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Abstract

The difference method is used in mediation analysis to quantify the extent to which a mediator 

explains the mechanisms underlying the pathway between an exposure and an outcome. In 

many health science studies, the exposures are almost never measured without error, which can 

result in biased effect estimates. This article investigates methods for mediation analysis when 

a continuous exposure is mismeasured. Under a linear exposure measurement error model, we 

prove that the bias of indirect effect and mediation proportion can go in either direction but the 

mediation proportion is usually be less biased when the associations between the exposure and 

its error-prone counterpart are similar with and without adjustment for the mediator. We further 

propose methods to adjust for exposure measurement error with continuous and binary outcomes. 

The proposed approaches require a main study/validation study design where in the validation 

study, data are available for characterizing the relationship between the true exposure and its 

error-prone counterpart. The proposed approaches are then applied to the Health Professional 

Follow-up Study, 1986–2016, to investigate the impact of body mass index (BMI) as a mediator 

for mediating the effect of physical activity on the risk of cardiovascular diseases. Our results 

reveal that physical activity is significantly associated with a lower risk of cardiovascular disease 

incidence, and approximately half of the total effect of physical activity is mediated by BMI 

after accounting for exposure measurement error. Extensive simulation studies are conducted to 

demonstrate the validity and efficiency of the proposed approaches in finite samples.
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1 | INTRODUCTION

Mediation analysis1–3 is widely-used in public health research. In mediation analysis, the 

primary focus lies in the decomposition of the total effect (TE) of the exposure on the 
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outcome into the natural indirect effect (NIE) through the mediator and the natural direct 

effect (NDE) whose impact is due solely to the exposure and possibly other mediators. 

In addition, the mediation proportion (MP; sometimes also referred as the proportion 

mediated or attributable risk percent) has been defined as the ratio of the NIE and the 

TE to quantify the relative importance of the mediator in explaining the exposure-outcome 

mechanism. Throughout, we shall refer to NIE, NDE, and MP as mediation measures of 

potential interest. The product method and difference method are two regression-based 

approaches to estimate the mediation measures, which were first developed outside of the 

counterfactual outcome framework commonly used for causal inference;1 under certain 

assumptions, regression-based mediation analyses have since been shown to have causal 

interpretations under the counterfactual outcome framework.3–5 The product method fits one 

regression for the outcome and another regression for the mediator, whereas the difference 

method evaluates two regression models for the outcome, one with and the other without 

adjusting for the mediator. A detailed comparison of both methods and their pros and cons 

are provided in Cheng et al.6

Measurement error is a common problem in mediation analysis from observational 

studies, and standard mediation estimators can be biased if the measurement error is 

not appropriately addressed. Table 1 provides a full summary of the existing literature 

addressing measurement error/misclassification issues in mediation analysis (typically 

measurement error refers to an error-prone continuous variable, whereas misclassification 

refers to an error-prone binary or categorical variable, and we follow that tradition here). 

There have been a few previous efforts to investigate the estimation bias in NIE and 

NDE due to an error-prone binary or continuous mediator and to develop bias correction 

approaches for mediation analysis. Others have studied the impact of misclassification of a 

binary exposure or a binary outcome on estimation of the NIE and NDE. However, there are 

no methods currently available to address measurement error with a continuous exposure, 

although exposure measurement error in continuous variables is a major source of bias in 

epidemiologic studies.7

The objective of this article is to develop statistical approaches for valid estimation and 

inference of mediation measures in the presence of an error-prone continuous exposure. 

Specifically, we develop strategies to correct for the bias in estimation and inference 

when using the difference method. In contrast to most of the existing literature on 

measurement error and misclassification in mediation analysis which consider the product 

method (Table 1), we focus on the difference method as it is the method of choice in 

most epidemiologic studies, simple to implement, and robust to misspecification of the 

exposure-mediator relationship.6 Moreover, almost all prior work in Table 1 (except for 

Ssenkusu12) considered mediation analysis with a known measurement error process or 

conducted sensitivity analysis over a range of assumed parameter values that characterize the 

degree of measurement error. In this article, instead of assuming known measurement error 

model parameters, as is often done in sensitivity analysis, we work under the main study/

validation study design,19 where a gold standard measurement of the exposure is obtained in 

a validation study that allows us to estimate the parameters of interest in the measurement 

error model. The main study/validation study design is commonly used in epidemiology. 

For instance, our motivating example investigates the effect of physical activity on the 
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risk of cardiovascular diseases among participants in the Health Professionals Follow-up 

Study (HPFS)20 The exposure, physical activity, was assessed through questionnaires on 

frequency of common types of leisure-time physical activities during the previous year. The 

accuracy of the questionnaire responses were then validated with physical activity diaries 

in a validation study involving 238 participants.21 In the validation study, the correlation 

between the questionnaire-based and diary-based physical activity scores was estimated to 

be 0.28, indicating the questionnaire-based activity data in the main study were subject to 

measurement error.

To reliably assess mediation with an error-prone continuous exposure in a main study/

validation study design, we develop two bias correction approaches, one based on the 

regression calibration22 and the other based on the expected estimating equations.23 We first 

explicitly derive a new set of bias formulas for estimating NIE and MP due to exposure 

measurement error, based on which a computationally convenient regression calibration 

approach is motivated. In addition, we also generalize the formulation of the expected 

estimation equation approach to potentially make more efficient use of the available 

main and validation study data. For both approaches, we also derive consistent sandwich 

variance estimators to quantify the uncertainty in the estimators and compare their operating 

characteristics through extensive simulations.

The remainder of this article is organized as follows. In Section 2, we review the difference 

method for mediation analysis without exposure measurement error. Section 3 introduces 

the measurement error model. Next, the proposed correction approaches are developed 

in Sections 4 and 5, where a brief discussion for the connections between the proposed 

approached are provided in Section 6. In Section 7, we provide extensive simulations to 

evaluate the empirical performance of the proposed approaches. In Section 8, we apply the 

proposed approaches to evaluate the extent to which the effect of vigorous physical activity 

on the risk of cardiovascular diseases is mediated by body mass index in the HPFS, followed 

by a brief discussion in Section 9.

2 | MEDIATION ANALYSIS WITHOUT EXPOSURE MEASUREMENT ERROR: 

A RECAP

2.1 | Mediation measures and assumptions

Let A be an exposure, M be a mediator, Y  be an outcome, and C be a vector of covariates. 

A directed acyclic graph describing the causal relationship between those variables is 

shown in Figure 1, where the exposure exerts an effect on the outcome either through 

its impact on the mediator or by affecting the outcome directly. The mediation measures 

have been previously defined under the counterfactual framework.24,25 Specifically, let 

M a  be the potential values of the mediator when setting the exposure, possibly contrary 

to fact, to the value a. We let Y a, m  be the potential value of the outcome when 

the exposure and mediator are set to a and m, respectively. Following Nevo et al,5 

the NIE can be defined as: NIE = g E Y a, M a ∣ C = c − g E Y a, M a ∣ C = c , where 

g .  is the link function given by the outcome regression model. Common choices of 

g .  include the identity and log functions when the outcome is continuous and binary, 
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leading to the NIE defined on an identity scale and log risk ratio scale, respectively. 

The NIE measures the extent to which the conditional mean of the outcome on the 

scale of the g-function would change if the mediator were changed from the level that 

would be observed under a vs a but exposure is fixed at level a. The NDE, defined 

as g E Y a, M a ∣ C = c − g E Y a, M a ∣ C = c , measures how much the mean of the 

outcome on the scale of the g-function would change if the exposure is set at level a vs a but 

the mediator remaining fixed at the value it would have if the exposure was set to a. The TE, 

defined by g E Y a, M a ∣ C = c − g E Y a, M a ∣ C = c , is the total of NIE and NDE. 

Finally, the MP is given by the ratio of NIE and TE, and measure the relative importance 

of the mediator in explaining the observed exposure-outcome relationship. Throughout, 

we requires several standard assumptions applied to mediation analysis, including the 

consistency assumption, the composition assumption, and the following four no unmeasured 

confounding assumptions: i Y a, m ⊥ A ∣ C, ii Y a, m ⊥ M ∣ A, C, iii M a ⊥ A ∣ C, and 

iv Y a, m ⊥ M a ∣ C. Detail explanations of these assumptions are shown in VanderWeele 

and Vansteelandt.26

2.2 | The difference method

The difference method1,5 is a commonly used approach to evaluate mediation, which 

considers the following two generalized linear models for the conditional mean of outcome, 

both without and with inclusion of the mediator in the model:

g E Y A, C = α0 + α1A + α3
TC,

(1)

g E Y A, M, C = β0 + β1A + β2M + β3
TC,

(2)

where g .  is the link function. These two models may be technically incompatible as they 

target a same response variable, Y . Jiang and VanderWeele27 and Nevo et al5 show that 

(1) is compatible with (2) under the following scenarios: (A) Scenario I: Y  is continuous 

and is linear on the identity link scale (ie, g x = x); (B) Scenario II: Y  is binary and its 

conditional mean is linear on the log scale (ie, g x = log x ), and (1) is a good approximation 

of the marginal mean induced from (2) under the following scenario, (C) Scenario III: 

Y  is a rare binary outcome and its conditional mean is linear on the logistic link scale 

(ie, g x = log x/ 1 − x ). The mediation measures, including NIE (originally called the 

indirect effect), NDE (originally called the direct effect), TE, and MP, were originally 

defined outside of the counterfactual framework given in Section 2.1. Specifically, the NIE 

and NDE defined for A in changing from a to a can be represented as functions of the 

regression parameters α1 and β1 in (1) and (2): NIE = α1 − β1 a − a  and NDE = β1 a − a , as 

shown in Baron and Kenny.1 It follows that TE = α1 a − a  and MP = 1 − β1/α1. In this article, 

and without loss of generality and unless otherwise specified, we set a − a = 1 such that 

the mediation measures are defined for one unit increase of A. More recently, Jiang and 
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VanderWeele27 and Nevo et al5 prove that, for either Scenario I, II, or III, the expressions 

of mediation measures shown above coincide with the mediation measures defined under 

the counterfactual framework described in Section 2.1, if the consistency, composition, 

and no unmeasured confounding assumptions hold. In other words, the results given by 

the difference method have a well-defined causal interpretation under these structural 

assumptions. Here and throughout, we shall focus on Scenarios I and II, where Scenario 

III can be seen as a special case of Scenario II by noticing that the logistic link function is a 

good approximation to the log link function when the outcome is rare.

In a study where the exposure, A, is perfectly measured, the observed data consists of 

n1 independent observations Y i, Ai, Mi, Ci , i = 1, …, n1. Henceforth, we shall refer to this 

study as the main study (MS), in contrast to the validation study introduced below. 

As shown in Nevo et al,5 the regression coefficients α = α0, α1, α3
T T  in model (1) and 

β = β0, β1, β2, β3
T T  in model (2) can be estimated by separately solving the estimating 

equations ∑i = 1
n1 Uα Y i, Ai, Ci = 0 and ∑i = 1

n1 Uβ Y i, Ai, Mi, Ci = 0, where

Uα Y i, Ai, Ci = Ui1V i1
−1 Y i − g−1 1, Ai, Ci

T α ,

(3)

Uβ Y i, Ai, Mi, Ci = Ui2V i2
−1 Y i − g−1 1, Ai, Mi, Ci

T β ,

(4)

Ui1 = ∂g−1 1, Ai, Ci
T α / ∂α, Ui2 = ∂g−1 1, Ai, Mi, Ci

T β / ∂β, V i1 and V i2 are working variances 

for the error terms, ϵ1i = Y i − g−1 1, Ai, Ci
T α , and ϵ2i = Y i − g−1 1, Ai, Mi, Ci

T β , respectively. 

In Scenario I, we set V i1 = V i2 = 1 such that (3) and (4) provide the ordinary least 

squares estimators. In Scenario II, we set V i1 = e 1, Ai, Ci
T α × 1 − e 1, Ai, MiCi

T β  and 

V i2 = e 1, Ai, Ci
T α × 1 − e 1, Ai, MiCi

T β  such that (3) and (4) will be the likelihood scores for 

α and β. Once α̂ and β are obtained, one can substitute α1 and β1 into the expressions for the 

mediation measures to obtain their corresponding estimators, that is, NIE = α1 − β1 a − a , 

NDE = β1 a − a , TE = α1 a − a , and MP = 1 − β1/α1. The variance-covariance matrix of 

ϕ̂ = α1, β1
T  can be estimated by the sandwich variance approach, denoted by Σϕ. Then, 

the estimated asymptotic variance of the mediation measure estimators can be obtained 

by the multivariate delta method: Var NIE = θ1Σϕθ1
T, Var NDE = θ2Σϕθ2

T, Var TE = θ3Σϕθ3
T, 

and Var MP = θ4Σϕθ4
T, where θ1 = a − a, a − a T , θ2 = 0, a − a T , θ3 = a − a, 0 T , and 

θ4 = β1/α1
2, − 1/α1

T . Finally, a 1 − α -level asymptotic confidence interval for τ can be 

obtained as τ̂ − z1 − α/2 Var τ̂ , τ̂ + z1 − α/2 Var τ̂ , where τ can be NIE, NDE, TE, and MP, 

and z1 − α/2 is the 1 − α/2 th quantile for a standard normal distribution.
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3 | DEMYSTIFY THE IMPACT OF EXPOSURE MEASUREMENT ERROR

3.1 | Measurement error methods

In practice, the true exposure, A, may be mismeasured in the main study and, 

instead, an error-prone surrogate A* is observed; that is, only Y i, Ai
*, Mi, Ci , i = 1, …, n1, 

is available. Meanwhile, there is often a validation study for us to characterize the 

relationship between the true exposure A and its surrogate A*. If the validation study 

is part of the primary study sample and includes outcome data Y i, we refer to it as 

an internal validation study (IVS); otherwise, if the validation study is taken from a 

different set of participants, we refer to it as an external validation study (EVS).19 

Specifically, an IVS consists of data Y i, Ai, Ai
*, Mi, Ci , i = n1 + 1, …, n, whereas an EVS 

consists of data Ai, Ai
*, Mi, Ci , i = n1 + 1, …, n. We make the surrogacy assumption such 

that P Y i ∣ Ai, Ai
*, Ci = P Y i ∣ Ai, Ci  and P Y i ∣ Ai, Ai

*, Mi, Ci = P Y i ∣ Ai, Mi, Ci  to ensure that the 

surrogate value Ai
* is not informative for predicting Y i once we know the true exposure 

Ai. With a MS/EVS design, we further assume transportability such that the conditional 

distribution of Ai, Ai
*, Mi given Ci in the validation samples is same as which would have been 

observed in the main study to allow that key parameters estimation in the EVS can be validly 

transported to identify and obtain consistent estimates of the mediation measures.28 This 

empirically unverifiable assumption is usually reasonable for scenarios when the method of 

exposure assessment is similar in both study samples. To summarize, in either a MS/IVS or 

MS/EVS design, we have a total of n participants where the first n1 participants are from the 

main study. Typically, the validation study size, n2 = n − n1, is much smaller than the main 

study size, n1, because the true exposure is much more expensive to measure.

To utilize the validation study data for exposure measurement error correction, the next 

step is to fit an appropriate measurement error model connecting the true exposure, A, 

with its surrogate, A*. We assume that the measurement error process can be characterized 

by the following two models for the true exposure, f1 A ∣ A*, C; γ  and f2 A ∣ A*, M, C; η , 

where C is a subset of C that are predictive of the exposure error process. Here, 

f1 A ∣ A*, C; γ  describes the distribution of A conditional on the surrogate exposure 

A* and covariates C and f2 A ∣ A*, M, C; γ  describes the distribution of A conditional 

on the surrogate exposure A*, mediator M, and covariates C. We use f1 A ∣ A*, C; γ

and f2 A ∣ A*, M, C; η  to account for the measurement error-induced bias in (1) and 

(2), respectively. The unknown parameters, γ and η, can be estimated by solving 

∑i = n1 + 1
n Uγ Ai, Ai

*, Ci = 0 and ∑i = n1 + 1
n Uη Ai, Ai

*, Mi, Ci = 0, which are assumed to satisfy the 

conditions for unbiased estimating equations, E Uγ Ai, Ai
*, Ci = 0 and E Uη Ai, Ai

*, Mi, Ci = 0. 

A convenient choice is using the likelihood scores Uγ Ai, Ai
*, Ci = ∂ log f1 Ai ∣ Ai

*, Ci; γ / ∂γ

and Uη Ai, Ai
*, Mi, Ci = ∂ log f2 Ai ∣ Ai

*, Mi, Ci; η / ∂η.

For example, we first consider f1 A ∣ A*, C; γ  and f2 A ∣ A*, M, C; η  follow the linear 

measurement error models

Cheng et al. Page 6

Stat Med. Author manuscript; available in PMC 2024 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



f1 A ∣ A*, C; γ N γ0 + γ1A* + γ3
TC, σγ

2 ,

(5)

f2 A ∣ A*, M, C; η N η0 + η1A* + η2M + η3
TC, ση

2 ,

(6)

where γ1 and η1 are so called calibration coefficients,29 which measure the associations 

between A and A* without and with adjustment for the mediator M. We may expect 

γ1 > 0 and η1 > 0 such that the true exposure and its measurement are positively associated. 

Spiegelman et al19 have shown that the linear measurement error models provide a good 

fit for the measurement error process of dietary intake data. In Section 8, we observe that 

the linear measurement error models also provide an adequate fit for the measurement error 

process for physical activity. The regression coefficients, γ = γ0, γ1, γ3
T T  and η = η0, η1, η2, η3

T T

can be estimated using the following likelihood scores,

Uγ Ai, Ai
*, Ci = 1, Ai

*, Ci
T T Ai − 1, Ai

*, Ci
T γ ,

Uη Ai, Ai
*, Mi, Ci = 1, Ai

*, Mi, Ci
T T Ai − 1, Ai

*, Mi, Ci
T η .

Comparing the above two equations to (3) and (4), we find that the construction of the 

estimating scores for γ and η are identical to that for outcome regression coefficients α and 

β with an identity link function. Therefore, we use the difference method under Scenario 

I with the outcome and mediator variable replaced by A and A*, respectively, to estimate 

the regression coefficients, γ and η, in the linear measurement error model. The variance 

terms, σγ
2 and ση

2, can be estimated by the sample variances of the regression residuals. Note 

that (5) and (6) require that the the measurement error is normally distributed. One can fit 

measurement error models in the validation study and empirically assess the aspects of the 

distribution of estimated residuals to explore whether there is evidence suggesting violation 

of the normality assumption.

3.2 | Bias of the mediation measure estimators under linear measurement error models

When outcome models (1) and (2) are fit with A* in place of A, then the corresponding 

mediation measure estimators will be biased and inconsistent. Here, we derive the 

limiting values of naive mediation measure estimators when the exposure follows linear 

measurement error models (5) and (6). Let α1
* and β1

*
 be naive estimators of the regression 

coefficients α1 and β1 in (1) and (2) when A* is used in place of A. We define NIE* as 

the naive estimator of NIE, and NDE*, TE*, and MP* are similarly defined. The following 

theorem presents the asymptotic relative bias (RelBias) of the naive mediation measure 

estimators, defined as the ratio of the asymptotic bias and the true mediation measure value:
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Theorem 1. For an outcome modeled with either an identity or a log link function (Scenario 

I or II), α1
*

p
α1γ1 and β1

* p
β1η1 if measurement error models (5) and (6) hold, where 

‘ 
p

 ’denotes convergence in probability. In addition, the relative bias for each mediation 
measure has an analytical representation given by

RelBias NIE* = γ1 − 1 + 1
MP − 1 γ1 − η1 ,

RelBias NDE* = η1 − 1,

RelBias TE* = γ1 − 1,

RelBias MP* = 1
MP − 1 1 − η1

γ1
.

Proof of this theorem is given in Appendix A in the Supplementary Material. Clearly, the 

naive estimators will be unbiased when the calibration coefficients (γ1 and η1) are both 1. 

The biases in the naive estimators have a particular direction when γ1 and/or η1 do not equal 

to 1. Specifically, the naive NIE estimator will converge to a negative relative bias when 

γ1 < 1 and γ1 < η1, and converge to a positive relative bias when γ1 > 1 and γ1 > η1. The naive 

NDE and TE estimators will be biased towards the null if η1 < 1 and γ1 < 1, respectively, and 

will be biased away from the null if η1 > 1 and γ1 > 1, respectively. The naive MP estimator 

will have a negative relative bias when η1 > γ1 and have a positive relative bias when η1 < γ1. 

Interestingly, the naive MP estimator will also present small relative bias when η1 ≈ γ1 and 

MP is close to 1, regardless of the magnitudes of η1 and γ1.

Remark 1. In some cases, the normality assumption in measurement error models (5) and 

(6) may not hold even though the conditional means given by (5) and (6) are correct. If only 

the conditional means in (5) and (6) are correct, we show in Appendix B that the probability 

limits for α1
* and β1

*
 and the asymptotic relative bias formulas for mediation measures shown 

in Theorem 1 still hold exactly under Scenario I and hold approximately under Scenario II 

when both Var A ∣ A*, C , Var A ∣ A*, M, C  are small and/or both β1 , α1  in the outcome 

models are small. In other words, when the conditional means in (5) and (6) are true, 

Theorem 1 still hold in Scenario I regardless of whether the measurement error is normally 

distributed and Theorem 1 still approximately hold in Scenario II when the measurement 

error is small and/or the exposure effect on the outcome is not large.
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4 | USING REGRESSION CALIBRATION TO ADDRESS EXPOSURE 

MEASUREMENT ERROR

We can leverage the idea of regression calibration (more specifically the Rosner-

Spiegelman-Willett-type or RSW-type regression calibration30,31) to correct for the 

measurement error induced bias. As suggested by Rosner, Willett, and Spiegelman,30 we 

can fit outcome models (1) and (2) based on the surrogate exposure and then bias-corrects 

the regression coefficients based on the bias formulas in Theorem 1. Specifically, one can 

construct consistent estimators of α1 and β1 by the following three steps under a MS/EVS 

design. In step 1, we implement the standard difference method in the main study with 

Y , A*, M, C as the outcome, exposure, mediator, and a vector of confounders, respectively, 

to obtain naive estimators of ϕ = α1, β1 , denoted by ϕ* = α1
*, β1

*
. In step 2, we implement 

a standard difference method in the validation study with A, A*, M, C as the outcome, 

exposure, mediator, and a vector of confounders in the outcome model, respectively, to 

estimate γ1, η1  in the measurement error models, denoted by γ̂1, η̂1 . In step 3, following 

Theorem 1, a consistent estimator for ϕ = α1, β1
T  can be constructed by ϕ̂RC = α1, RC, β1, RC

T , 

where α1, RC = α1
*

γ1
 and β1, RC = β1

*

η̂1
. The following theorem clarifies the asymptotic properties of 

ϕRC, where the proof is deferred in Appendix C of the Supplementary Material.

Theorem 2. Suppose that measurement error models (5) and (6) hold, then ϕ̂RC is a 

consistent and asymptotically normal estimator of ϕ, under the regularity conditions outlined 
in Appendix C.1 of the Supplementary Material.

The variance-covariance matrix for ϕRC consists of two components: the first is the 

contribution to the variance due to estimating α1
*, β1

*
 in the main study and the second is 

the contribution to the variance due to estimating γ1, η1  in the validation study. As shown at 

the end of Appendix C.1 in the Supplementary Material, the variance-covariance matrix of 

ϕRC can be consistently estimated by

ΣϕRC =

Var α1
*

γ 1
2 + α1

* 2Var γ 1

γ 1
4

cov α1
*, β 1

*

γ 1η1
+ α1

*β 1
*cov γ 1, η1

γ 1
2η1

2

Cov α1
*, β 1

*

γ 1η1
+ α1

*β 1
*Cov γ 1, η1

γ 1
2η1

2

Var β 1
*

η1
2 + β 1

* 2Var η1

η1
4

,

where Var ⋅  and Cov ⋅ , ⋅  are the variance and covariance estimators for α1
*, β1

*
 and 

γ1, η1 , which can be obtained from the output from fitting models (3) and (4), and (5) 

and (6) in a standard software supporting difference method (for example, the R package 

GEEmediate). Once we obtain ϕ̂RC = α1, RC, β1, RC
T  with its variance-covariance matrix ΣϕRC, 

we can substitute ϕRC into the mediation measure expressions to obtain their corresponding 

point estimators, and finally, we can apply the multivariate delta method introduced at the 

end of Section 2.2 in ΣϕRC to calculate the variance and interval estimators.
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In a MS/IVS design, we can further improve the efficiency in estimating ϕ = α1, β1  by using 

information on the outcome in the validation study. Similar to Spiegelman et al22 and Shu 

and Yi,32 we propose a more efficient estimator for ϕ through a weighted combination of 

the two estimators, that is, ϕRC, I = W RCϕRC + W IϕI, where ϕRC is the estimator for ϕ given in 

Step 3, ϕI is the estimator for ϕ from applying the difference method on the validation study 

alone, W RC and W I are the weights. The following theorem shows that ϕRC, I is consistent for 

any choice of W RC and W I satisfying the constraint W RC + W I = I, where I is a 2 × 2 identity 

matrix.

Theorem 3. Suppose that measurement error models (5) and (6) hold and W RC + W I = I, 

then ϕ̂RC, I is a consistent and asymptotically normal estimator of ϕ, under the regularity 

conditions outlined in Appendix C.2 of the Supplementary Material.

Proof of Theorem 3 is given in Appendix C.2 of the Supplementary Material. Spiegelman 

et al22 suggested weighting ϕ̂RC and ϕ̂I by the inverse of their variance matrix, that 

is, W RC = Σϕ̂RC
−1 + Σϕ̂I

−1 −1Σϕ̂RC
−1

 and W I = Σϕ̂RC
−1 + Σϕ̂I

−1 −1Σ̂ϕ̂I
−1

, where Σϕ̂RC and ΣϕI are the 

estimated variance-covariance matrices for ϕ̂RC and ϕ̂I, respectively. Since ϕ̂RC and ϕ̂I

are asymptotically uncorrelated (see Appendix C.3 in the Supplementary Material), the 

variance-covariance matrix for this inverse-variance weighted estimator, ϕ̂RC, can be given 

approximately by Σ̂ϕ̂RC, I = Σ̂ϕ̂RC
−1 + Σ̂ϕ̂I

−1 −1
. Once we have ϕ̂RC, I with its variance-covariance 

matrix Σ̂ϕ̂RC,I, we can obtain the point, variance, and interval estimators of the mediation 

measures by the multivariate delta method, as described above. The inverse-variance weight 

used in ϕ̂RC, I leads to the asymptotically most efficient estimator for ϕ among all linear 

combinations of ϕRC and ϕ̂I, as proven in Spiegelmant et al.22 Therefore, ϕRC, I is at least 

as efficient as ϕRC under a MS/IVS design. An empirical efficiency comparison between 

ϕ̂RC, I and ϕ̂RC is provided in Appendix C.4 in the Supplementary Material, which suggests 

that the efficiency loss of ϕ̂RC is usually non-negligible. Since ϕRC, I more efficiently use the 

information from both the main study and validation study, in this article we shall always 

use ϕ̂RC, I to calculate the mediation measures under a MS/IVS design.

5 | USING ESTIMATING EQUATIONS TO ADDRESS EXPOSURE 

MEASUREMENT ERROR

5.1 | Expected estimating equations

In addition to regression calibration that relies upon the simple results in Theorem 1, 

we propose an additional method to correct for exposure measurement error using the 

expected estimating equations, which might improve the efficiency of the mediation measure 

estimators by making additional distributional assumptions such as in Scenario I we 

additionally assume the error terms in the outcome models following a common normal 

distribution. Because we observe Ai
* in place of Ai in the main study, we cannot compute the 

complete-data estimating estimation components (1) and (2) from the main study. Instead, 

Wang and Pepe23 suggested to construct the estimating estimation as the expectation of the 
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complete-data estimating equation conditional on the observed data, referred to as expected 

estimating equation (EEE), which is unbiased by iterated expectation and depends only 

upon the observed data. In a MS/IVS design, we use the EEEs for the main study and 

the complete-data estimating equations for the validation study. Specifically, consider the 

following estimating equations for α and β, respectively,

∑
i = 1

n
1 − Ri EAi Uα Y i, Ai, Ci ∣ Y i, Ai

*, Ci + RiUα Y i, Ai, Ci = 0,

(7)

∑
i = 1

n
1 − Ri EAi Uβ Y i, Ai, Mi, Ci ∣ Y i, Ai

*, Mi, Ci + RiUβ Y i, Ai, Mi, Ci = 0,

(8)

where Ri = 1 if the participants is in the validation study (ie, i > n1), Ri = 0 if the participants 

is in the main study (ie, i ≤ n1), and the expectation EX ⋅ ∣ Z  is taken with respect to 

the distribution of X conditional on Z. Evaluation of the above observed-data estimating 

equations involves calculation of expectations of the forms, EAi g Y i, Ai, Ci ∣ Y i, Ai
*, Ci  and 

EAi g Y i, Ai, Mi, Ci ∣ Y i, Ai
*, Mi, Ci , for some functions g Y i, Ai, Ci  and g Y i, Ai, Mi, Ci . Using the 

Bayes’ rules and the surrogacy assumption, we can rewrite the expectations as

EAi g Y i, Ai, Ci ∣ Y i, Ai
*, Ci =

∫ag Y i, a, Ci P Y i ∣ a, Ci f1 a ∣ Ai
*, Ci; γ da

∫aP Y i ∣ a, Ci f1 a ∣ Ai
*, Ci; γ da

,

(9)

EAi g Y i, Ai, Mi, Ci ∣ Y i, Ai
*, Mi, Ci =

∫ag Y i, a, Mi, Ci P Y i ∣ a, Mi, Ci f2 a ∣ Ai
*, Mi, Ci; η da

∫aP Y i ∣ a, Mi, Ci f2 a ∣ Ai
*, Mi, Ci; η da

,

(10)

which are functions of the measurement error models (5) and (6), and the outcome 

distributions P Y ∣ A, C  and P Y ∣ A, M, C . Generally, the above expectations do not 

have explicit solutions but can be numerically calculated by standard method of 

numerical integration. However, when A follows the measurement error models (5) and 

(6), the above expectations have explicit expressions, which are derived in Appendix 

D.1 in the Supplementary Material. To calculate (9) and (10), we must fully specify 

P Y ∣ A, C  and P Y ∣ A, M, C . With binary data, as in Scenario II, the conditional 

mean models (1) and (2) fully determine P Y ∣ A, C  and P Y ∣ A, M, C , as can be 

seen by noting that P Y = 1 ∣ A, C = E Y ∣ A, C  and P Y = 1 ∣ A, M, C = E Y ∣ A, M, C . 

In Scenario I, however, additional assumptions are needed to specify P Y ∣ A, C  and 

P Y ∣ A, M, C . When empirically verifiable, we can set Y ∣ A, C N E Y ∣ A, C , σα
2  and 
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Y ∣ A, M, C N E Y ∣ A, M, C , σβ
2 , where E Y ∣ A, C  and E Y ∣ A, M, C  are given by (1) and 

(2), and σα
2 and σβ

2 denote the conditional variances for the outcome in the two models.

Notice that Equation (7) for estimating α also depends on γ (and σα
2 if Scenario I) and the 

Equation (8) for estimating β also depends on η (and σβ
2 if Scenario I). Motivated by the 

formulation of the estimating equations for estimating α and β, we propose the following 

estimating equations for γ and η,

∑
i = 1

n
1 − Ri EAi Uγ Ai, Ai

*, Ci ∣ Y i, Ai
*, Ci + RiUγ Ai, Ai

*, Ci = 0,

(11)

∑
i = 1

n
1 − Ri EAi Uη Ai, Ai

*, Mi, Ci ∣ Y i, Ai
*, Mi, Ci + RiUη Ai, Ai

*, Mi, Ci = 0,

(12)

where Uγ Ai, A*, Ci  and Uη Ai, A*, Mi, Ci  are the components for the complete-data estimating 

equations for γ and η, respectively. Similarly, the additional parameters σα
2 and σβ

2 used in 

Scenario I can be estimated by solving

∑
i = 1

n
1 − Ri EAi Uσα2 Y i, Ai, Ci ∣ Y i, Ai

*, Ci + RiUσα2 Y i, Ai, Ci = 0,

(13)

∑
i = 1

n
1 − Ri EAi Uσβ

2 Y i, Ai, Mi, Ci ∣ Y i, Ai
*, Mi, Ci + RiUσβ

2 Y i, Ai, Mi, Ci = 0,

(14)

where Uσα2 Y i, Ai, Ci = σα
2 − Y i − 1, Ai, Ci

T α 2 and 

Uσβ
2 Y i, Ai, Mi, Ci = σβ

2 − Y i − 1, Ai, Mi, Ci
T β 2 are the complete-data likelihood scores for σα

2

and σβ
2, respectively. Calculation of the expected scores in (11) and (13) follow (9) and 

calculation of the expected scores in (12) and (14) follow (10).

Denote all the unknown parameters as Θ, which includes α and β for the outcome models (1) 

and (2), γ and η for the measurement error models f1 A ∣ A*, C; γ  and f2 A ∣ A*, M, C; η , and 

the parameters σα
2 and σβ

2 when relevant (Scenario I). Write all the estimating Equations (7), 

(8), (11)–(14) as ∑i = 1
n gi Θ = 0, then Θ can be obtained by solving ∑i = 1

n gi Θ = 0. We note 

that ∑i = 1
n gi Θ = 0 can be divided into two groups of estimating equations with no common 

parameters, where the first group includes (7), (11), and (13) which depend on α, γ, σα
2  and 
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the second group includes (8), (12), and (14) which depend on β, η, σβ
2 . Therefore, Θ can 

be consistently estimated by first solving (7), (11), and (13) simultaneously for α̂, γ̂, σ̂α
2

and then solving (8), (12), and (14) simultaneously for β̂, η̂, σ̂β
2 . Typically, each group of 

estimating equations does not have explicit solutions. In the application and simulation 

studies, we employed the Newton-Raphson method to numerically find their roots. The 

following theorem summarizes the asymptotic properties of Θ.

Theorem 4. Assuming that measurement error models (5) and (6) are correctly specified, 
and for a continuous outcome (Scenario I), further assuming that error terms in outcome 

models (1) and (2) are normally distributed and homoskedastic, then, Θ is a consistent and 
asymptotically normal estimator of Θ, under the regularity conditions outlined in Appendix 

D.2 of the Supplementary Material.

Proof of Theorem 2 is provided in Appendix D.2. The variance-covariance matrix Θ can be 

consistently estimated by

ΣΘ = 1
nGn

−1 Θ V n Θ Gn
−1 Θ ,

where Gn Θ = 1
n ∑i = 1

n ∂gi Θ
∂ΘT

Θ = Θ
 and V n Θ = 1

n ∑i = 1
n gi Θ gi

T Θ . Once we obtain Θ and ΣΘ, 

we can extract ϕ = α1, β1
T  from Θ and calculate the variance-covariance matrix of ϕ̂ based 

on ΣΘ. Then, the point, variance, and interval estimators of the mediation measures can be 

obtained by the multivariate delta method shown at the end of Section 2.2.

5.2 | Reduced expected estimating equations

The EEE approach uses the main and validation studies together to estimate the unknown 

parameters of the measurement error models, γ and η, as shown in (11) and (8). 

Alternatively, we could estimate γ and η based on the validation study only, that is, finding γ̂
and η̂ by solving the following reduced estimating equations

∑
i = 1

n
RiUγ Ai, Ai

*, Ci = 0,

(15)

∑
i = 1

n
RiUη Ai, Ai

*, Mi, Ci = 0,

(16)

respectively and separately. Then, the other parameters in Θ can be estimated by solving 

their corresponding estimating equations evaluated at γ = γ̂ and η = η̂. Specifically, we can 

obtain α̂, σ̂α
2  by solving (7) and (13), simultaneously, at γ = γ̂ and obtain β̂, σβ

2  by solving 
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(8) and (14), simultaneously, at η = η̂. We will denote this as the reduced EEE approach, in 

order to distinguish it with the full EEE approach introduced previous Section 5.1. Under 

the assumptions outlined in Theorem 4, one can also show that the reduced EEE is also a 

consistent and asymptotically normal estimator, following similar arguments in Appendix 

D.2 to prove Theorem 4. Then, the point, variance, and interval estimates of the mediation 

measures are similar to what we introduced in the previous subsection.

Compared with the full EEE, the reduced EEE can be substantially more computationally 

convenient, since now we estimate the measurement error model parameters and outcome 

model parameters separately, in contrast to the full EEE approach, which estimates 

them simultaneously. However, the statistical efficiency in estimating α and β might be 

compromised as we only use the validation study to estimate the measurement error 

model parameters. In fact, if the A − Y  associations conditional on A*, C  and A, M, C
are weak (ie, P A ∣ Y , A*, C ≈ P A ∣ A*, C  and P A ∣ Y , A*, M, C ≈ P A ∣ A*, M, C ), 

then the expected scores in (11) and (12), that is, EAi Uγ Ai, Ai
*, Ci ∣ Y i, Ai

*, Ci  and 

EAi Uη Ai, Ai
*, Mi, Ci ∣ Y i, Ai

*, Mi, Ci , are approximately equal to 0 (Appendix D.3 in the 

Supplementary Material). It follows that (11) and (15) are approximately the same, so 

are (12) and (16). Therefore, under these circumstances, it is likely that the efficiency loss 

is minimal. Our simulation studies also confirm that the reduced EEE approach has very 

similar finite-sample efficiency as compared to the full EEE, and therefore can be considered 

as a computationally convenient alternative for exposure measurement error correction in 

mediation analysis.

5.3 | Extension to the MS/EVS design

The full EEE and reduced EEE can be easily adapted for the a MS/EVS 

design. In this design, the outcome variable is typically not available in the 

validation study. Therefore, the components of the complete-data estimating equations 

Uα Y i, Ai, Ci , Uβ Y i, Ai, Mi, Ci , Uσα2 Y i, Ai, Ci , and Uσβ
2 Y i, Ai, Mi, Ci , which correspond to α, β, σα

2, 

and σβ
2, cannot be evaluated in the validation study. Thus, we must remove the components 

contributed by the validation study from the proposed estimating equations. Specifically, for 

both the full and reduced EEE approaches, we remove the RiUα Y i, Ai, Ci  term in (7), the 

RiUβ Y i, Ai, Mi, Ci  term in (8), the RiUσα2 Y i, Ai, Ci  term in (13), and the RiUσβ
2 Y i, Ai, Mi, Ci  term 

in (14). Because these resulting estimating equations are still unbiased, we can still use the 

same procedure described in the previous two sections to calculate the point, variance, and 

interval estimators of the mediation measures.

6 | CONNECTIONS BETWEEN REGRESSION CALIBRATION AND EEE

Using the outcome regression (1) and its associated measurement error model (5) as an 

example, we show in Appendix E the connections among the full EEE, reduced EEE and 

regression calibration. Specifically, we show that the full EEE is the maximum likelihood 

estimation for parameters in (1), α, and therefore maximizes the efficiency. The reduced 

EEE does not consider information from the main study for estimating the measurement 

error model parameters and thus compromises the statistical efficiency. The estimating 
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equations of the regression calibration approach are approximately equal to the estimating 

equations of the reduced EEE approach when the measurement error is small (σγ
2 ≈ 0) and/or 

the exposure effect on the outcome is small (α1 ≈ 0). Therefore, we can treat regression 

calibration as an alternative to the reduced EEE that gives approximately the same estimator 

to the reduced EEE whenever the measurement error is small and the exposure effect is not 

large.

7 | SIMULATION STUDIES

We conducted extensive simulations to evaluate the finite-sample performance of the full 

and reduced EEE, regression calibration, the naive approach, and a gold standard approach, 

when the outcome is continuous (Scenario I) and binary (Scenario II). The naive approach 

follows the difference method in the main study treating A* as the true exposure. The gold 

standard approach assumes A is available in the main study and follows the difference 

method in the absence of exposure measurement errors. By comparing this estimator to 

those given by the correction approaches proposed, we can learn how much additional 

variance and bias are induced from the measurement error on estimation and how close 

the correction methods get to the situation where this no error at all. The study focuses on 

the NIE and MP estimators, as these are the most commonly using mediation measures in 

epidemiology.33 We denote τ N , τ G , τ̂ El , and τ E2  to refer to the estimates obtained from 

the naive approach, the gold standard approach, the full EEE approach, and the reduced 

EEE approach, respectively, where τ can be NIE and MP. Also, let τ RC  be the regression 

calibration estimator based on ϕ̂RC and τ RC, I  be the regression calibration estimator based 

on ϕ̂RC, I with the inverse-variance weight.

The data generation process is summarized as follows. Throughout, we considered a 

continuous confounder C. The mediator M, true exposure A, and confounder C were 

generated from a multivariate normal distribution with mean 0, 0, 0 T  and variance-

covariate matrix 
1 ρMA 0.2

ρMA 1 0.2
0.2 0.2 1

, where the correlation between the mediator and exposure 

(ie, ρMA) was chosen from 0.3 to 0.6. The correlation between the confounder and mediator 

and between the confounder and exposure were fixed to 0.2, which were slightly stronger 

than the observed correlation coefficients in our illustrative example of HPFS. Given A, the 

surrogate exposure, A*, was generated from N A, 1/ρAA*
2 − 1  to fix the correlation between 

the true and surrogate exposure to ρAA*. We selected ρAA* ∈ 0.75, 0.5, 0.25  to represent weak, 

moderate, and strong measurement error. In Scenarios I and II, we generated Y  from the 

following linear and log-binomial regression models,

Y ∣ A, M, C N β0 + β1A + β2M + β3C, 1 ,
log P Y = 1 ∣ A, M, C = β0 + β1A + β2M + β3C,

respectively, where the coefficient for the confounder, β3, was set to 0.2, and β1 and β2

were chosen as follows. First, we fixed TE, on the identity and log risk ratio scale for 
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Scenarios I and II, to 0.5 and log(1.5), respectively. Then, we chose MP ∈ 0.2, 0.5
to represent a moderate and high mediation proportion. Finally, by definition we have 

β1 = 1 − MP × TE and β2 = 0.96 × TE × MP/ ρMA
2 − 0.04 , where derivations of both formulas 

are given in Appendix F in the Supplementary Material. The intercept β0 was set to 0 for 

Scenario I and was chosen such that the marginal outcome prevalence P Y = 1  equaled 10% 

in Scenario II. We assumed the main study contained 5000 samples (n1 = 5000); and the 

validation study sample size (ie, n2) was chosen from 200 and 1000 to represent a moderate 

and large validation study. For each Scenario, MP, n2, ρMA, and ρAA* considered, we conducted 

1000 simulations and compared the mean percent bias, Monte Carlo standard error, and 95% 

confidence interval coverage rate among the proposed approaches.

We first consider a MS/EVS design, which is also the study design for our data application. 

The simulation results for the NIE with a continuous (Scenario I) and a binary outcome 

(Scenario II) are illustrated in Tables 2 and 3, respectively. As expected, the naive approach 

performs poorly, where the percent bias of NIE N  is over 59% on average over all 

combinations of parameters in both Scenarios I and II. The gold standard approach provides 

approximately unbiased point estimates with confidence interval coverage rates close to the 

nominal 95%. Comparing across the measurement error correction methods, the full EEE 

approach usually has the smallest Monte Carlo standard errors, followed by the reduced 

EEE approach and then regression calibration. All of the proposed methods for measurement 

error correction substantially reduce bias compared to the naive approach. The reduced 

EEE and regression calibration achieve negligible bias with nominal confidence interval 

coverage among all combinations of parameters considered in the simulation. The full EEE 

approach also leads to minimal bias for a binary outcome (Scenario II), but it tends to 

provide biased estimates for a continuous outcome (Scenario I) when the validation study 

was small and measurement error is large (n2 = 200 and ρAA* = 0.25). This result may be 

driven by the fact that the full EEE approach involves greater computational complexity than 

the other approaches, thereby requiring larger validation study sizes to provide estimates 

with small finite-sample bias. We further compare the performance of NIE E1  to other 

estimators with increased validation study size from 200 to 10 000 in Figure S1 of the 

Supplementary Material, in the scenario with a continues outcome (Scenario I) and large 

exposure measurement error ρAA* = 0.25 . As expected, when the validation study size 

increases, the percent bias of NIE E1  decreases toward 0 but it does so much more slowly 

compared to NIE E2  and NIE RC . For example, the absolute value of the percent bias 

of NIE E1  at MP = 0.2 and ρMA = 0.3 decreases from 24% at n2 = 200 to 11% at n2 = 1000
and then further drops to 5% at n2 = 5000. In contrast, the reduced EEE and regression 

calibration already produce a percent bias below 5% at n2 = 200. Varying the MP and 

mediator-exposure association (ρMA) had relatively smaller influence on the bias of proposed 

correction approaches, but a larger MP and ρMA appears to be associated with a higher 

bias of NIE estimates. The simulation results of MP estimates for a continuous and binary 

outcome are provided in Tables S1 and S2 in the Supplementary Material, respectively. The 

simulation results of MP estimates are generally similar to those for the NIE estimates, but 
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the Monte Carlo standard error for the MP estimate is generally larger as MP is defined as a 

ratio effect measure.

Then, we investigate the proposed approaches under a MS/IVS design. The data generation 

process is almost identical to that under a MS/EVS design, but we assumed the outcome 

information was available in the validation study. Since τ RC, I  is more efficient than τ RC

under a MS/IVS design as we demonstrate in Section 4 and Appendix C.4, we only present 

the results of τ RC, I  here. The results are shown in Tables S3 and S4 in the Supplementary 

Material for a continuous and binary outcome, respectively. All of the full EEE, the reduced 

EEE and the regression calibration provide small bias with nominal coverage, even with a 

small validation study size n2 = 200 .

The previous simulation studies consider measurement error models (5) and (6) with 

homoscedastic normal error terms. Additional simulation studies show that all of the 

proposed measurement error correction approaches have relatively robust performance when 

either the normality assumption or homoscedasticity assumption in the measurement error 

models are moderately violated. Full details of these additional simulations can be found in 

Appendix G in the Supplementary Material.

Theorems 2–4 require that, for the full and reduced EEE approaches, the error terms of 

the outcome model in Scenario I are normally distributed and homoskedastic, whereas 

regression calibration does not place any distributional assumptions on these error terms. 

Additional simulations described in Appendix H of the Supplementary Material suggest 

that the EEE approaches are relatively insensitive to the violation of either the normality 

or homoskedasticity assumptions in the outcome models in Scenario I, although these 

assumptions are required to construct the expected estimating equations.

8 | APPLICATION TO THE THE HEALTH PROFESSIONALS FOLLOW-UP 

STUDY (HPFS) DATA

We applied the proposed approaches to an analysis of a large prospective cohort of US 

men, the HPFS.34 The HPFS began in 1986, when 51 529 male health professionals, aged 

40 to 75 years, completed a baseline questionnaire providing information about physical 

activity, diet, lifestyle, and medical history. Biannual follow-up questionnaires have been 

retrieved by more than 90% of the participants. Chomistek et al20 showed that physical 

activity was associated with decreased risk of cardiovascular diseases (CVD) in HPFS. Here, 

we investigated the extent to which the effect of physical activity on CVD risk is direct and 

to what extent that effect is mediated by body mass index (BMI).

Starting from 1986, physical activity was assessed in biannual questionnaires on average 

time per week spent on 10 common activities, including walking, jogging, bicycling and 

so forth during the past year. Then, the total MET-hours per week (MET h wk−1)) was 

calculated to measure total physical activity, which is defined as the time spent at each 

activity in hours per week multiplied by its MET score and then summed over the 10 

activities.21 In our analysis, the exposure and mediator were defined as physical activity 

(MET h wk−1)) and BMI (kg/m2) at baseline, where both were treated as continuous. 
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After excluding men with a history of CVD or whose physical activity or BMI data 

were missing at baseline, a total 43 547 individuals were included in this analysis, among 

whom 6330 (14.5%) of them developed CVD between 1986 to 2016. We adjusted for all 

baseline covariates considered by Chomistek et al20 as potential confounders, where a list of 

confounders are shown in Table 4.

The questionnaire measured physical activity with some degree of error and was validated 

by physical activity diaries. In the HPFS validation study,21 physical activity data from 238 

participants were measured using both the questionnaires and the more accurate diaries, 

which served as an EVS in this example. We considered using measurement error models (5) 

and (6) to describe the physical activity measurement error process. As a preliminary step, 

we assessed the validity of the measurement error models by fitting them in the validation 

study, adjusting for the aforementioned covariates. An empirical check on QQ-plots (Figure 

S2 in the Supplementary Material) for the regression residuals indicated little evidence 

for violation of the normality assumption. The calibration coefficients were γ1 = 0.27 and 

η1 = 0.30. Since γ1 < η̂1 < 1, we expect that the naive NIE, NDE, and TE estimates will be 

biased toward the null, given the results in Section 3.2. In addition, because γ̂1 and η̂1 are 

similar, bias in the MP naive estimator may be small.

Next, we proceed to the mediation analysis. Tables S5 and S6 in the Supplementary Material 

present the point estimates with their standard errors of the outcome regression coefficients 

given by the full and reduced EEE, regression calibration, and the naive approach as a 

benchmark, which implemented the difference method in the HPFS main study treating the 

questionnaire-based physical activity variable as the true exposure. Table 4 presents results 

of NIE, TE, and MP. The NIE and TE were given in a log risk ratio scale for 10 METs 

h wk−1) increase. All methods indicated that physical activity exerted a protective effect 

against CVD incidence, but the NIE and TE given by the naive approach appeared to be 

severely attenuated towards null. For example, the NIE given by the naive approach was 

−0.007, corresponding to a risk ratio of 0.993 for 10 MET h wk−1) increase in physical 

activity. In the full and reduced EEE approaches and regression calibration approach, 

stronger NIEs were observed, with risk ratios at 0.956, 0.972, and 0.973, respectively. 

The MP given by the naive approach was also found to be slightly underestimated. The 

naive approach indicated that about 41% of the effect of physical activity on CVD risk was 

mediated by BMI. The proposed correction approaches provided slightly higher MP ; the full 

EEE, reduced EEE, and regression calibration approaches show that MP = 52 % , 45 %, and 

45%, respectively.

9 | DISCUSSION

In this article, we propose approaches to correct for exposure measurement error for 

estimating mediation measures using the difference method, a commonly used regression-

based approach for mediation analysis that also bears a causal interpretation under the 

structural assumptions outlined in Section 2.1. We assume a main study/validation study 

framework where the validation study enables us to estimate, rather than assuming 

model parameter values, for the relationships between the true exposure and mismeasured 
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measurements. Under measurement error models (5) and (6), we derive formulas for the 

bias of naive estimators of the mediation measures in the presence of exposure measurement 

error. The formulas show that the bias of naive estimators depends on the calibration 

coefficients γ1 and η1, where γ1 and η1 are associations between the true exposure and its 

error-prone counterpart without and with conditional on the mediator level, respectively. We 

show that NIE, NDE, and TE estimators are typically biased when γ1 ≠ 1 and η1 ≠ 1 but the 

MP estimator can provide minimal relative bias when γ1 ≈ η1 and MP is not small regardless 

of the extent of the measurement error.

Measurement error models (5) and (6) describe the distributions of the true exposure A
conditional on its surrogate A* and other variables, which is a Berkson-type measurement 

error model.35 Another class of measurement error model is the classic measurement error 

models (see, for example, Chapter 2 in Carroll35), which includes the commonly-used 

classic additive measurement error model as a special case. Below we show that the 

Berkson-type measurement error model used in this article is equivalent to the classic 

additive measurement error model under certain parametric assumptions. Specifically, the 

classic additive measurement error model assumes A* = A + ϵ, where ϵ is a zero-mean error 

term due to imperfect measurement. If we assume that ϵ follows a normal distribution 

with a common variance and the mediator-exposure relationship follows a linear regression 

with a normal error term such that M ∣ A, C N ξ0 + ξ1A + ξ2
TC, σM

2 , then one can verify 

that measurement error models (5) and (6) still hold. Thus, under the aforementioned 

assumptions, the proposed correction methods are still valid even if the true data generating 

mechanism follows the classic additive measurement error model.

Among the proposed approaches, the full EEE is most efficient but is computationally 

more intensive as the parameters in the outcome model and measurement error models are 

estimated simultaneously. The proposed reduced EEE approach improves the computational 

efficiency by solving for the outcome model parameters and measurement error model 

parameters, separately. In practice, alternative reduced EEE approaches can be developed 

to reduce the computational complexity. For example, in the outcome model EEEs, (7) 

and (8), one can take the expectations of Ai over Ai
*, Ci  and Ai

*, Mi, Ci , respectively, 

without conditional on the outcome variable Y i. The resulting estimating equations are 

still unbiased but we will simplify calculation for the conditional expectations in (9) and 

(10) since now the outcome densities are no longer included in the integrals. We shall 

evaluate the performance of this new reduced EEE approach in the future. Example R code 

for implementing the proposed approaches is available at https://github.com/chaochengstat/

mediate_error.

We evaluated the empirical performance of the proposed methods via Monte Carlo 

simulations. We found that the full EEE approach maximized efficiency compared to the 

reduced EEE and regression calibration methods, but the efficiency difference was usually 

moderate to minimal when the measurement error was not too large. The reduced EEE 

and regression calibration approaches provide small bias and nominal coverage among all 

scenarios considered in the simulation study. The full EEE also provides asymptotically 

unbiased estimates under a MS/IVS design; however, under a MS/EVS design with a 
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continuous outcome, the full EEE approach can require unrealistic large validation study 

sizes (n2 > 2000 if measurement error is large) to ensure small finite-sample bias. This is 

somewhat expected because prior work in measurement error correction (developed for 

association analysis rather mediation analysis) indicated that more sophisticated approaches 

may lead to larger finite-sample bias or variance compared to simpler approach such like 

regression calibration under a MS/EVS design. For example, simulations in Spiegelman 

et al19 showed that the maximum likelihood estimator performed poorly with large bias 

under a MS/EVS design and therefore suggested regression calibration as a computationally 

simpler alternative under the MS/EVS design. Our simulation results reinforced that 

recommendation for mediation analysis, where the reduced EEE and regression calibration 

methods are preferable under a MS/EVS design and when the measurement error is expected 

to be non-trivial. For the MP estimates, we observed that regression calibration, reduced 

EEE, and full EEE approaches sometimes provide large Monte Carlo standard errors 

when the measurement error was large (ρAA* = 0.25). This is because the MP is defined 

as the ratio of NIE and TE and therefore can have more uncertainty as compared to other 

mediation measures estimated on the additive or difference scale. When the measurement 

error was large, we observed that the TE occasionally had very close to 0 values in several 

Monte Carlo replicates, leading to large Monte Carlo variances for estimating MP since 

MP ≈ NIE
TE

≈ ME
0 ≈ ∞ in those replicates. Therefore, the large Monte Carlo standard error 

was driven by several extreme simulation replicates. Therefore, we interpret the large 

empirical variance for estimating MP with caution.

We introduced two assumptions in Section 3.1 regarding the measurement error process, 

including (i) the transportability assumption in a MS/EVS design such that relevant 

parameters in the validation study and used for bias correction can reasonably be assumed 

to be the same as those that produced the surrogate exposure in the main study, and 

(ii) surrogacy assumption such that the A* is independent of the outcome Y  conditional 

on the true exposure A and covariates. In our analysis of the HPFS, the transportability 

assumption is considered plausible because validation study participants are members 

draw from the same target population with HPFS and both studies shared the same 

method of physical activity assessment. The surrogacy assumption cannot be empirically 

verified in the HPFS dataset, although this is a common assumption in the measurement 

error correction literature. If the surrogacy assumption is violated, then one may need to 

conduct sensitivity analysis and assess the impact under certain departures from surrogacy 

assumption. Developing such sensitivity analysis strategy under the context of mediation 

analysis is beyond the scope of this article but remains a fruitful direction for future 

research.

Regression calibration can be easily implemented, where its point estimators can be obtained 

by any standard software supporting a difference method. This article provides closed-form 

formulas on how to calculate consistent variance estimators for the regression calibration in 

Section 4. Comparing to EEE approaches that requires full distribution assumptions in the 

outcome models and measurement error models, the regression calibration requires fewer 

parametric assumptions (not requiring the full distributional assumptions in the outcome 
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models) and appears to be fairly robust; furthermore it is also approximately consistent even 

if the the normality assumptions in the measurement error models are violated (see Remark 

1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Mediation directed acyclic graph, where A, M, Y , and C denote the exposure, mediator, 

outcome, and a vector of covariates that may confound the exposure-outcome, exposure-

mediator, and mediator-outcome relationships. The A M Y  pathway denotes the natural 

indirect and the A Y  pathways denotes the natural direct effect
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TABLE 1

A summary of the existing literature addressing mediation analysis in the presence of mismeasured or 

misclassified variables, classified by the variable subject to measurement error (outcome, mediator, exposure) 

and the variable type (continuous, binary)

Variable Type Reference

Outcome Continuous Null. There is no bias in standard statistical inference when outcome follows classic additive measurement error 
model.

Binary Jiang and VanderWeele.4

Mediator Continuous Cessie et al;8 VanderWeele et al;9 Valeri et al;10 Zhao and Prentice;11 Ssenkusu;12 Fulcher et al;13 Gaynor et al14

Binary Ogburn and VanderWeele;15 Valeri and VanderWeele.16

Exposure Continuous Null (primary focus of this article).

Binary Valeri et al;17 Jiang and VanderWeele.18

Note: All publications shown in this table assumed that the measurement error or misclassification process is known, except for Ssenkusu,12 who 
considered that repeated measurements on the mediator are available to describe the measurement error process of a mismeasured mediator. Zhao 

and Prentice11 also mentioned an external dataset can be used to estimate the measurement error model parameters, but they did not consider 

the variability of estimating measurement error models in drawing statistical inference. Zhao and Prentice11 and Valeri et al17 considered the 
difference method in the presence of measurement error; all other publications considered the product method when addressing measurement 
error/misclassification.
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TABLE 4

The extent to which the effect of physical activity on cardiovascular diseases incidence is mediated by body 

mass index, HPFS n1 = 43 547, n2 = 238 , 1986–2016

Method TE NIE MP

Naive −0.018 (0.005) −0.007 (0.001) 0.408 (0.099)

Full EEE −0.084 (0.013) −0.044 (0.017) 0.520 (0.273)

Reduced EEE −0.062 (0.026) −0.028 (0.009) 0.450 (0.125)

Regression calibration −0.062 (0.025) −0.027 (0.009) 0.448 (0.121)

Note: The NIE and TE were defined in a log risk ratio scale for a 10 METs h wk−1 increase. The numbers in the brackets denote the standard 
errors of the point estimator. The confounders considered in the mediation analysis include age (years), smoking status (current/past/never), 
parental history of myocardial infarction and cancer at or before 60 years old (yes/no), aspirin use (yes/no), vitamin E supplement use (yes/no), 
intake of polyunsaturated fat, trans fat, eicosapentaenoic acid and docosahexaenoic acid (g/day), alcohol intake (yes/no), and diabetes (yes/no), and 
hypertension (yes/no).
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