933 (56/60) 0.933 (56/60) – – –

Reader B 0.917 (55/60) 0.700 (7/10) – – –

≥80 Model 0.985 (66/67) 0.985 (66/67) – – –

Reader A 0.983 (66/67) 0.983 (115/117) – – –

Reader B 0.966 (65/67) 0.966 (113/117) – – –

The linearly weighted Cohen’s kappa coefficient (K) measures the agreement between the DL model/readers and the reference standard 
in detecting a subject as a tumor patient or a normal participant. a, the difference in Cohen’s kappa coefficients between the DL model 
and the junior radiologists with 3–4 years of experience was statistically significant when P<0.05 by using permutation tests with 10,000 
iterations; b, there were no significant differences in the accuracy of the DL model (P=0.180), Reader A (P=0.550), and B (P=0.508) in 
different age groups based on 10 years old by using the Chi-squared test. There were no significant differences in the accuracy of the 
DL model (P=0.345), Reader A (P=0.705), and B (P=0.836) in different age groups based on 18 years old by using the Chi-squared test; 
c, there were no significant differences in the accuracy of the DL model (P=0.497), Reader A (P=0.136), and B (P=0.189) in different tumor 
size groups by using the Chi-squared test. DL, deep learning; mm, millimeters.
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and misinterpreted diagnosis by the DL model are shown in 
Figures 7,8. However, a misinterpreted diagnosis of patient 
by both the radiologist and the DL model was not seen in 
the independent test set.

Discussion

The detection of bone lesions from radiograph is a crucial 
initial stage before the classification of bone lesions 

Figure 4 Confusion matrices for the DL model and observer 
performance assessments in the internal independent test set. DL, 
deep learning.

Figure 5 Examples of anteroposterior and lateral radiographs of 
tibial osteosarcoma. (A) A bone tumor in the diagnostic reference 
standard box on the radiographs. (B) A tumor detected in the 
predicted box by the DL model. The values printed on top of the 
predicted boxes are the confidence scores for each predicted box. 
This bone tumor was not found with the naked eye by the two 
junior radiologists. L, left; R, right; DL, deep learning.
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(18,30). Doi et al. (31) once built a DL-based NLP model 
for metastasis detection, but their research was based 
on radiology reports, not radiographs. In our study, we 
developed a DL model that located and detected bone 
tumor lesions on radiographs of pediatric and adult 
patients from four different centers across the country. 

The detection performance of the DL model (accuracies of 
0.964 and 0.920 in the internal and external independent 
test set, respectively) was better than that of two junior 
radiologists (accuracies of 0.888 and 0.921 for Reader A 
and B, respectively) who had four years and three years 
of experience, respectively, in reading musculoskeletal 

Figure 6 Anteroposterior (A) and lateral (B) radiographs of the right knee of a young normal participant. The area chosen with the 
bounding box on the lateral radiograph was misinterpreted as a tumor region by the junior radiologists and normal on the anteroposterior 
radiograph. Both the anteroposterior and lateral radiographs were diagnosed correctly by the DL model. R, right; DL, deep learning.

Figure 7 Benign tumors in the left tibia on radiographs were found by one of the two junior radiologists but missed by the other junior 
radiologist and were not detected by the DL model. (A) A bone tumor in the diagnostic reference standard box on the radiographs. (B) The 
tumor evaluated in the predicted box by an observer. L, left; DL, deep learning.

A B

A BReference standard Observer evaluation
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radiographs) in the internal test set. We compared the time 
taken by the DL model and radiologists to evaluate 554 
radiographs from 277 subjects. Remarkably, our DL model 
took less time (2.7 min) than that of the junior radiologists 
(approximately 3 h), indicating that the DL model may help 
reduce the workload of radiologists in clinical practice. The 
DL model may help the lesser experienced radiologists and 
general practitioners in screening potential bone tumors on 
radiographs, who should be timely transferred for further 
classification diagnosis.

It is a challenge for junior radiologists to identify small or 
unobvious bone tumors from normal bones on radiographs 
due to the limited detection capacity of plain radiography 
(overlapping projection of bone and surrounding soft tissue 
structures and relatively low image contrast resolution 
compared to that of CT images) (9,10) and less clinical 
experience (tumoral bone density slightly higher or lower 
than that of the surrounding normal bone or unfamiliarity 
with density changes of the epiphyseal-metaphyseal 
junction during the development of long bone) in reading 
musculoskeletal radiographs. Our results indicated that the 
DL model might help radiologists reduce missed diagnoses 
(Figure 5) and misinterpreted diagnoses of primary bone 
tumors around the knee joint on radiographs (Figure 6). 

Our model from the multicenter study demonstrated 
good bone tumor detection capacity in different subgroup 
analysis based on center, age (<18 and ≥18 years old) and 
tumor size (Table 2). A similar study by Breden et al. (20) 

used X-rays of 176 patients with bone tumor in a single 
center to develop a DL model for detection of bone tumors 
around the knee, achieving an accuracy of 89.1% in the 
internal test groups using classification algorithm, without 
an external testing or comparison of detection performance 
between the DL model and radiologist evaluation. Their 
study only focused on pediatric patients (≤18 years old), 
and identified suspicious X-ray images as a whole but not 
clearly detect where the tumor was. In contrast to the study 
by Breden et al., our study covered a wide range of age 
stages and applied to a broad population (patients ranged in 
age from 3 to 70 years). On the other hand, our model has 
been externally validated with higher efficacy of detecting 
bone tumors. Li et al. (18) developed a YOLO model for 
detection of bone lesions on radiographs in several bones, 
achieving accuracies of 86.36% and 85.27% in the internal 
and external validation sets using IoU >0.5, respectively. 
In their study, the YOLO model detection capacity for 
bone tumor in different subgroup analysis based on age 
and tumor size has not been discussed. Our DL model 
correctly localized 94.5% and 92.9% bone tumors on 
radiographs in the internal and external test set using IoU 
>0.2, respectively. Most outpatients come to the hospital 
because of site-specific discomfort, and therefore imaging 
examination is usually limited to a specific site. Primary 
bone tumors of the extremities are commonly found in the 
bones around the knee joint. Our model for detecting bone 
tumors focuses on the knee region, which fits the clinical 

Figure 8 Two radiographs of normal knees diagnosed correctly by the two radiologists but misinterpreted as tumors by the DL model. The 
values on top of the predicted boxes are the confidence scores for the predicted box. R, right; DL, deep learning.
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scenario.
For the centers 2 and 3, the model’s performance was 

lower than that of the center 1. The probable reasons 
may be as follows: in these two centers we collected much 
fewer tumor patients compared with those from center 
1; and there was a large difference in the ratio of benign, 
intermediate and malignant bone tumors in these four 
centers (Table 1). The good model performance in external 
testing groups supports generalizability of our algorithm. 

The DL model made some misdiagnoses on metaphysis 
epiphysis (Figure 8) probably because of the density change 
of the epiphyseal-metaphyseal junction during epiphyseal 
closure in the development of long bone. If the training 
dataset does not include density changes in the whole 
process of epiphyseal closure, it may be misinterpreted as 
a localized lesion. On the other hand, several relatively 
small or inconspicuous bone changes in bone tumors were 
not detected by the DL model despite the overall high 
sensitivity of the DL model (Figure 7). These false-negative 
detections were probably because of the limited sample 
size of such tumors. This illustrated a pitfall of existing 
DL methods; namely, relatively small or inconspicuous 
abnormalities may be missed because of insufficient data on 
such abnormalities in the training set used for developing 
the model (32).

Next, we analyzed several limitations of this study, some 
of which can be further investigated in future work. First, 
primary bone tumors of the knee were analyzed without 
considering other bone tumors elsewhere. Although all 
malignant bone tumors and most benign bone tumors were 
postoperatively proven by histopathologic findings, some 
benign bone tumors, such as enchondroma and fibrous 
dysplasia, were diagnosed by using imaging examination 
and clinical follow-up. All patients with malignant bone 
tumors were examined by radiography and MRI in the 
study. Second, we mainly collected some common types 
of primary bone tumors around the knee joint, such as 
osteosarcoma and giant cell tumors of bone. This was 
because these bone tumors are much more prevalent (1). 
Osteochondroma, which represented a larger proportion 
of bone tumors in previous studies, was not included in 
the current study (11,18,20) because it can be easily found 
on radiographs with the naked eye due to its characteristic 
extraosseous growth shape. Third, considering the fact that 
there are more trauma patients without fractures across 
the country, normal bone radiographs as a normal control 
group in this study were chosen from some patients who 
presented with trauma. Fourth, in this study, we aimed to 

develop a DL model for the detection of primary bone 
tumors on knee radiographs and compared its performance 
with that of junior radiologists. We only targeted detecting 
bone tumor from normal bone on radiographs, without 
involving benign and malignant classification of bone 
tumors or differentiation of other bone diseases. Raman 
spectroscopy provides spectra which are great indicators for 
the analysis and monitoring of several diseases including 
bone tumors (33,34). The next study on the classification of 
benign and malignant bone tumors, prognosis, etc. can be 
based on some new techniques such as Raman spectroscopy. 
Finally, our study only focused on bone tumors occurring in 
the knee region. Thus, our DL model may have a relatively 
narrow application in a real-world scenario. To better 
extend the application of the DL model, we will continue to 
optimize the model in future studies by collecting data from 
patients with other bone diseases and other sites.

Conclusions

In conclusion, we developed a DL model for the accurate 
detection of bone tumors on knee radiographs and our 
model showed better performance than that of junior 
radiologists. Our DL model may help the lesser experienced 
radiologists or general practitioners in detecting potential 
bone tumors on radiographs and has the potential to reduce 
missed diagnoses and misinterpreted diagnoses with less 
time taken. In future research, we will select other state-
of-the-art versions (e.g., YOLOv7 or v8) and some new 
techniques such as Raman spectroscopy to develop model 
on the classification of benign and malignant bone tumors, 
prognosis, etc.
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